f824f8c3cb
Use CITime consistently, make C2 to report to CompilerBroker, more probes. Reviewed-by: vlivanov, jrose
851 lines
30 KiB
C++
851 lines
30 KiB
C++
/*
|
|
* Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/oopMap.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/block.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/chaitin.hpp"
|
|
#include "opto/coalesce.hpp"
|
|
#include "opto/indexSet.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
|
|
PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
|
|
}
|
|
|
|
void PhaseIFG::init( uint maxlrg ) {
|
|
_maxlrg = maxlrg;
|
|
_yanked = new (_arena) VectorSet(_arena);
|
|
_is_square = false;
|
|
// Make uninitialized adjacency lists
|
|
_adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
|
|
// Also make empty live range structures
|
|
_lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
|
|
memset(_lrgs,0,sizeof(LRG)*maxlrg);
|
|
// Init all to empty
|
|
for( uint i = 0; i < maxlrg; i++ ) {
|
|
_adjs[i].initialize(maxlrg);
|
|
_lrgs[i].Set_All();
|
|
}
|
|
}
|
|
|
|
// Add edge between vertices a & b. These are sorted (triangular matrix),
|
|
// then the smaller number is inserted in the larger numbered array.
|
|
int PhaseIFG::add_edge( uint a, uint b ) {
|
|
lrgs(a).invalid_degree();
|
|
lrgs(b).invalid_degree();
|
|
// Sort a and b, so that a is bigger
|
|
assert( !_is_square, "only on triangular" );
|
|
if( a < b ) { uint tmp = a; a = b; b = tmp; }
|
|
return _adjs[a].insert( b );
|
|
}
|
|
|
|
// Add an edge between 'a' and everything in the vector.
|
|
void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
|
|
// IFG is triangular, so do the inserts where 'a' < 'b'.
|
|
assert( !_is_square, "only on triangular" );
|
|
IndexSet *adjs_a = &_adjs[a];
|
|
if( !vec->count() ) return;
|
|
|
|
IndexSetIterator elements(vec);
|
|
uint neighbor;
|
|
while ((neighbor = elements.next()) != 0) {
|
|
add_edge( a, neighbor );
|
|
}
|
|
}
|
|
|
|
// Is there an edge between a and b?
|
|
int PhaseIFG::test_edge( uint a, uint b ) const {
|
|
// Sort a and b, so that a is larger
|
|
assert( !_is_square, "only on triangular" );
|
|
if( a < b ) { uint tmp = a; a = b; b = tmp; }
|
|
return _adjs[a].member(b);
|
|
}
|
|
|
|
// Convert triangular matrix to square matrix
|
|
void PhaseIFG::SquareUp() {
|
|
assert( !_is_square, "only on triangular" );
|
|
|
|
// Simple transpose
|
|
for( uint i = 0; i < _maxlrg; i++ ) {
|
|
IndexSetIterator elements(&_adjs[i]);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
_adjs[datum].insert( i );
|
|
}
|
|
}
|
|
_is_square = true;
|
|
}
|
|
|
|
// Compute effective degree in bulk
|
|
void PhaseIFG::Compute_Effective_Degree() {
|
|
assert( _is_square, "only on square" );
|
|
|
|
for( uint i = 0; i < _maxlrg; i++ )
|
|
lrgs(i).set_degree(effective_degree(i));
|
|
}
|
|
|
|
int PhaseIFG::test_edge_sq( uint a, uint b ) const {
|
|
assert( _is_square, "only on square" );
|
|
// Swap, so that 'a' has the lesser count. Then binary search is on
|
|
// the smaller of a's list and b's list.
|
|
if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
|
|
//return _adjs[a].unordered_member(b);
|
|
return _adjs[a].member(b);
|
|
}
|
|
|
|
// Union edges of B into A
|
|
void PhaseIFG::Union( uint a, uint b ) {
|
|
assert( _is_square, "only on square" );
|
|
IndexSet *A = &_adjs[a];
|
|
IndexSetIterator b_elements(&_adjs[b]);
|
|
uint datum;
|
|
while ((datum = b_elements.next()) != 0) {
|
|
if(A->insert(datum)) {
|
|
_adjs[datum].insert(a);
|
|
lrgs(a).invalid_degree();
|
|
lrgs(datum).invalid_degree();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Yank a Node and all connected edges from the IFG. Return a
|
|
// list of neighbors (edges) yanked.
|
|
IndexSet *PhaseIFG::remove_node( uint a ) {
|
|
assert( _is_square, "only on square" );
|
|
assert( !_yanked->test(a), "" );
|
|
_yanked->set(a);
|
|
|
|
// I remove the LRG from all neighbors.
|
|
IndexSetIterator elements(&_adjs[a]);
|
|
LRG &lrg_a = lrgs(a);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
_adjs[datum].remove(a);
|
|
lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
|
|
}
|
|
return neighbors(a);
|
|
}
|
|
|
|
// Re-insert a yanked Node.
|
|
void PhaseIFG::re_insert( uint a ) {
|
|
assert( _is_square, "only on square" );
|
|
assert( _yanked->test(a), "" );
|
|
(*_yanked) >>= a;
|
|
|
|
IndexSetIterator elements(&_adjs[a]);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
_adjs[datum].insert(a);
|
|
lrgs(datum).invalid_degree();
|
|
}
|
|
}
|
|
|
|
// Compute the degree between 2 live ranges. If both live ranges are
|
|
// aligned-adjacent powers-of-2 then we use the MAX size. If either is
|
|
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to
|
|
// MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
|
|
// this is so.
|
|
int LRG::compute_degree( LRG &l ) const {
|
|
int tmp;
|
|
int num_regs = _num_regs;
|
|
int nregs = l.num_regs();
|
|
tmp = (_fat_proj || l._fat_proj) // either is a fat-proj?
|
|
? (num_regs * nregs) // then use product
|
|
: MAX2(num_regs,nregs); // else use max
|
|
return tmp;
|
|
}
|
|
|
|
// Compute effective degree for this live range. If both live ranges are
|
|
// aligned-adjacent powers-of-2 then we use the MAX size. If either is
|
|
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to
|
|
// MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why
|
|
// this is so.
|
|
int PhaseIFG::effective_degree( uint lidx ) const {
|
|
int eff = 0;
|
|
int num_regs = lrgs(lidx).num_regs();
|
|
int fat_proj = lrgs(lidx)._fat_proj;
|
|
IndexSet *s = neighbors(lidx);
|
|
IndexSetIterator elements(s);
|
|
uint nidx;
|
|
while((nidx = elements.next()) != 0) {
|
|
LRG &lrgn = lrgs(nidx);
|
|
int nregs = lrgn.num_regs();
|
|
eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
|
|
? (num_regs * nregs) // then use product
|
|
: MAX2(num_regs,nregs); // else use max
|
|
}
|
|
return eff;
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
void PhaseIFG::dump() const {
|
|
tty->print_cr("-- Interference Graph --%s--",
|
|
_is_square ? "square" : "triangular" );
|
|
if( _is_square ) {
|
|
for( uint i = 0; i < _maxlrg; i++ ) {
|
|
tty->print( (*_yanked)[i] ? "XX " : " ");
|
|
tty->print("L%d: { ",i);
|
|
IndexSetIterator elements(&_adjs[i]);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
tty->print("L%d ", datum);
|
|
}
|
|
tty->print_cr("}");
|
|
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Triangular
|
|
for( uint i = 0; i < _maxlrg; i++ ) {
|
|
uint j;
|
|
tty->print( (*_yanked)[i] ? "XX " : " ");
|
|
tty->print("L%d: { ",i);
|
|
for( j = _maxlrg; j > i; j-- )
|
|
if( test_edge(j - 1,i) ) {
|
|
tty->print("L%d ",j - 1);
|
|
}
|
|
tty->print("| ");
|
|
IndexSetIterator elements(&_adjs[i]);
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
tty->print("L%d ", datum);
|
|
}
|
|
tty->print("}\n");
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
|
|
void PhaseIFG::stats() const {
|
|
ResourceMark rm;
|
|
int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
|
|
memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
|
|
uint i;
|
|
for( i = 0; i < _maxlrg; i++ ) {
|
|
h_cnt[neighbor_cnt(i)]++;
|
|
}
|
|
tty->print_cr("--Histogram of counts--");
|
|
for( i = 0; i < _maxlrg*2; i++ )
|
|
if( h_cnt[i] )
|
|
tty->print("%d/%d ",i,h_cnt[i]);
|
|
tty->cr();
|
|
}
|
|
|
|
void PhaseIFG::verify( const PhaseChaitin *pc ) const {
|
|
// IFG is square, sorted and no need for Find
|
|
for( uint i = 0; i < _maxlrg; i++ ) {
|
|
assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
|
|
IndexSet *set = &_adjs[i];
|
|
IndexSetIterator elements(set);
|
|
uint idx;
|
|
uint last = 0;
|
|
while ((idx = elements.next()) != 0) {
|
|
assert(idx != i, "Must have empty diagonal");
|
|
assert(pc->_lrg_map.find_const(idx) == idx, "Must not need Find");
|
|
assert(_adjs[idx].member(i), "IFG not square");
|
|
assert(!(*_yanked)[idx], "No yanked neighbors");
|
|
assert(last < idx, "not sorted increasing");
|
|
last = idx;
|
|
}
|
|
assert(!lrgs(i)._degree_valid || effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Interfere this register with everything currently live.
|
|
* Check for interference by checking overlap of regmasks.
|
|
* Only interfere if acceptable register masks overlap.
|
|
*/
|
|
void PhaseChaitin::interfere_with_live(uint lid, IndexSet* liveout) {
|
|
LRG& lrg = lrgs(lid);
|
|
const RegMask& rm = lrg.mask();
|
|
IndexSetIterator elements(liveout);
|
|
uint interfering_lid = elements.next();
|
|
while (interfering_lid != 0) {
|
|
LRG& interfering_lrg = lrgs(interfering_lid);
|
|
if (rm.overlap(interfering_lrg.mask())) {
|
|
_ifg->add_edge(lid, interfering_lid);
|
|
}
|
|
interfering_lid = elements.next();
|
|
}
|
|
}
|
|
|
|
// Actually build the interference graph. Uses virtual registers only, no
|
|
// physical register masks. This allows me to be very aggressive when
|
|
// coalescing copies. Some of this aggressiveness will have to be undone
|
|
// later, but I'd rather get all the copies I can now (since unremoved copies
|
|
// at this point can end up in bad places). Copies I re-insert later I have
|
|
// more opportunity to insert them in low-frequency locations.
|
|
void PhaseChaitin::build_ifg_virtual( ) {
|
|
Compile::TracePhase tp("buildIFG_virt", &timers[_t_buildIFGvirtual]);
|
|
|
|
// For all blocks (in any order) do...
|
|
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
|
|
Block* block = _cfg.get_block(i);
|
|
IndexSet* liveout = _live->live(block);
|
|
|
|
// The IFG is built by a single reverse pass over each basic block.
|
|
// Starting with the known live-out set, we remove things that get
|
|
// defined and add things that become live (essentially executing one
|
|
// pass of a standard LIVE analysis). Just before a Node defines a value
|
|
// (and removes it from the live-ness set) that value is certainly live.
|
|
// The defined value interferes with everything currently live. The
|
|
// value is then removed from the live-ness set and it's inputs are
|
|
// added to the live-ness set.
|
|
for (uint j = block->end_idx() + 1; j > 1; j--) {
|
|
Node* n = block->get_node(j - 1);
|
|
|
|
// Get value being defined
|
|
uint r = _lrg_map.live_range_id(n);
|
|
|
|
// Some special values do not allocate
|
|
if (r) {
|
|
|
|
// Remove from live-out set
|
|
liveout->remove(r);
|
|
|
|
// Copies do not define a new value and so do not interfere.
|
|
// Remove the copies source from the liveout set before interfering.
|
|
uint idx = n->is_Copy();
|
|
if (idx != 0) {
|
|
liveout->remove(_lrg_map.live_range_id(n->in(idx)));
|
|
}
|
|
|
|
// Interfere with everything live
|
|
interfere_with_live(r, liveout);
|
|
}
|
|
|
|
// Make all inputs live
|
|
if (!n->is_Phi()) { // Phi function uses come from prior block
|
|
for(uint k = 1; k < n->req(); k++) {
|
|
liveout->insert(_lrg_map.live_range_id(n->in(k)));
|
|
}
|
|
}
|
|
|
|
// 2-address instructions always have the defined value live
|
|
// on entry to the instruction, even though it is being defined
|
|
// by the instruction. We pretend a virtual copy sits just prior
|
|
// to the instruction and kills the src-def'd register.
|
|
// In other words, for 2-address instructions the defined value
|
|
// interferes with all inputs.
|
|
uint idx;
|
|
if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
|
|
const MachNode *mach = n->as_Mach();
|
|
// Sometimes my 2-address ADDs are commuted in a bad way.
|
|
// We generally want the USE-DEF register to refer to the
|
|
// loop-varying quantity, to avoid a copy.
|
|
uint op = mach->ideal_Opcode();
|
|
// Check that mach->num_opnds() == 3 to ensure instruction is
|
|
// not subsuming constants, effectively excludes addI_cin_imm
|
|
// Can NOT swap for instructions like addI_cin_imm since it
|
|
// is adding zero to yhi + carry and the second ideal-input
|
|
// points to the result of adding low-halves.
|
|
// Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
|
|
if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
|
|
n->in(1)->bottom_type()->base() == Type::Int &&
|
|
// See if the ADD is involved in a tight data loop the wrong way
|
|
n->in(2)->is_Phi() &&
|
|
n->in(2)->in(2) == n ) {
|
|
Node *tmp = n->in(1);
|
|
n->set_req( 1, n->in(2) );
|
|
n->set_req( 2, tmp );
|
|
}
|
|
// Defined value interferes with all inputs
|
|
uint lidx = _lrg_map.live_range_id(n->in(idx));
|
|
for (uint k = 1; k < n->req(); k++) {
|
|
uint kidx = _lrg_map.live_range_id(n->in(k));
|
|
if (kidx != lidx) {
|
|
_ifg->add_edge(r, kidx);
|
|
}
|
|
}
|
|
}
|
|
} // End of forall instructions in block
|
|
} // End of forall blocks
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
uint PhaseChaitin::count_int_pressure(IndexSet* liveout) {
|
|
IndexSetIterator elements(liveout);
|
|
uint lidx = elements.next();
|
|
uint cnt = 0;
|
|
while (lidx != 0) {
|
|
LRG& lrg = lrgs(lidx);
|
|
if (lrg.mask_is_nonempty_and_up() &&
|
|
!lrg.is_float_or_vector() &&
|
|
lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
|
|
cnt += lrg.reg_pressure();
|
|
}
|
|
lidx = elements.next();
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
uint PhaseChaitin::count_float_pressure(IndexSet* liveout) {
|
|
IndexSetIterator elements(liveout);
|
|
uint lidx = elements.next();
|
|
uint cnt = 0;
|
|
while (lidx != 0) {
|
|
LRG& lrg = lrgs(lidx);
|
|
if (lrg.mask_is_nonempty_and_up() && lrg.is_float_or_vector()) {
|
|
cnt += lrg.reg_pressure();
|
|
}
|
|
lidx = elements.next();
|
|
}
|
|
return cnt;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Adjust register pressure down by 1. Capture last hi-to-low transition,
|
|
*/
|
|
void PhaseChaitin::lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure) {
|
|
if (lrg.mask_is_nonempty_and_up()) {
|
|
if (lrg.is_float_or_vector()) {
|
|
float_pressure.lower(lrg, location);
|
|
} else {
|
|
// Do not count the SP and flag registers
|
|
const RegMask& r = lrg.mask();
|
|
if (r.overlap(*Matcher::idealreg2regmask[Op_RegI])) {
|
|
int_pressure.lower(lrg, location);
|
|
}
|
|
}
|
|
}
|
|
assert(int_pressure.current_pressure() == count_int_pressure(liveout), "the int pressure is incorrect");
|
|
assert(float_pressure.current_pressure() == count_float_pressure(liveout), "the float pressure is incorrect");
|
|
}
|
|
|
|
/* Go to the first non-phi index in a block */
|
|
static uint first_nonphi_index(Block* b) {
|
|
uint i;
|
|
uint end_idx = b->end_idx();
|
|
for (i = 1; i < end_idx; i++) {
|
|
Node* n = b->get_node(i);
|
|
if (!n->is_Phi()) {
|
|
break;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Spills could be inserted before a CreateEx node which should be the first
|
|
* instruction in a block after Phi nodes. If so, move the CreateEx node up.
|
|
*/
|
|
static void move_exception_node_up(Block* b, uint first_inst, uint last_inst) {
|
|
for (uint i = first_inst; i < last_inst; i++) {
|
|
Node* ex = b->get_node(i);
|
|
if (ex->is_SpillCopy()) {
|
|
continue;
|
|
}
|
|
|
|
if (i > first_inst &&
|
|
ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
|
|
b->remove_node(i);
|
|
b->insert_node(ex, first_inst);
|
|
}
|
|
// Stop once a CreateEx or any other node is found
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When new live ranges are live, we raise the register pressure
|
|
*/
|
|
void PhaseChaitin::raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure) {
|
|
if (lrg.mask_is_nonempty_and_up()) {
|
|
if (lrg.is_float_or_vector()) {
|
|
float_pressure.raise(lrg);
|
|
} else {
|
|
// Do not count the SP and flag registers
|
|
const RegMask& rm = lrg.mask();
|
|
if (rm.overlap(*Matcher::idealreg2regmask[Op_RegI])) {
|
|
int_pressure.raise(lrg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Computes the initial register pressure of a block, looking at all live
|
|
* ranges in the liveout. The register pressure is computed for both float
|
|
* and int/pointer registers.
|
|
* Live ranges in the liveout are presumed live for the whole block.
|
|
* We add the cost for the whole block to the area of the live ranges initially.
|
|
* If a live range gets killed in the block, we'll subtract the unused part of
|
|
* the block from the area.
|
|
*/
|
|
void PhaseChaitin::compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost) {
|
|
IndexSetIterator elements(liveout);
|
|
uint lid = elements.next();
|
|
while (lid != 0) {
|
|
LRG& lrg = lrgs(lid);
|
|
lrg._area += cost;
|
|
raise_pressure(b, lrg, int_pressure, float_pressure);
|
|
lid = elements.next();
|
|
}
|
|
assert(int_pressure.current_pressure() == count_int_pressure(liveout), "the int pressure is incorrect");
|
|
assert(float_pressure.current_pressure() == count_float_pressure(liveout), "the float pressure is incorrect");
|
|
}
|
|
|
|
/*
|
|
* Remove dead node if it's not used.
|
|
* We only remove projection nodes if the node "defining" the projection is
|
|
* dead, for example on x86, if we have a dead Add node we remove its
|
|
* RFLAGS node.
|
|
*/
|
|
bool PhaseChaitin::remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout) {
|
|
Node* def = n->in(0);
|
|
if (!n->is_Proj() ||
|
|
(_lrg_map.live_range_id(def) && !liveout->member(_lrg_map.live_range_id(def)))) {
|
|
b->remove_node(location);
|
|
LRG& lrg = lrgs(lid);
|
|
if (lrg._def == n) {
|
|
lrg._def = 0;
|
|
}
|
|
n->disconnect_inputs(NULL, C);
|
|
_cfg.unmap_node_from_block(n);
|
|
n->replace_by(C->top());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* When encountering a fat projection, we might go from a low to high to low
|
|
* (since the fat proj only lives at this instruction) going backwards in the
|
|
* block. If we find a low to high transition, we record it.
|
|
*/
|
|
void PhaseChaitin::check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype) {
|
|
RegMask mask_tmp = lrg.mask();
|
|
mask_tmp.AND(*Matcher::idealreg2regmask[op_regtype]);
|
|
pressure.check_pressure_at_fatproj(location, mask_tmp);
|
|
}
|
|
|
|
/*
|
|
* Insure high score for immediate-use spill copies so they get a color.
|
|
* All single-use MachSpillCopy(s) that immediately precede their
|
|
* use must color early. If a longer live range steals their
|
|
* color, the spill copy will split and may push another spill copy
|
|
* further away resulting in an infinite spill-split-retry cycle.
|
|
* Assigning a zero area results in a high score() and a good
|
|
* location in the simplify list.
|
|
*/
|
|
void PhaseChaitin::assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst) {
|
|
if (n->is_SpillCopy() &&
|
|
lrg.is_singledef() && // A multi defined live range can still split
|
|
n->outcnt() == 1 && // and use must be in this block
|
|
_cfg.get_block_for_node(n->unique_out()) == b) {
|
|
|
|
Node* single_use = n->unique_out();
|
|
assert(b->find_node(single_use) >= next_inst, "Use must be later in block");
|
|
// Use can be earlier in block if it is a Phi, but then I should be a MultiDef
|
|
|
|
// Find first non SpillCopy 'm' that follows the current instruction
|
|
// (current_inst - 1) is index for current instruction 'n'
|
|
Node* m = n;
|
|
for (uint i = next_inst; i <= last_inst && m->is_SpillCopy(); ++i) {
|
|
m = b->get_node(i);
|
|
}
|
|
if (m == single_use) {
|
|
lrg._area = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copies do not define a new value and so do not interfere.
|
|
* Remove the copies source from the liveout set before interfering.
|
|
*/
|
|
void PhaseChaitin::remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure) {
|
|
if (liveout->remove(lid_copy)) {
|
|
LRG& lrg_copy = lrgs(lid_copy);
|
|
lrg_copy._area -= cost;
|
|
|
|
// Lower register pressure since copy and definition can share the same register
|
|
lower_pressure(b, location, lrg_copy, liveout, int_pressure, float_pressure);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The defined value must go in a particular register. Remove that register from
|
|
* all conflicting parties and avoid the interference.
|
|
*/
|
|
void PhaseChaitin::remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill) {
|
|
// Check for common case
|
|
const RegMask& rm = lrg.mask();
|
|
int r_size = lrg.num_regs();
|
|
// Smear odd bits
|
|
IndexSetIterator elements(liveout);
|
|
uint l = elements.next();
|
|
while (l != 0) {
|
|
LRG& interfering_lrg = lrgs(l);
|
|
// If 'l' must spill already, do not further hack his bits.
|
|
// He'll get some interferences and be forced to spill later.
|
|
if (interfering_lrg._must_spill) {
|
|
l = elements.next();
|
|
continue;
|
|
}
|
|
|
|
// Remove bound register(s) from 'l's choices
|
|
RegMask old = interfering_lrg.mask();
|
|
uint old_size = interfering_lrg.mask_size();
|
|
|
|
// Remove the bits from LRG 'rm' from LRG 'l' so 'l' no
|
|
// longer interferes with 'rm'. If 'l' requires aligned
|
|
// adjacent pairs, subtract out bit pairs.
|
|
assert(!interfering_lrg._is_vector || !interfering_lrg._fat_proj, "sanity");
|
|
|
|
if (interfering_lrg.num_regs() > 1 && !interfering_lrg._fat_proj) {
|
|
RegMask r2mask = rm;
|
|
// Leave only aligned set of bits.
|
|
r2mask.smear_to_sets(interfering_lrg.num_regs());
|
|
// It includes vector case.
|
|
interfering_lrg.SUBTRACT(r2mask);
|
|
interfering_lrg.compute_set_mask_size();
|
|
} else if (r_size != 1) {
|
|
// fat proj
|
|
interfering_lrg.SUBTRACT(rm);
|
|
interfering_lrg.compute_set_mask_size();
|
|
} else {
|
|
// Common case: size 1 bound removal
|
|
OptoReg::Name r_reg = rm.find_first_elem();
|
|
if (interfering_lrg.mask().Member(r_reg)) {
|
|
interfering_lrg.Remove(r_reg);
|
|
interfering_lrg.set_mask_size(interfering_lrg.mask().is_AllStack() ? LRG::AllStack_size : old_size - 1);
|
|
}
|
|
}
|
|
|
|
// If 'l' goes completely dry, it must spill.
|
|
if (interfering_lrg.not_free()) {
|
|
// Give 'l' some kind of reasonable mask, so it picks up
|
|
// interferences (and will spill later).
|
|
interfering_lrg.set_mask(old);
|
|
interfering_lrg.set_mask_size(old_size);
|
|
must_spill++;
|
|
interfering_lrg._must_spill = 1;
|
|
interfering_lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
|
|
}
|
|
l = elements.next();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start loop at 1 (skip control edge) for most Nodes. SCMemProj's might be the
|
|
* sole use of a StoreLConditional. While StoreLConditionals set memory (the
|
|
* SCMemProj use) they also def flags; if that flag def is unused the allocator
|
|
* sees a flag-setting instruction with no use of the flags and assumes it's
|
|
* dead. This keeps the (useless) flag-setting behavior alive while also
|
|
* keeping the (useful) memory update effect.
|
|
*/
|
|
void PhaseChaitin::add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure) {
|
|
JVMState* jvms = n->jvms();
|
|
uint debug_start = jvms ? jvms->debug_start() : 999999;
|
|
|
|
for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
|
|
Node* def = n->in(k);
|
|
uint lid = _lrg_map.live_range_id(def);
|
|
if (!lid) {
|
|
continue;
|
|
}
|
|
LRG& lrg = lrgs(lid);
|
|
|
|
// No use-side cost for spilling debug info
|
|
if (k < debug_start) {
|
|
// A USE costs twice block frequency (once for the Load, once
|
|
// for a Load-delay). Rematerialized uses only cost once.
|
|
lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq * 2));
|
|
}
|
|
|
|
if (liveout->insert(lid)) {
|
|
// Newly live things assumed live from here to top of block
|
|
lrg._area += cost;
|
|
raise_pressure(b, lrg, int_pressure, float_pressure);
|
|
assert(int_pressure.current_pressure() == count_int_pressure(liveout), "the int pressure is incorrect");
|
|
assert(float_pressure.current_pressure() == count_float_pressure(liveout), "the float pressure is incorrect");
|
|
}
|
|
assert(lrg._area >= 0.0, "negative spill area" );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we run off the top of the block with high pressure just record that the
|
|
* whole block is high pressure. (Even though we might have a transition
|
|
* later down in the block)
|
|
*/
|
|
void PhaseChaitin::check_for_high_pressure_block(Pressure& pressure) {
|
|
// current pressure now means the pressure before the first instruction in the block
|
|
// (since we have stepped through all instructions backwards)
|
|
if (pressure.current_pressure() > pressure.high_pressure_limit()) {
|
|
pressure.set_high_pressure_index_to_block_start();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute high pressure indice; avoid landing in the middle of projnodes
|
|
* and set the high pressure index for the block
|
|
*/
|
|
void PhaseChaitin::adjust_high_pressure_index(Block* b, uint& block_hrp_index, Pressure& pressure) {
|
|
uint i = pressure.high_pressure_index();
|
|
if (i < b->number_of_nodes() && i < b->end_idx() + 1) {
|
|
Node* cur = b->get_node(i);
|
|
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
|
|
cur = b->get_node(--i);
|
|
}
|
|
}
|
|
block_hrp_index = i;
|
|
}
|
|
|
|
/* Build an interference graph:
|
|
* That is, if 2 live ranges are simultaneously alive but in their acceptable
|
|
* register sets do not overlap, then they do not interfere. The IFG is built
|
|
* by a single reverse pass over each basic block. Starting with the known
|
|
* live-out set, we remove things that get defined and add things that become
|
|
* live (essentially executing one pass of a standard LIVE analysis). Just
|
|
* before a Node defines a value (and removes it from the live-ness set) that
|
|
* value is certainly live. The defined value interferes with everything
|
|
* currently live. The value is then removed from the live-ness set and it's
|
|
* inputs are added to the live-ness set.
|
|
* Compute register pressure for each block:
|
|
* We store the biggest register pressure for each block and also the first
|
|
* low to high register pressure transition within the block (if any).
|
|
*/
|
|
uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
|
|
Compile::TracePhase tp("buildIFG", &timers[_t_buildIFGphysical]);
|
|
|
|
uint must_spill = 0;
|
|
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
|
|
Block* block = _cfg.get_block(i);
|
|
|
|
// Clone (rather than smash in place) the liveout info, so it is alive
|
|
// for the "collect_gc_info" phase later.
|
|
IndexSet liveout(_live->live(block));
|
|
|
|
uint first_inst = first_nonphi_index(block);
|
|
uint last_inst = block->end_idx();
|
|
|
|
move_exception_node_up(block, first_inst, last_inst);
|
|
|
|
Pressure int_pressure(last_inst + 1, INTPRESSURE);
|
|
Pressure float_pressure(last_inst + 1, FLOATPRESSURE);
|
|
block->_reg_pressure = 0;
|
|
block->_freg_pressure = 0;
|
|
|
|
int inst_count = last_inst - first_inst;
|
|
double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
|
|
assert(cost >= 0.0, "negative spill cost" );
|
|
|
|
compute_initial_block_pressure(block, &liveout, int_pressure, float_pressure, cost);
|
|
|
|
for (uint location = last_inst; location > 0; location--) {
|
|
Node* n = block->get_node(location);
|
|
uint lid = _lrg_map.live_range_id(n);
|
|
|
|
if(lid) {
|
|
LRG& lrg = lrgs(lid);
|
|
|
|
// A DEF normally costs block frequency; rematerialized values are
|
|
// removed from the DEF sight, so LOWER costs here.
|
|
lrg._cost += n->rematerialize() ? 0 : block->_freq;
|
|
|
|
if (!liveout.member(lid) && n->Opcode() != Op_SafePoint) {
|
|
if (remove_node_if_not_used(block, location, n, lid, &liveout)) {
|
|
float_pressure.lower_high_pressure_index();
|
|
int_pressure.lower_high_pressure_index();
|
|
continue;
|
|
}
|
|
if (lrg._fat_proj) {
|
|
check_for_high_pressure_transition_at_fatproj(block->_reg_pressure, location, lrg, int_pressure, Op_RegI);
|
|
check_for_high_pressure_transition_at_fatproj(block->_freg_pressure, location, lrg, float_pressure, Op_RegD);
|
|
}
|
|
} else {
|
|
// A live range ends at its definition, remove the remaining area.
|
|
// If the cost is +Inf (which might happen in extreme cases), the lrg area will also be +Inf,
|
|
// and +Inf - +Inf = NaN. So let's not do that subtraction.
|
|
if (g_isfinite(cost)) {
|
|
lrg._area -= cost;
|
|
}
|
|
assert(lrg._area >= 0.0, "negative spill area" );
|
|
|
|
assign_high_score_to_immediate_copies(block, n, lrg, location + 1, last_inst);
|
|
|
|
if (liveout.remove(lid)) {
|
|
lower_pressure(block, location, lrg, &liveout, int_pressure, float_pressure);
|
|
}
|
|
uint copy_idx = n->is_Copy();
|
|
if (copy_idx) {
|
|
uint lid_copy = _lrg_map.live_range_id(n->in(copy_idx));
|
|
remove_interference_from_copy(block, location, lid_copy, &liveout, cost, int_pressure, float_pressure);
|
|
}
|
|
}
|
|
|
|
// Since rematerializable DEFs are not bound but the live range is,
|
|
// some uses must be bound. If we spill live range 'r', it can
|
|
// rematerialize at each use site according to its bindings.
|
|
if (lrg.is_bound() && !n->rematerialize() && lrg.mask().is_NotEmpty()) {
|
|
remove_bound_register_from_interfering_live_ranges(lrg, &liveout, must_spill);
|
|
}
|
|
interfere_with_live(lid, &liveout);
|
|
}
|
|
|
|
// Area remaining in the block
|
|
inst_count--;
|
|
cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
|
|
|
|
if (!n->is_Phi()) {
|
|
add_input_to_liveout(block, n, &liveout, cost, int_pressure, float_pressure);
|
|
}
|
|
}
|
|
|
|
check_for_high_pressure_block(int_pressure);
|
|
check_for_high_pressure_block(float_pressure);
|
|
adjust_high_pressure_index(block, block->_ihrp_index, int_pressure);
|
|
adjust_high_pressure_index(block, block->_fhrp_index, float_pressure);
|
|
// set the final_pressure as the register pressure for the block
|
|
block->_reg_pressure = int_pressure.final_pressure();
|
|
block->_freg_pressure = float_pressure.final_pressure();
|
|
|
|
#ifndef PRODUCT
|
|
// Gather Register Pressure Statistics
|
|
if (PrintOptoStatistics) {
|
|
if (block->_reg_pressure > int_pressure.high_pressure_limit() || block->_freg_pressure > float_pressure.high_pressure_limit()) {
|
|
_high_pressure++;
|
|
} else {
|
|
_low_pressure++;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return must_spill;
|
|
}
|