2d6874b861
Reviewed-by: rkennke, tschatzl
616 lines
20 KiB
C++
616 lines
20 KiB
C++
/*
|
|
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_UTILITIES_GROWABLEARRAY_HPP
|
|
#define SHARE_UTILITIES_GROWABLEARRAY_HPP
|
|
|
|
#include "memory/allocation.hpp"
|
|
#include "oops/oop.hpp"
|
|
#include "utilities/debug.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/ostream.hpp"
|
|
|
|
// A growable array.
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */
|
|
/* */
|
|
/* Should you use GrowableArrays to contain handles you must be certain */
|
|
/* the the GrowableArray does not outlive the HandleMark that contains */
|
|
/* the handles. Since GrowableArrays are typically resource allocated */
|
|
/* the following is an example of INCORRECT CODE, */
|
|
/* */
|
|
/* ResourceMark rm; */
|
|
/* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */
|
|
/* if (blah) { */
|
|
/* while (...) { */
|
|
/* HandleMark hm; */
|
|
/* ... */
|
|
/* Handle h(THREAD, some_oop); */
|
|
/* arr->append(h); */
|
|
/* } */
|
|
/* } */
|
|
/* if (arr->length() != 0 ) { */
|
|
/* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */
|
|
/* ... */
|
|
/* } */
|
|
/* */
|
|
/* If the GrowableArrays you are creating is C_Heap allocated then it */
|
|
/* hould not old handles since the handles could trivially try and */
|
|
/* outlive their HandleMark. In some situations you might need to do */
|
|
/* this and it would be legal but be very careful and see if you can do */
|
|
/* the code in some other manner. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
// To call default constructor the placement operator new() is used.
|
|
// It should be empty (it only returns the passed void* pointer).
|
|
// The definition of placement operator new(size_t, void*) in the <new>.
|
|
|
|
#include <new>
|
|
|
|
// Need the correct linkage to call qsort without warnings
|
|
extern "C" {
|
|
typedef int (*_sort_Fn)(const void *, const void *);
|
|
}
|
|
|
|
class GenericGrowableArray : public ResourceObj {
|
|
friend class VMStructs;
|
|
|
|
protected:
|
|
int _len; // current length
|
|
int _max; // maximum length
|
|
Arena* _arena; // Indicates where allocation occurs:
|
|
// 0 means default ResourceArea
|
|
// 1 means on C heap
|
|
// otherwise, allocate in _arena
|
|
|
|
MEMFLAGS _memflags; // memory type if allocation in C heap
|
|
|
|
#ifdef ASSERT
|
|
int _nesting; // resource area nesting at creation
|
|
void set_nesting();
|
|
void check_nesting();
|
|
#else
|
|
#define set_nesting();
|
|
#define check_nesting();
|
|
#endif
|
|
|
|
// Where are we going to allocate memory?
|
|
bool on_C_heap() { return _arena == (Arena*)1; }
|
|
bool on_stack () { return _arena == NULL; }
|
|
bool on_arena () { return _arena > (Arena*)1; }
|
|
|
|
// This GA will use the resource stack for storage if c_heap==false,
|
|
// Else it will use the C heap. Use clear_and_deallocate to avoid leaks.
|
|
GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) {
|
|
_len = initial_len;
|
|
_max = initial_size;
|
|
_memflags = flags;
|
|
|
|
// memory type has to be specified for C heap allocation
|
|
assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object");
|
|
|
|
assert(_len >= 0 && _len <= _max, "initial_len too big");
|
|
_arena = (c_heap ? (Arena*)1 : NULL);
|
|
set_nesting();
|
|
assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
|
|
assert(!on_stack() ||
|
|
(allocated_on_res_area() || allocated_on_stack()),
|
|
"growable array must be on stack if elements are not on arena and not on C heap");
|
|
}
|
|
|
|
// This GA will use the given arena for storage.
|
|
// Consider using new(arena) GrowableArray<T> to allocate the header.
|
|
GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
|
|
_len = initial_len;
|
|
_max = initial_size;
|
|
assert(_len >= 0 && _len <= _max, "initial_len too big");
|
|
_arena = arena;
|
|
_memflags = mtNone;
|
|
|
|
assert(on_arena(), "arena has taken on reserved value 0 or 1");
|
|
// Relax next assert to allow object allocation on resource area,
|
|
// on stack or embedded into an other object.
|
|
assert(allocated_on_arena() || allocated_on_stack(),
|
|
"growable array must be on arena or on stack if elements are on arena");
|
|
}
|
|
|
|
void* raw_allocate(int elementSize);
|
|
|
|
// some uses pass the Thread explicitly for speed (4990299 tuning)
|
|
void* raw_allocate(Thread* thread, int elementSize) {
|
|
assert(on_stack(), "fast ResourceObj path only");
|
|
return (void*)resource_allocate_bytes(thread, elementSize * _max);
|
|
}
|
|
|
|
void free_C_heap(void* elements);
|
|
};
|
|
|
|
template<class E> class GrowableArrayIterator;
|
|
template<class E, class UnaryPredicate> class GrowableArrayFilterIterator;
|
|
|
|
template<class E>
|
|
class CompareClosure : public Closure {
|
|
public:
|
|
virtual int do_compare(const E&, const E&) = 0;
|
|
};
|
|
|
|
template<class E> class GrowableArray : public GenericGrowableArray {
|
|
friend class VMStructs;
|
|
|
|
private:
|
|
E* _data; // data array
|
|
|
|
void grow(int j);
|
|
void raw_at_put_grow(int i, const E& p, const E& fill);
|
|
void clear_and_deallocate();
|
|
public:
|
|
GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
|
|
_data = (E*)raw_allocate(thread, sizeof(E));
|
|
for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
|
|
}
|
|
|
|
GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal)
|
|
: GenericGrowableArray(initial_size, 0, C_heap, F) {
|
|
_data = (E*)raw_allocate(sizeof(E));
|
|
// Needed for Visual Studio 2012 and older
|
|
#ifdef _MSC_VER
|
|
#pragma warning(suppress: 4345)
|
|
#endif
|
|
for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
|
|
}
|
|
|
|
GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal)
|
|
: GenericGrowableArray(initial_size, initial_len, C_heap, memflags) {
|
|
_data = (E*)raw_allocate(sizeof(E));
|
|
int i = 0;
|
|
for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
|
|
for (; i < _max; i++) ::new ((void*)&_data[i]) E();
|
|
}
|
|
|
|
GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
|
|
_data = (E*)raw_allocate(sizeof(E));
|
|
int i = 0;
|
|
for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
|
|
for (; i < _max; i++) ::new ((void*)&_data[i]) E();
|
|
}
|
|
|
|
GrowableArray() : GenericGrowableArray(2, 0, false) {
|
|
_data = (E*)raw_allocate(sizeof(E));
|
|
::new ((void*)&_data[0]) E();
|
|
::new ((void*)&_data[1]) E();
|
|
}
|
|
|
|
// Does nothing for resource and arena objects
|
|
~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); }
|
|
|
|
void clear() { _len = 0; }
|
|
int length() const { return _len; }
|
|
int max_length() const { return _max; }
|
|
void trunc_to(int l) { assert(l <= _len,"cannot increase length"); _len = l; }
|
|
bool is_empty() const { return _len == 0; }
|
|
bool is_nonempty() const { return _len != 0; }
|
|
bool is_full() const { return _len == _max; }
|
|
DEBUG_ONLY(E* data_addr() const { return _data; })
|
|
|
|
void print();
|
|
|
|
int append(const E& elem) {
|
|
check_nesting();
|
|
if (_len == _max) grow(_len);
|
|
int idx = _len++;
|
|
_data[idx] = elem;
|
|
return idx;
|
|
}
|
|
|
|
bool append_if_missing(const E& elem) {
|
|
// Returns TRUE if elem is added.
|
|
bool missed = !contains(elem);
|
|
if (missed) append(elem);
|
|
return missed;
|
|
}
|
|
|
|
E& at(int i) {
|
|
assert(0 <= i && i < _len, "illegal index");
|
|
return _data[i];
|
|
}
|
|
|
|
E const& at(int i) const {
|
|
assert(0 <= i && i < _len, "illegal index");
|
|
return _data[i];
|
|
}
|
|
|
|
E* adr_at(int i) const {
|
|
assert(0 <= i && i < _len, "illegal index");
|
|
return &_data[i];
|
|
}
|
|
|
|
E first() const {
|
|
assert(_len > 0, "empty list");
|
|
return _data[0];
|
|
}
|
|
|
|
E top() const {
|
|
assert(_len > 0, "empty list");
|
|
return _data[_len-1];
|
|
}
|
|
|
|
E last() const {
|
|
return top();
|
|
}
|
|
|
|
GrowableArrayIterator<E> begin() const {
|
|
return GrowableArrayIterator<E>(this, 0);
|
|
}
|
|
|
|
GrowableArrayIterator<E> end() const {
|
|
return GrowableArrayIterator<E>(this, length());
|
|
}
|
|
|
|
void push(const E& elem) { append(elem); }
|
|
|
|
E pop() {
|
|
assert(_len > 0, "empty list");
|
|
return _data[--_len];
|
|
}
|
|
|
|
void at_put(int i, const E& elem) {
|
|
assert(0 <= i && i < _len, "illegal index");
|
|
_data[i] = elem;
|
|
}
|
|
|
|
E at_grow(int i, const E& fill = E()) {
|
|
assert(0 <= i, "negative index");
|
|
check_nesting();
|
|
if (i >= _len) {
|
|
if (i >= _max) grow(i);
|
|
for (int j = _len; j <= i; j++)
|
|
_data[j] = fill;
|
|
_len = i+1;
|
|
}
|
|
return _data[i];
|
|
}
|
|
|
|
void at_put_grow(int i, const E& elem, const E& fill = E()) {
|
|
assert(0 <= i, "negative index");
|
|
check_nesting();
|
|
raw_at_put_grow(i, elem, fill);
|
|
}
|
|
|
|
bool contains(const E& elem) const {
|
|
for (int i = 0; i < _len; i++) {
|
|
if (_data[i] == elem) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int find(const E& elem) const {
|
|
for (int i = 0; i < _len; i++) {
|
|
if (_data[i] == elem) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int find_from_end(const E& elem) const {
|
|
for (int i = _len-1; i >= 0; i--) {
|
|
if (_data[i] == elem) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int find(void* token, bool f(void*, E)) const {
|
|
for (int i = 0; i < _len; i++) {
|
|
if (f(token, _data[i])) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int find_from_end(void* token, bool f(void*, E)) const {
|
|
// start at the end of the array
|
|
for (int i = _len-1; i >= 0; i--) {
|
|
if (f(token, _data[i])) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void remove(const E& elem) {
|
|
for (int i = 0; i < _len; i++) {
|
|
if (_data[i] == elem) {
|
|
for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
|
|
_len--;
|
|
return;
|
|
}
|
|
}
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// The order is preserved.
|
|
void remove_at(int index) {
|
|
assert(0 <= index && index < _len, "illegal index");
|
|
for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
|
|
_len--;
|
|
}
|
|
|
|
// The order is changed.
|
|
void delete_at(int index) {
|
|
assert(0 <= index && index < _len, "illegal index");
|
|
if (index < --_len) {
|
|
// Replace removed element with last one.
|
|
_data[index] = _data[_len];
|
|
}
|
|
}
|
|
|
|
// inserts the given element before the element at index i
|
|
void insert_before(const int idx, const E& elem) {
|
|
assert(0 <= idx && idx <= _len, "illegal index");
|
|
check_nesting();
|
|
if (_len == _max) grow(_len);
|
|
for (int j = _len - 1; j >= idx; j--) {
|
|
_data[j + 1] = _data[j];
|
|
}
|
|
_len++;
|
|
_data[idx] = elem;
|
|
}
|
|
|
|
void insert_before(const int idx, const GrowableArray<E>* array) {
|
|
assert(0 <= idx && idx <= _len, "illegal index");
|
|
check_nesting();
|
|
int array_len = array->length();
|
|
int new_len = _len + array_len;
|
|
if (new_len >= _max) grow(new_len);
|
|
|
|
for (int j = _len - 1; j >= idx; j--) {
|
|
_data[j + array_len] = _data[j];
|
|
}
|
|
|
|
for (int j = 0; j < array_len; j++) {
|
|
_data[idx + j] = array->_data[j];
|
|
}
|
|
|
|
_len += array_len;
|
|
}
|
|
|
|
void appendAll(const GrowableArray<E>* l) {
|
|
for (int i = 0; i < l->_len; i++) {
|
|
raw_at_put_grow(_len, l->_data[i], E());
|
|
}
|
|
}
|
|
|
|
void sort(int f(E*,E*)) {
|
|
qsort(_data, length(), sizeof(E), (_sort_Fn)f);
|
|
}
|
|
// sort by fixed-stride sub arrays:
|
|
void sort(int f(E*,E*), int stride) {
|
|
qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
|
|
}
|
|
|
|
// Binary search and insertion utility. Search array for element
|
|
// matching key according to the static compare function. Insert
|
|
// that element is not already in the list. Assumes the list is
|
|
// already sorted according to compare function.
|
|
template <int compare(const E&, const E&)> E insert_sorted(const E& key) {
|
|
bool found;
|
|
int location = find_sorted<E, compare>(key, found);
|
|
if (!found) {
|
|
insert_before(location, key);
|
|
}
|
|
return at(location);
|
|
}
|
|
|
|
template <typename K, int compare(const K&, const E&)> int find_sorted(const K& key, bool& found) {
|
|
found = false;
|
|
int min = 0;
|
|
int max = length() - 1;
|
|
|
|
while (max >= min) {
|
|
int mid = (int)(((uint)max + min) / 2);
|
|
E value = at(mid);
|
|
int diff = compare(key, value);
|
|
if (diff > 0) {
|
|
min = mid + 1;
|
|
} else if (diff < 0) {
|
|
max = mid - 1;
|
|
} else {
|
|
found = true;
|
|
return mid;
|
|
}
|
|
}
|
|
return min;
|
|
}
|
|
|
|
E insert_sorted(CompareClosure<E>* cc, const E& key) {
|
|
bool found;
|
|
int location = find_sorted(cc, key, found);
|
|
if (!found) {
|
|
insert_before(location, key);
|
|
}
|
|
return at(location);
|
|
}
|
|
|
|
template<typename K>
|
|
int find_sorted(CompareClosure<E>* cc, const K& key, bool& found) {
|
|
found = false;
|
|
int min = 0;
|
|
int max = length() - 1;
|
|
|
|
while (max >= min) {
|
|
int mid = (int)(((uint)max + min) / 2);
|
|
E value = at(mid);
|
|
int diff = cc->do_compare(key, value);
|
|
if (diff > 0) {
|
|
min = mid + 1;
|
|
} else if (diff < 0) {
|
|
max = mid - 1;
|
|
} else {
|
|
found = true;
|
|
return mid;
|
|
}
|
|
}
|
|
return min;
|
|
}
|
|
};
|
|
|
|
// Global GrowableArray methods (one instance in the library per each 'E' type).
|
|
|
|
template<class E> void GrowableArray<E>::grow(int j) {
|
|
// grow the array by doubling its size (amortized growth)
|
|
int old_max = _max;
|
|
if (_max == 0) _max = 1; // prevent endless loop
|
|
while (j >= _max) _max = _max*2;
|
|
// j < _max
|
|
E* newData = (E*)raw_allocate(sizeof(E));
|
|
int i = 0;
|
|
for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
|
|
// Needed for Visual Studio 2012 and older
|
|
#ifdef _MSC_VER
|
|
#pragma warning(suppress: 4345)
|
|
#endif
|
|
for ( ; i < _max; i++) ::new ((void*)&newData[i]) E();
|
|
for (i = 0; i < old_max; i++) _data[i].~E();
|
|
if (on_C_heap() && _data != NULL) {
|
|
free_C_heap(_data);
|
|
}
|
|
_data = newData;
|
|
}
|
|
|
|
template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
|
|
if (i >= _len) {
|
|
if (i >= _max) grow(i);
|
|
for (int j = _len; j < i; j++)
|
|
_data[j] = fill;
|
|
_len = i+1;
|
|
}
|
|
_data[i] = p;
|
|
}
|
|
|
|
// This function clears and deallocate the data in the growable array that
|
|
// has been allocated on the C heap. It's not public - called by the
|
|
// destructor.
|
|
template<class E> void GrowableArray<E>::clear_and_deallocate() {
|
|
assert(on_C_heap(),
|
|
"clear_and_deallocate should only be called when on C heap");
|
|
clear();
|
|
if (_data != NULL) {
|
|
for (int i = 0; i < _max; i++) _data[i].~E();
|
|
free_C_heap(_data);
|
|
_data = NULL;
|
|
}
|
|
}
|
|
|
|
template<class E> void GrowableArray<E>::print() {
|
|
tty->print("Growable Array " INTPTR_FORMAT, this);
|
|
tty->print(": length %ld (_max %ld) { ", _len, _max);
|
|
for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
|
|
tty->print("}\n");
|
|
}
|
|
|
|
// Custom STL-style iterator to iterate over GrowableArrays
|
|
// It is constructed by invoking GrowableArray::begin() and GrowableArray::end()
|
|
template<class E> class GrowableArrayIterator : public StackObj {
|
|
friend class GrowableArray<E>;
|
|
template<class F, class UnaryPredicate> friend class GrowableArrayFilterIterator;
|
|
|
|
private:
|
|
const GrowableArray<E>* _array; // GrowableArray we iterate over
|
|
int _position; // The current position in the GrowableArray
|
|
|
|
// Private constructor used in GrowableArray::begin() and GrowableArray::end()
|
|
GrowableArrayIterator(const GrowableArray<E>* array, int position) : _array(array), _position(position) {
|
|
assert(0 <= position && position <= _array->length(), "illegal position");
|
|
}
|
|
|
|
public:
|
|
GrowableArrayIterator() : _array(NULL), _position(0) { }
|
|
GrowableArrayIterator<E>& operator++() { ++_position; return *this; }
|
|
E operator*() { return _array->at(_position); }
|
|
|
|
bool operator==(const GrowableArrayIterator<E>& rhs) {
|
|
assert(_array == rhs._array, "iterator belongs to different array");
|
|
return _position == rhs._position;
|
|
}
|
|
|
|
bool operator!=(const GrowableArrayIterator<E>& rhs) {
|
|
assert(_array == rhs._array, "iterator belongs to different array");
|
|
return _position != rhs._position;
|
|
}
|
|
};
|
|
|
|
// Custom STL-style iterator to iterate over elements of a GrowableArray that satisfy a given predicate
|
|
template<class E, class UnaryPredicate> class GrowableArrayFilterIterator : public StackObj {
|
|
friend class GrowableArray<E>;
|
|
|
|
private:
|
|
const GrowableArray<E>* _array; // GrowableArray we iterate over
|
|
int _position; // Current position in the GrowableArray
|
|
UnaryPredicate _predicate; // Unary predicate the elements of the GrowableArray should satisfy
|
|
|
|
public:
|
|
GrowableArrayFilterIterator(const GrowableArrayIterator<E>& begin, UnaryPredicate filter_predicate)
|
|
: _array(begin._array), _position(begin._position), _predicate(filter_predicate) {
|
|
// Advance to first element satisfying the predicate
|
|
while(_position != _array->length() && !_predicate(_array->at(_position))) {
|
|
++_position;
|
|
}
|
|
}
|
|
|
|
GrowableArrayFilterIterator<E, UnaryPredicate>& operator++() {
|
|
do {
|
|
// Advance to next element satisfying the predicate
|
|
++_position;
|
|
} while(_position != _array->length() && !_predicate(_array->at(_position)));
|
|
return *this;
|
|
}
|
|
|
|
E operator*() { return _array->at(_position); }
|
|
|
|
bool operator==(const GrowableArrayIterator<E>& rhs) {
|
|
assert(_array == rhs._array, "iterator belongs to different array");
|
|
return _position == rhs._position;
|
|
}
|
|
|
|
bool operator!=(const GrowableArrayIterator<E>& rhs) {
|
|
assert(_array == rhs._array, "iterator belongs to different array");
|
|
return _position != rhs._position;
|
|
}
|
|
|
|
bool operator==(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs) {
|
|
assert(_array == rhs._array, "iterator belongs to different array");
|
|
return _position == rhs._position;
|
|
}
|
|
|
|
bool operator!=(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs) {
|
|
assert(_array == rhs._array, "iterator belongs to different array");
|
|
return _position != rhs._position;
|
|
}
|
|
};
|
|
|
|
// Arrays for basic types
|
|
typedef GrowableArray<int> intArray;
|
|
typedef GrowableArray<int> intStack;
|
|
typedef GrowableArray<bool> boolArray;
|
|
|
|
#endif // SHARE_UTILITIES_GROWABLEARRAY_HPP
|