8006fe8f75
Replaced MakeDeps and the includeDB files with more standardized solutions. Reviewed-by: coleenp, kvn, kamg
1335 lines
53 KiB
C++
1335 lines
53 KiB
C++
/*
|
|
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/mulnode.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
|
|
// Portions of code courtesy of Clifford Click
|
|
|
|
// Optimization - Graph Style
|
|
|
|
#include "math.h"
|
|
|
|
//=============================================================================
|
|
//------------------------------Identity---------------------------------------
|
|
// If right input is a constant 0, return the left input.
|
|
Node *SubNode::Identity( PhaseTransform *phase ) {
|
|
assert(in(1) != this, "Must already have called Value");
|
|
assert(in(2) != this, "Must already have called Value");
|
|
|
|
// Remove double negation
|
|
const Type *zero = add_id();
|
|
if( phase->type( in(1) )->higher_equal( zero ) &&
|
|
in(2)->Opcode() == Opcode() &&
|
|
phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
|
|
return in(2)->in(2);
|
|
}
|
|
|
|
// Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
|
|
if( in(1)->Opcode() == Op_AddI ) {
|
|
if( phase->eqv(in(1)->in(2),in(2)) )
|
|
return in(1)->in(1);
|
|
if (phase->eqv(in(1)->in(1),in(2)))
|
|
return in(1)->in(2);
|
|
|
|
// Also catch: "(X + Opaque2(Y)) - Y". In this case, 'Y' is a loop-varying
|
|
// trip counter and X is likely to be loop-invariant (that's how O2 Nodes
|
|
// are originally used, although the optimizer sometimes jiggers things).
|
|
// This folding through an O2 removes a loop-exit use of a loop-varying
|
|
// value and generally lowers register pressure in and around the loop.
|
|
if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
|
|
phase->eqv(in(1)->in(2)->in(1),in(2)) )
|
|
return in(1)->in(1);
|
|
}
|
|
|
|
return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// A subtract node differences it's two inputs.
|
|
const Type *SubNode::Value( PhaseTransform *phase ) const {
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
// Either input is TOP ==> the result is TOP
|
|
const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
|
|
// Not correct for SubFnode and AddFNode (must check for infinity)
|
|
// Equal? Subtract is zero
|
|
if (phase->eqv_uncast(in1, in2)) return add_id();
|
|
|
|
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
|
|
return bottom_type();
|
|
|
|
return sub(t1,t2); // Local flavor of type subtraction
|
|
|
|
}
|
|
|
|
//=============================================================================
|
|
|
|
//------------------------------Helper function--------------------------------
|
|
static bool ok_to_convert(Node* inc, Node* iv) {
|
|
// Do not collapse (x+c0)-y if "+" is a loop increment, because the
|
|
// "-" is loop invariant and collapsing extends the live-range of "x"
|
|
// to overlap with the "+", forcing another register to be used in
|
|
// the loop.
|
|
// This test will be clearer with '&&' (apply DeMorgan's rule)
|
|
// but I like the early cutouts that happen here.
|
|
const PhiNode *phi;
|
|
if( ( !inc->in(1)->is_Phi() ||
|
|
!(phi=inc->in(1)->as_Phi()) ||
|
|
phi->is_copy() ||
|
|
!phi->region()->is_CountedLoop() ||
|
|
inc != phi->region()->as_CountedLoop()->incr() )
|
|
&&
|
|
// Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
|
|
// because "x" maybe invariant.
|
|
( !iv->is_loop_iv() )
|
|
) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
Node *in1 = in(1);
|
|
Node *in2 = in(2);
|
|
uint op1 = in1->Opcode();
|
|
uint op2 = in2->Opcode();
|
|
|
|
#ifdef ASSERT
|
|
// Check for dead loop
|
|
if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
|
|
( op1 == Op_AddI || op1 == Op_SubI ) &&
|
|
( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
|
|
phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
|
|
assert(false, "dead loop in SubINode::Ideal");
|
|
#endif
|
|
|
|
const Type *t2 = phase->type( in2 );
|
|
if( t2 == Type::TOP ) return NULL;
|
|
// Convert "x-c0" into "x+ -c0".
|
|
if( t2->base() == Type::Int ){ // Might be bottom or top...
|
|
const TypeInt *i = t2->is_int();
|
|
if( i->is_con() )
|
|
return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
|
|
}
|
|
|
|
// Convert "(x+c0) - y" into (x-y) + c0"
|
|
// Do not collapse (x+c0)-y if "+" is a loop increment or
|
|
// if "y" is a loop induction variable.
|
|
if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
|
|
const Type *tadd = phase->type( in1->in(2) );
|
|
if( tadd->singleton() && tadd != Type::TOP ) {
|
|
Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
|
|
return new (phase->C, 3) AddINode( sub2, in1->in(2) );
|
|
}
|
|
}
|
|
|
|
|
|
// Convert "x - (y+c0)" into "(x-y) - c0"
|
|
// Need the same check as in above optimization but reversed.
|
|
if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
|
|
Node* in21 = in2->in(1);
|
|
Node* in22 = in2->in(2);
|
|
const TypeInt* tcon = phase->type(in22)->isa_int();
|
|
if (tcon != NULL && tcon->is_con()) {
|
|
Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
|
|
Node* neg_c0 = phase->intcon(- tcon->get_con());
|
|
return new (phase->C, 3) AddINode(sub2, neg_c0);
|
|
}
|
|
}
|
|
|
|
const Type *t1 = phase->type( in1 );
|
|
if( t1 == Type::TOP ) return NULL;
|
|
|
|
#ifdef ASSERT
|
|
// Check for dead loop
|
|
if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
|
|
( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
|
|
phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
|
|
assert(false, "dead loop in SubINode::Ideal");
|
|
#endif
|
|
|
|
// Convert "x - (x+y)" into "-y"
|
|
if( op2 == Op_AddI &&
|
|
phase->eqv( in1, in2->in(1) ) )
|
|
return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
|
|
// Convert "(x-y) - x" into "-y"
|
|
if( op1 == Op_SubI &&
|
|
phase->eqv( in1->in(1), in2 ) )
|
|
return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
|
|
// Convert "x - (y+x)" into "-y"
|
|
if( op2 == Op_AddI &&
|
|
phase->eqv( in1, in2->in(2) ) )
|
|
return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
|
|
|
|
// Convert "0 - (x-y)" into "y-x"
|
|
if( t1 == TypeInt::ZERO && op2 == Op_SubI )
|
|
return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
|
|
|
|
// Convert "0 - (x+con)" into "-con-x"
|
|
jint con;
|
|
if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
|
|
(con = in2->in(2)->find_int_con(0)) != 0 )
|
|
return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
|
|
|
|
// Convert "(X+A) - (X+B)" into "A - B"
|
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
|
|
return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
|
|
|
|
// Convert "(A+X) - (B+X)" into "A - B"
|
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
|
|
return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
|
|
|
|
// Convert "(A+X) - (X+B)" into "A - B"
|
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
|
|
return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );
|
|
|
|
// Convert "(X+A) - (B+X)" into "A - B"
|
|
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
|
|
return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );
|
|
|
|
// Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
|
|
// nicer to optimize than subtract.
|
|
if( op2 == Op_SubI && in2->outcnt() == 1) {
|
|
Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
|
|
return new (phase->C, 3) SubINode( add1, in2->in(1) );
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------sub--------------------------------------------
|
|
// A subtract node differences it's two inputs.
|
|
const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypeInt *r0 = t1->is_int(); // Handy access
|
|
const TypeInt *r1 = t2->is_int();
|
|
int32 lo = r0->_lo - r1->_hi;
|
|
int32 hi = r0->_hi - r1->_lo;
|
|
|
|
// We next check for 32-bit overflow.
|
|
// If that happens, we just assume all integers are possible.
|
|
if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
|
|
((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
|
|
(((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
|
|
((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
|
|
return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
|
|
else // Overflow; assume all integers
|
|
return TypeInt::INT;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
Node *in1 = in(1);
|
|
Node *in2 = in(2);
|
|
uint op1 = in1->Opcode();
|
|
uint op2 = in2->Opcode();
|
|
|
|
#ifdef ASSERT
|
|
// Check for dead loop
|
|
if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
|
|
( op1 == Op_AddL || op1 == Op_SubL ) &&
|
|
( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
|
|
phase->eqv( in1->in(1), in1 ) || phase->eqv( in1->in(2), in1 ) ) )
|
|
assert(false, "dead loop in SubLNode::Ideal");
|
|
#endif
|
|
|
|
if( phase->type( in2 ) == Type::TOP ) return NULL;
|
|
const TypeLong *i = phase->type( in2 )->isa_long();
|
|
// Convert "x-c0" into "x+ -c0".
|
|
if( i && // Might be bottom or top...
|
|
i->is_con() )
|
|
return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
|
|
|
|
// Convert "(x+c0) - y" into (x-y) + c0"
|
|
// Do not collapse (x+c0)-y if "+" is a loop increment or
|
|
// if "y" is a loop induction variable.
|
|
if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
|
|
Node *in11 = in1->in(1);
|
|
const Type *tadd = phase->type( in1->in(2) );
|
|
if( tadd->singleton() && tadd != Type::TOP ) {
|
|
Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
|
|
return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
|
|
}
|
|
}
|
|
|
|
// Convert "x - (y+c0)" into "(x-y) - c0"
|
|
// Need the same check as in above optimization but reversed.
|
|
if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
|
|
Node* in21 = in2->in(1);
|
|
Node* in22 = in2->in(2);
|
|
const TypeLong* tcon = phase->type(in22)->isa_long();
|
|
if (tcon != NULL && tcon->is_con()) {
|
|
Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
|
|
Node* neg_c0 = phase->longcon(- tcon->get_con());
|
|
return new (phase->C, 3) AddLNode(sub2, neg_c0);
|
|
}
|
|
}
|
|
|
|
const Type *t1 = phase->type( in1 );
|
|
if( t1 == Type::TOP ) return NULL;
|
|
|
|
#ifdef ASSERT
|
|
// Check for dead loop
|
|
if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
|
|
( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
|
|
phase->eqv( in2->in(1), in2 ) || phase->eqv( in2->in(2), in2 ) ) )
|
|
assert(false, "dead loop in SubLNode::Ideal");
|
|
#endif
|
|
|
|
// Convert "x - (x+y)" into "-y"
|
|
if( op2 == Op_AddL &&
|
|
phase->eqv( in1, in2->in(1) ) )
|
|
return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
|
|
// Convert "x - (y+x)" into "-y"
|
|
if( op2 == Op_AddL &&
|
|
phase->eqv( in1, in2->in(2) ) )
|
|
return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
|
|
|
|
// Convert "0 - (x-y)" into "y-x"
|
|
if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
|
|
return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
|
|
|
|
// Convert "(X+A) - (X+B)" into "A - B"
|
|
if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
|
|
return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
|
|
|
|
// Convert "(A+X) - (B+X)" into "A - B"
|
|
if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
|
|
return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
|
|
|
|
// Convert "A-(B-C)" into (A+C)-B"
|
|
if( op2 == Op_SubL && in2->outcnt() == 1) {
|
|
Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
|
|
return new (phase->C, 3) SubLNode( add1, in2->in(1) );
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------sub--------------------------------------------
|
|
// A subtract node differences it's two inputs.
|
|
const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypeLong *r0 = t1->is_long(); // Handy access
|
|
const TypeLong *r1 = t2->is_long();
|
|
jlong lo = r0->_lo - r1->_hi;
|
|
jlong hi = r0->_hi - r1->_lo;
|
|
|
|
// We next check for 32-bit overflow.
|
|
// If that happens, we just assume all integers are possible.
|
|
if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR
|
|
((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND
|
|
(((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR
|
|
((r0->_hi ^ hi) >= 0)) ) // hi results have same signs
|
|
return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
|
|
else // Overflow; assume all integers
|
|
return TypeLong::LONG;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// A subtract node differences its two inputs.
|
|
const Type *SubFPNode::Value( PhaseTransform *phase ) const {
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
// Either input is TOP ==> the result is TOP
|
|
const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
|
|
// if both operands are infinity of same sign, the result is NaN; do
|
|
// not replace with zero
|
|
if( (t1->is_finite() && t2->is_finite()) ) {
|
|
if( phase->eqv(in1, in2) ) return add_id();
|
|
}
|
|
|
|
// Either input is BOTTOM ==> the result is the local BOTTOM
|
|
const Type *bot = bottom_type();
|
|
if( (t1 == bot) || (t2 == bot) ||
|
|
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
|
|
return bot;
|
|
|
|
return sub(t1,t2); // Local flavor of type subtraction
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
const Type *t2 = phase->type( in(2) );
|
|
// Convert "x-c0" into "x+ -c0".
|
|
if( t2->base() == Type::FloatCon ) { // Might be bottom or top...
|
|
// return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
|
|
}
|
|
|
|
// Not associative because of boundary conditions (infinity)
|
|
if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
|
|
// Convert "x - (x+y)" into "-y"
|
|
if( in(2)->is_Add() &&
|
|
phase->eqv(in(1),in(2)->in(1) ) )
|
|
return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
|
|
}
|
|
|
|
// Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
|
|
// 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
|
|
//if( phase->type(in(1)) == TypeF::ZERO )
|
|
//return new (phase->C, 2) NegFNode(in(2));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------sub--------------------------------------------
|
|
// A subtract node differences its two inputs.
|
|
const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
|
|
// no folding if one of operands is infinity or NaN, do not do constant folding
|
|
if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
|
|
return TypeF::make( t1->getf() - t2->getf() );
|
|
}
|
|
else if( g_isnan(t1->getf()) ) {
|
|
return t1;
|
|
}
|
|
else if( g_isnan(t2->getf()) ) {
|
|
return t2;
|
|
}
|
|
else {
|
|
return Type::FLOAT;
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
const Type *t2 = phase->type( in(2) );
|
|
// Convert "x-c0" into "x+ -c0".
|
|
if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
|
|
// return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
|
|
}
|
|
|
|
// Not associative because of boundary conditions (infinity)
|
|
if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
|
|
// Convert "x - (x+y)" into "-y"
|
|
if( in(2)->is_Add() &&
|
|
phase->eqv(in(1),in(2)->in(1) ) )
|
|
return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
|
|
}
|
|
|
|
// Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
|
|
// 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
|
|
//if( phase->type(in(1)) == TypeD::ZERO )
|
|
//return new (phase->C, 2) NegDNode(in(2));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------sub--------------------------------------------
|
|
// A subtract node differences its two inputs.
|
|
const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
|
|
// no folding if one of operands is infinity or NaN, do not do constant folding
|
|
if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
|
|
return TypeD::make( t1->getd() - t2->getd() );
|
|
}
|
|
else if( g_isnan(t1->getd()) ) {
|
|
return t1;
|
|
}
|
|
else if( g_isnan(t2->getd()) ) {
|
|
return t2;
|
|
}
|
|
else {
|
|
return Type::DOUBLE;
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Idealize---------------------------------------
|
|
// Unlike SubNodes, compare must still flatten return value to the
|
|
// range -1, 0, 1.
|
|
// And optimizations like those for (X + Y) - X fail if overflow happens.
|
|
Node *CmpNode::Identity( PhaseTransform *phase ) {
|
|
return this;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------cmp--------------------------------------------
|
|
// Simplify a CmpI (compare 2 integers) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypeInt *r0 = t1->is_int(); // Handy access
|
|
const TypeInt *r1 = t2->is_int();
|
|
|
|
if( r0->_hi < r1->_lo ) // Range is always low?
|
|
return TypeInt::CC_LT;
|
|
else if( r0->_lo > r1->_hi ) // Range is always high?
|
|
return TypeInt::CC_GT;
|
|
|
|
else if( r0->is_con() && r1->is_con() ) { // comparing constants?
|
|
assert(r0->get_con() == r1->get_con(), "must be equal");
|
|
return TypeInt::CC_EQ; // Equal results.
|
|
} else if( r0->_hi == r1->_lo ) // Range is never high?
|
|
return TypeInt::CC_LE;
|
|
else if( r0->_lo == r1->_hi ) // Range is never low?
|
|
return TypeInt::CC_GE;
|
|
return TypeInt::CC; // else use worst case results
|
|
}
|
|
|
|
// Simplify a CmpU (compare 2 integers) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
|
|
assert(!t1->isa_ptr(), "obsolete usage of CmpU");
|
|
|
|
// comparing two unsigned ints
|
|
const TypeInt *r0 = t1->is_int(); // Handy access
|
|
const TypeInt *r1 = t2->is_int();
|
|
|
|
// Current installed version
|
|
// Compare ranges for non-overlap
|
|
juint lo0 = r0->_lo;
|
|
juint hi0 = r0->_hi;
|
|
juint lo1 = r1->_lo;
|
|
juint hi1 = r1->_hi;
|
|
|
|
// If either one has both negative and positive values,
|
|
// it therefore contains both 0 and -1, and since [0..-1] is the
|
|
// full unsigned range, the type must act as an unsigned bottom.
|
|
bool bot0 = ((jint)(lo0 ^ hi0) < 0);
|
|
bool bot1 = ((jint)(lo1 ^ hi1) < 0);
|
|
|
|
if (bot0 || bot1) {
|
|
// All unsigned values are LE -1 and GE 0.
|
|
if (lo0 == 0 && hi0 == 0) {
|
|
return TypeInt::CC_LE; // 0 <= bot
|
|
} else if (lo1 == 0 && hi1 == 0) {
|
|
return TypeInt::CC_GE; // bot >= 0
|
|
}
|
|
} else {
|
|
// We can use ranges of the form [lo..hi] if signs are the same.
|
|
assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
|
|
// results are reversed, '-' > '+' for unsigned compare
|
|
if (hi0 < lo1) {
|
|
return TypeInt::CC_LT; // smaller
|
|
} else if (lo0 > hi1) {
|
|
return TypeInt::CC_GT; // greater
|
|
} else if (hi0 == lo1 && lo0 == hi1) {
|
|
return TypeInt::CC_EQ; // Equal results
|
|
} else if (lo0 >= hi1) {
|
|
return TypeInt::CC_GE;
|
|
} else if (hi0 <= lo1) {
|
|
// Check for special case in Hashtable::get. (See below.)
|
|
if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
|
|
in(1)->Opcode() == Op_ModI &&
|
|
in(1)->in(2) == in(2) )
|
|
return TypeInt::CC_LT;
|
|
return TypeInt::CC_LE;
|
|
}
|
|
}
|
|
// Check for special case in Hashtable::get - the hash index is
|
|
// mod'ed to the table size so the following range check is useless.
|
|
// Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
|
|
// to be positive.
|
|
// (This is a gross hack, since the sub method never
|
|
// looks at the structure of the node in any other case.)
|
|
if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
|
|
in(1)->Opcode() == Op_ModI &&
|
|
in(1)->in(2)->uncast() == in(2)->uncast())
|
|
return TypeInt::CC_LT;
|
|
return TypeInt::CC; // else use worst case results
|
|
}
|
|
|
|
//------------------------------Idealize---------------------------------------
|
|
Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
|
|
if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
|
|
switch (in(1)->Opcode()) {
|
|
case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL
|
|
return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
|
|
case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF
|
|
return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
|
|
case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD
|
|
return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
|
|
//case Op_SubI:
|
|
// If (x - y) cannot overflow, then ((x - y) <?> 0)
|
|
// can be turned into (x <?> y).
|
|
// This is handled (with more general cases) by Ideal_sub_algebra.
|
|
}
|
|
}
|
|
return NULL; // No change
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
// Simplify a CmpL (compare 2 longs ) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypeLong *r0 = t1->is_long(); // Handy access
|
|
const TypeLong *r1 = t2->is_long();
|
|
|
|
if( r0->_hi < r1->_lo ) // Range is always low?
|
|
return TypeInt::CC_LT;
|
|
else if( r0->_lo > r1->_hi ) // Range is always high?
|
|
return TypeInt::CC_GT;
|
|
|
|
else if( r0->is_con() && r1->is_con() ) { // comparing constants?
|
|
assert(r0->get_con() == r1->get_con(), "must be equal");
|
|
return TypeInt::CC_EQ; // Equal results.
|
|
} else if( r0->_hi == r1->_lo ) // Range is never high?
|
|
return TypeInt::CC_LE;
|
|
else if( r0->_lo == r1->_hi ) // Range is never low?
|
|
return TypeInt::CC_GE;
|
|
return TypeInt::CC; // else use worst case results
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------sub--------------------------------------------
|
|
// Simplify an CmpP (compare 2 pointers) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypePtr *r0 = t1->is_ptr(); // Handy access
|
|
const TypePtr *r1 = t2->is_ptr();
|
|
|
|
// Undefined inputs makes for an undefined result
|
|
if( TypePtr::above_centerline(r0->_ptr) ||
|
|
TypePtr::above_centerline(r1->_ptr) )
|
|
return Type::TOP;
|
|
|
|
if (r0 == r1 && r0->singleton()) {
|
|
// Equal pointer constants (klasses, nulls, etc.)
|
|
return TypeInt::CC_EQ;
|
|
}
|
|
|
|
// See if it is 2 unrelated classes.
|
|
const TypeOopPtr* p0 = r0->isa_oopptr();
|
|
const TypeOopPtr* p1 = r1->isa_oopptr();
|
|
if (p0 && p1) {
|
|
Node* in1 = in(1)->uncast();
|
|
Node* in2 = in(2)->uncast();
|
|
AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
|
|
AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
|
|
if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
|
|
return TypeInt::CC_GT; // different pointers
|
|
}
|
|
ciKlass* klass0 = p0->klass();
|
|
bool xklass0 = p0->klass_is_exact();
|
|
ciKlass* klass1 = p1->klass();
|
|
bool xklass1 = p1->klass_is_exact();
|
|
int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
|
|
if (klass0 && klass1 &&
|
|
kps != 1 && // both or neither are klass pointers
|
|
klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
|
|
klass1->is_loaded() && !klass1->is_interface() &&
|
|
(!klass0->is_obj_array_klass() ||
|
|
!klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
|
|
(!klass1->is_obj_array_klass() ||
|
|
!klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
|
|
bool unrelated_classes = false;
|
|
// See if neither subclasses the other, or if the class on top
|
|
// is precise. In either of these cases, the compare is known
|
|
// to fail if at least one of the pointers is provably not null.
|
|
if (klass0->equals(klass1) || // if types are unequal but klasses are
|
|
!klass0->is_java_klass() || // types not part of Java language?
|
|
!klass1->is_java_klass()) { // types not part of Java language?
|
|
// Do nothing; we know nothing for imprecise types
|
|
} else if (klass0->is_subtype_of(klass1)) {
|
|
// If klass1's type is PRECISE, then classes are unrelated.
|
|
unrelated_classes = xklass1;
|
|
} else if (klass1->is_subtype_of(klass0)) {
|
|
// If klass0's type is PRECISE, then classes are unrelated.
|
|
unrelated_classes = xklass0;
|
|
} else { // Neither subtypes the other
|
|
unrelated_classes = true;
|
|
}
|
|
if (unrelated_classes) {
|
|
// The oops classes are known to be unrelated. If the joined PTRs of
|
|
// two oops is not Null and not Bottom, then we are sure that one
|
|
// of the two oops is non-null, and the comparison will always fail.
|
|
TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
|
|
if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
|
|
return TypeInt::CC_GT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Known constants can be compared exactly
|
|
// Null can be distinguished from any NotNull pointers
|
|
// Unknown inputs makes an unknown result
|
|
if( r0->singleton() ) {
|
|
intptr_t bits0 = r0->get_con();
|
|
if( r1->singleton() )
|
|
return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
|
|
return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
|
|
} else if( r1->singleton() ) {
|
|
intptr_t bits1 = r1->get_con();
|
|
return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
|
|
} else
|
|
return TypeInt::CC;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
// Check for the case of comparing an unknown klass loaded from the primary
|
|
// super-type array vs a known klass with no subtypes. This amounts to
|
|
// checking to see an unknown klass subtypes a known klass with no subtypes;
|
|
// this only happens on an exact match. We can shorten this test by 1 load.
|
|
Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
|
|
// Constant pointer on right?
|
|
const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
|
|
if (t2 == NULL || !t2->klass_is_exact())
|
|
return NULL;
|
|
// Get the constant klass we are comparing to.
|
|
ciKlass* superklass = t2->klass();
|
|
|
|
// Now check for LoadKlass on left.
|
|
Node* ldk1 = in(1);
|
|
if (ldk1->is_DecodeN()) {
|
|
ldk1 = ldk1->in(1);
|
|
if (ldk1->Opcode() != Op_LoadNKlass )
|
|
return NULL;
|
|
} else if (ldk1->Opcode() != Op_LoadKlass )
|
|
return NULL;
|
|
// Take apart the address of the LoadKlass:
|
|
Node* adr1 = ldk1->in(MemNode::Address);
|
|
intptr_t con2 = 0;
|
|
Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
|
|
if (ldk2 == NULL)
|
|
return NULL;
|
|
if (con2 == oopDesc::klass_offset_in_bytes()) {
|
|
// We are inspecting an object's concrete class.
|
|
// Short-circuit the check if the query is abstract.
|
|
if (superklass->is_interface() ||
|
|
superklass->is_abstract()) {
|
|
// Make it come out always false:
|
|
this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
|
|
return this;
|
|
}
|
|
}
|
|
|
|
// Check for a LoadKlass from primary supertype array.
|
|
// Any nested loadklass from loadklass+con must be from the p.s. array.
|
|
if (ldk2->is_DecodeN()) {
|
|
// Keep ldk2 as DecodeN since it could be used in CmpP below.
|
|
if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
|
|
return NULL;
|
|
} else if (ldk2->Opcode() != Op_LoadKlass)
|
|
return NULL;
|
|
|
|
// Verify that we understand the situation
|
|
if (con2 != (intptr_t) superklass->super_check_offset())
|
|
return NULL; // Might be element-klass loading from array klass
|
|
|
|
// If 'superklass' has no subklasses and is not an interface, then we are
|
|
// assured that the only input which will pass the type check is
|
|
// 'superklass' itself.
|
|
//
|
|
// We could be more liberal here, and allow the optimization on interfaces
|
|
// which have a single implementor. This would require us to increase the
|
|
// expressiveness of the add_dependency() mechanism.
|
|
// %%% Do this after we fix TypeOopPtr: Deps are expressive enough now.
|
|
|
|
// Object arrays must have their base element have no subtypes
|
|
while (superklass->is_obj_array_klass()) {
|
|
ciType* elem = superklass->as_obj_array_klass()->element_type();
|
|
superklass = elem->as_klass();
|
|
}
|
|
if (superklass->is_instance_klass()) {
|
|
ciInstanceKlass* ik = superklass->as_instance_klass();
|
|
if (ik->has_subklass() || ik->is_interface()) return NULL;
|
|
// Add a dependency if there is a chance that a subclass will be added later.
|
|
if (!ik->is_final()) {
|
|
phase->C->dependencies()->assert_leaf_type(ik);
|
|
}
|
|
}
|
|
|
|
// Bypass the dependent load, and compare directly
|
|
this->set_req(1,ldk2);
|
|
|
|
return this;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------sub--------------------------------------------
|
|
// Simplify an CmpN (compare 2 pointers) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
|
|
const TypePtr *r0 = t1->make_ptr(); // Handy access
|
|
const TypePtr *r1 = t2->make_ptr();
|
|
|
|
// Undefined inputs makes for an undefined result
|
|
if( TypePtr::above_centerline(r0->_ptr) ||
|
|
TypePtr::above_centerline(r1->_ptr) )
|
|
return Type::TOP;
|
|
|
|
if (r0 == r1 && r0->singleton()) {
|
|
// Equal pointer constants (klasses, nulls, etc.)
|
|
return TypeInt::CC_EQ;
|
|
}
|
|
|
|
// See if it is 2 unrelated classes.
|
|
const TypeOopPtr* p0 = r0->isa_oopptr();
|
|
const TypeOopPtr* p1 = r1->isa_oopptr();
|
|
if (p0 && p1) {
|
|
ciKlass* klass0 = p0->klass();
|
|
bool xklass0 = p0->klass_is_exact();
|
|
ciKlass* klass1 = p1->klass();
|
|
bool xklass1 = p1->klass_is_exact();
|
|
int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
|
|
if (klass0 && klass1 &&
|
|
kps != 1 && // both or neither are klass pointers
|
|
!klass0->is_interface() && // do not trust interfaces
|
|
!klass1->is_interface()) {
|
|
bool unrelated_classes = false;
|
|
// See if neither subclasses the other, or if the class on top
|
|
// is precise. In either of these cases, the compare is known
|
|
// to fail if at least one of the pointers is provably not null.
|
|
if (klass0->equals(klass1) || // if types are unequal but klasses are
|
|
!klass0->is_java_klass() || // types not part of Java language?
|
|
!klass1->is_java_klass()) { // types not part of Java language?
|
|
// Do nothing; we know nothing for imprecise types
|
|
} else if (klass0->is_subtype_of(klass1)) {
|
|
// If klass1's type is PRECISE, then classes are unrelated.
|
|
unrelated_classes = xklass1;
|
|
} else if (klass1->is_subtype_of(klass0)) {
|
|
// If klass0's type is PRECISE, then classes are unrelated.
|
|
unrelated_classes = xklass0;
|
|
} else { // Neither subtypes the other
|
|
unrelated_classes = true;
|
|
}
|
|
if (unrelated_classes) {
|
|
// The oops classes are known to be unrelated. If the joined PTRs of
|
|
// two oops is not Null and not Bottom, then we are sure that one
|
|
// of the two oops is non-null, and the comparison will always fail.
|
|
TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
|
|
if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
|
|
return TypeInt::CC_GT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Known constants can be compared exactly
|
|
// Null can be distinguished from any NotNull pointers
|
|
// Unknown inputs makes an unknown result
|
|
if( r0->singleton() ) {
|
|
intptr_t bits0 = r0->get_con();
|
|
if( r1->singleton() )
|
|
return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
|
|
return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
|
|
} else if( r1->singleton() ) {
|
|
intptr_t bits1 = r1->get_con();
|
|
return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
|
|
} else
|
|
return TypeInt::CC;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
|
|
return NULL;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Simplify an CmpF (compare 2 floats ) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpFNode::Value( PhaseTransform *phase ) const {
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
// Either input is TOP ==> the result is TOP
|
|
const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
|
|
// Not constants? Don't know squat - even if they are the same
|
|
// value! If they are NaN's they compare to LT instead of EQ.
|
|
const TypeF *tf1 = t1->isa_float_constant();
|
|
const TypeF *tf2 = t2->isa_float_constant();
|
|
if( !tf1 || !tf2 ) return TypeInt::CC;
|
|
|
|
// This implements the Java bytecode fcmpl, so unordered returns -1.
|
|
if( tf1->is_nan() || tf2->is_nan() )
|
|
return TypeInt::CC_LT;
|
|
|
|
if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
|
|
if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
|
|
assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
|
|
return TypeInt::CC_EQ;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Simplify an CmpD (compare 2 doubles ) node, based on local information.
|
|
// If both inputs are constants, compare them.
|
|
const Type *CmpDNode::Value( PhaseTransform *phase ) const {
|
|
const Node* in1 = in(1);
|
|
const Node* in2 = in(2);
|
|
// Either input is TOP ==> the result is TOP
|
|
const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
|
|
// Not constants? Don't know squat - even if they are the same
|
|
// value! If they are NaN's they compare to LT instead of EQ.
|
|
const TypeD *td1 = t1->isa_double_constant();
|
|
const TypeD *td2 = t2->isa_double_constant();
|
|
if( !td1 || !td2 ) return TypeInt::CC;
|
|
|
|
// This implements the Java bytecode dcmpl, so unordered returns -1.
|
|
if( td1->is_nan() || td2->is_nan() )
|
|
return TypeInt::CC_LT;
|
|
|
|
if( td1->_d < td2->_d ) return TypeInt::CC_LT;
|
|
if( td1->_d > td2->_d ) return TypeInt::CC_GT;
|
|
assert( td1->_d == td2->_d, "do not understand FP behavior" );
|
|
return TypeInt::CC_EQ;
|
|
}
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
|
|
// Check if we can change this to a CmpF and remove a ConvD2F operation.
|
|
// Change (CMPD (F2D (float)) (ConD value))
|
|
// To (CMPF (float) (ConF value))
|
|
// Valid when 'value' does not lose precision as a float.
|
|
// Benefits: eliminates conversion, does not require 24-bit mode
|
|
|
|
// NaNs prevent commuting operands. This transform works regardless of the
|
|
// order of ConD and ConvF2D inputs by preserving the original order.
|
|
int idx_f2d = 1; // ConvF2D on left side?
|
|
if( in(idx_f2d)->Opcode() != Op_ConvF2D )
|
|
idx_f2d = 2; // No, swap to check for reversed args
|
|
int idx_con = 3-idx_f2d; // Check for the constant on other input
|
|
|
|
if( ConvertCmpD2CmpF &&
|
|
in(idx_f2d)->Opcode() == Op_ConvF2D &&
|
|
in(idx_con)->Opcode() == Op_ConD ) {
|
|
const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
|
|
double t2_value_as_double = t2->_d;
|
|
float t2_value_as_float = (float)t2_value_as_double;
|
|
if( t2_value_as_double == (double)t2_value_as_float ) {
|
|
// Test value can be represented as a float
|
|
// Eliminate the conversion to double and create new comparison
|
|
Node *new_in1 = in(idx_f2d)->in(1);
|
|
Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
|
|
if( idx_f2d != 1 ) { // Must flip args to match original order
|
|
Node *tmp = new_in1;
|
|
new_in1 = new_in2;
|
|
new_in2 = tmp;
|
|
}
|
|
CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
|
|
? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
|
|
: new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
|
|
return new_cmp; // Changed to CmpFNode
|
|
}
|
|
// Testing value required the precision of a double
|
|
}
|
|
return NULL; // No change
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------cc2logical-------------------------------------
|
|
// Convert a condition code type to a logical type
|
|
const Type *BoolTest::cc2logical( const Type *CC ) const {
|
|
if( CC == Type::TOP ) return Type::TOP;
|
|
if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
|
|
const TypeInt *ti = CC->is_int();
|
|
if( ti->is_con() ) { // Only 1 kind of condition codes set?
|
|
// Match low order 2 bits
|
|
int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
|
|
if( _test & 4 ) tmp = 1-tmp; // Optionally complement result
|
|
return TypeInt::make(tmp); // Boolean result
|
|
}
|
|
|
|
if( CC == TypeInt::CC_GE ) {
|
|
if( _test == ge ) return TypeInt::ONE;
|
|
if( _test == lt ) return TypeInt::ZERO;
|
|
}
|
|
if( CC == TypeInt::CC_LE ) {
|
|
if( _test == le ) return TypeInt::ONE;
|
|
if( _test == gt ) return TypeInt::ZERO;
|
|
}
|
|
|
|
return TypeInt::BOOL;
|
|
}
|
|
|
|
//------------------------------dump_spec-------------------------------------
|
|
// Print special per-node info
|
|
#ifndef PRODUCT
|
|
void BoolTest::dump_on(outputStream *st) const {
|
|
const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
|
|
st->print(msg[_test]);
|
|
}
|
|
#endif
|
|
|
|
//=============================================================================
|
|
uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
|
|
uint BoolNode::size_of() const { return sizeof(BoolNode); }
|
|
|
|
//------------------------------operator==-------------------------------------
|
|
uint BoolNode::cmp( const Node &n ) const {
|
|
const BoolNode *b = (const BoolNode *)&n; // Cast up
|
|
return (_test._test == b->_test._test);
|
|
}
|
|
|
|
//------------------------------clone_cmp--------------------------------------
|
|
// Clone a compare/bool tree
|
|
static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
|
|
Node *ncmp = cmp->clone();
|
|
ncmp->set_req(1,cmp1);
|
|
ncmp->set_req(2,cmp2);
|
|
ncmp = gvn->transform( ncmp );
|
|
return new (gvn->C, 2) BoolNode( ncmp, test );
|
|
}
|
|
|
|
//-------------------------------make_predicate--------------------------------
|
|
Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
|
|
if (test_value->is_Con()) return test_value;
|
|
if (test_value->is_Bool()) return test_value;
|
|
Compile* C = phase->C;
|
|
if (test_value->is_CMove() &&
|
|
test_value->in(CMoveNode::Condition)->is_Bool()) {
|
|
BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool();
|
|
const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
|
|
const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
|
|
if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
|
|
return bol;
|
|
} else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
|
|
return phase->transform( bol->negate(phase) );
|
|
}
|
|
// Else fall through. The CMove gets in the way of the test.
|
|
// It should be the case that make_predicate(bol->as_int_value()) == bol.
|
|
}
|
|
Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
|
|
cmp = phase->transform(cmp);
|
|
Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
|
|
return phase->transform(bol);
|
|
}
|
|
|
|
//--------------------------------as_int_value---------------------------------
|
|
Node* BoolNode::as_int_value(PhaseGVN* phase) {
|
|
// Inverse to make_predicate. The CMove probably boils down to a Conv2B.
|
|
Node* cmov = CMoveNode::make(phase->C, NULL, this,
|
|
phase->intcon(0), phase->intcon(1),
|
|
TypeInt::BOOL);
|
|
return phase->transform(cmov);
|
|
}
|
|
|
|
//----------------------------------negate-------------------------------------
|
|
BoolNode* BoolNode::negate(PhaseGVN* phase) {
|
|
Compile* C = phase->C;
|
|
return new (C, 2) BoolNode(in(1), _test.negate());
|
|
}
|
|
|
|
|
|
//------------------------------Ideal------------------------------------------
|
|
Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
// Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
|
|
// This moves the constant to the right. Helps value-numbering.
|
|
Node *cmp = in(1);
|
|
if( !cmp->is_Sub() ) return NULL;
|
|
int cop = cmp->Opcode();
|
|
if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
|
|
Node *cmp1 = cmp->in(1);
|
|
Node *cmp2 = cmp->in(2);
|
|
if( !cmp1 ) return NULL;
|
|
|
|
// Constant on left?
|
|
Node *con = cmp1;
|
|
uint op2 = cmp2->Opcode();
|
|
// Move constants to the right of compare's to canonicalize.
|
|
// Do not muck with Opaque1 nodes, as this indicates a loop
|
|
// guard that cannot change shape.
|
|
if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
|
|
// Because of NaN's, CmpD and CmpF are not commutative
|
|
cop != Op_CmpD && cop != Op_CmpF &&
|
|
// Protect against swapping inputs to a compare when it is used by a
|
|
// counted loop exit, which requires maintaining the loop-limit as in(2)
|
|
!is_counted_loop_exit_test() ) {
|
|
// Ok, commute the constant to the right of the cmp node.
|
|
// Clone the Node, getting a new Node of the same class
|
|
cmp = cmp->clone();
|
|
// Swap inputs to the clone
|
|
cmp->swap_edges(1, 2);
|
|
cmp = phase->transform( cmp );
|
|
return new (phase->C, 2) BoolNode( cmp, _test.commute() );
|
|
}
|
|
|
|
// Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
|
|
// The XOR-1 is an idiom used to flip the sense of a bool. We flip the
|
|
// test instead.
|
|
int cmp1_op = cmp1->Opcode();
|
|
const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
|
|
if (cmp2_type == NULL) return NULL;
|
|
Node* j_xor = cmp1;
|
|
if( cmp2_type == TypeInt::ZERO &&
|
|
cmp1_op == Op_XorI &&
|
|
j_xor->in(1) != j_xor && // An xor of itself is dead
|
|
phase->type( j_xor->in(2) ) == TypeInt::ONE &&
|
|
(_test._test == BoolTest::eq ||
|
|
_test._test == BoolTest::ne) ) {
|
|
Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
|
|
return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
|
|
}
|
|
|
|
// Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
|
|
// This is a standard idiom for branching on a boolean value.
|
|
Node *c2b = cmp1;
|
|
if( cmp2_type == TypeInt::ZERO &&
|
|
cmp1_op == Op_Conv2B &&
|
|
(_test._test == BoolTest::eq ||
|
|
_test._test == BoolTest::ne) ) {
|
|
Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
|
|
? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
|
|
: (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
|
|
);
|
|
return new (phase->C, 2) BoolNode( ncmp, _test._test );
|
|
}
|
|
|
|
// Comparing a SubI against a zero is equal to comparing the SubI
|
|
// arguments directly. This only works for eq and ne comparisons
|
|
// due to possible integer overflow.
|
|
if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
|
|
(cop == Op_CmpI) &&
|
|
(cmp1->Opcode() == Op_SubI) &&
|
|
( cmp2_type == TypeInt::ZERO ) ) {
|
|
Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
|
|
return new (phase->C, 2) BoolNode( ncmp, _test._test );
|
|
}
|
|
|
|
// Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the
|
|
// most general case because negating 0x80000000 does nothing. Needed for
|
|
// the CmpF3/SubI/CmpI idiom.
|
|
if( cop == Op_CmpI &&
|
|
cmp1->Opcode() == Op_SubI &&
|
|
cmp2_type == TypeInt::ZERO &&
|
|
phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
|
|
phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
|
|
Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
|
|
return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
|
|
}
|
|
|
|
// The transformation below is not valid for either signed or unsigned
|
|
// comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
|
|
// This transformation can be resurrected when we are able to
|
|
// make inferences about the range of values being subtracted from
|
|
// (or added to) relative to the wraparound point.
|
|
//
|
|
// // Remove +/-1's if possible.
|
|
// // "X <= Y-1" becomes "X < Y"
|
|
// // "X+1 <= Y" becomes "X < Y"
|
|
// // "X < Y+1" becomes "X <= Y"
|
|
// // "X-1 < Y" becomes "X <= Y"
|
|
// // Do not this to compares off of the counted-loop-end. These guys are
|
|
// // checking the trip counter and they want to use the post-incremented
|
|
// // counter. If they use the PRE-incremented counter, then the counter has
|
|
// // to be incremented in a private block on a loop backedge.
|
|
// if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
|
|
// return NULL;
|
|
// #ifndef PRODUCT
|
|
// // Do not do this in a wash GVN pass during verification.
|
|
// // Gets triggered by too many simple optimizations to be bothered with
|
|
// // re-trying it again and again.
|
|
// if( !phase->allow_progress() ) return NULL;
|
|
// #endif
|
|
// // Not valid for unsigned compare because of corner cases in involving zero.
|
|
// // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
|
|
// // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
|
|
// // "0 <=u Y" is always true).
|
|
// if( cmp->Opcode() == Op_CmpU ) return NULL;
|
|
// int cmp2_op = cmp2->Opcode();
|
|
// if( _test._test == BoolTest::le ) {
|
|
// if( cmp1_op == Op_AddI &&
|
|
// phase->type( cmp1->in(2) ) == TypeInt::ONE )
|
|
// return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
|
|
// else if( cmp2_op == Op_AddI &&
|
|
// phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
|
|
// return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
|
|
// } else if( _test._test == BoolTest::lt ) {
|
|
// if( cmp1_op == Op_AddI &&
|
|
// phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
|
|
// return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
|
|
// else if( cmp2_op == Op_AddI &&
|
|
// phase->type( cmp2->in(2) ) == TypeInt::ONE )
|
|
// return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
|
|
// }
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------Value------------------------------------------
|
|
// Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
|
|
// based on local information. If the input is constant, do it.
|
|
const Type *BoolNode::Value( PhaseTransform *phase ) const {
|
|
return _test.cc2logical( phase->type( in(1) ) );
|
|
}
|
|
|
|
//------------------------------dump_spec--------------------------------------
|
|
// Dump special per-node info
|
|
#ifndef PRODUCT
|
|
void BoolNode::dump_spec(outputStream *st) const {
|
|
st->print("[");
|
|
_test.dump_on(st);
|
|
st->print("]");
|
|
}
|
|
#endif
|
|
|
|
//------------------------------is_counted_loop_exit_test--------------------------------------
|
|
// Returns true if node is used by a counted loop node.
|
|
bool BoolNode::is_counted_loop_exit_test() {
|
|
for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
|
|
Node* use = fast_out(i);
|
|
if (use->is_CountedLoopEnd()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------NegNode----------------------------------------
|
|
Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if( in(1)->Opcode() == Op_SubF )
|
|
return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
|
|
return NULL;
|
|
}
|
|
|
|
Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
|
|
if( in(1)->Opcode() == Op_SubD )
|
|
return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
|
|
return NULL;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute sqrt
|
|
const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d = t1->getd();
|
|
if( d < 0.0 ) return Type::DOUBLE;
|
|
return TypeD::make( sqrt( d ) );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute cos
|
|
const Type *CosDNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d = t1->getd();
|
|
return TypeD::make( StubRoutines::intrinsic_cos( d ) );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute sin
|
|
const Type *SinDNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d = t1->getd();
|
|
return TypeD::make( StubRoutines::intrinsic_sin( d ) );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute tan
|
|
const Type *TanDNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d = t1->getd();
|
|
return TypeD::make( StubRoutines::intrinsic_tan( d ) );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute log
|
|
const Type *LogDNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d = t1->getd();
|
|
return TypeD::make( StubRoutines::intrinsic_log( d ) );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute log10
|
|
const Type *Log10DNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d = t1->getd();
|
|
return TypeD::make( StubRoutines::intrinsic_log10( d ) );
|
|
}
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute exp
|
|
const Type *ExpDNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d = t1->getd();
|
|
return TypeD::make( StubRoutines::intrinsic_exp( d ) );
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------Value------------------------------------------
|
|
// Compute pow
|
|
const Type *PowDNode::Value( PhaseTransform *phase ) const {
|
|
const Type *t1 = phase->type( in(1) );
|
|
if( t1 == Type::TOP ) return Type::TOP;
|
|
if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
const Type *t2 = phase->type( in(2) );
|
|
if( t2 == Type::TOP ) return Type::TOP;
|
|
if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
|
|
double d1 = t1->getd();
|
|
double d2 = t2->getd();
|
|
if( d1 < 0.0 ) return Type::DOUBLE;
|
|
if( d2 < 0.0 ) return Type::DOUBLE;
|
|
return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );
|
|
}
|