fd46a24a3e
Reviewed-by: tschatzl, mgerdin
946 lines
33 KiB
C++
946 lines
33 KiB
C++
/*
|
|
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
|
|
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
|
|
|
|
#include "gc_implementation/g1/collectionSetChooser.hpp"
|
|
#include "gc_implementation/g1/g1Allocator.hpp"
|
|
#include "gc_implementation/g1/g1MMUTracker.hpp"
|
|
#include "memory/collectorPolicy.hpp"
|
|
|
|
// A G1CollectorPolicy makes policy decisions that determine the
|
|
// characteristics of the collector. Examples include:
|
|
// * choice of collection set.
|
|
// * when to collect.
|
|
|
|
class HeapRegion;
|
|
class CollectionSetChooser;
|
|
class G1GCPhaseTimes;
|
|
|
|
// TraceYoungGenTime collects data on _both_ young and mixed evacuation pauses
|
|
// (the latter may contain non-young regions - i.e. regions that are
|
|
// technically in old) while TraceOldGenTime collects data about full GCs.
|
|
class TraceYoungGenTimeData : public CHeapObj<mtGC> {
|
|
private:
|
|
unsigned _young_pause_num;
|
|
unsigned _mixed_pause_num;
|
|
|
|
NumberSeq _all_stop_world_times_ms;
|
|
NumberSeq _all_yield_times_ms;
|
|
|
|
NumberSeq _total;
|
|
NumberSeq _other;
|
|
NumberSeq _root_region_scan_wait;
|
|
NumberSeq _parallel;
|
|
NumberSeq _ext_root_scan;
|
|
NumberSeq _satb_filtering;
|
|
NumberSeq _update_rs;
|
|
NumberSeq _scan_rs;
|
|
NumberSeq _obj_copy;
|
|
NumberSeq _termination;
|
|
NumberSeq _parallel_other;
|
|
NumberSeq _clear_ct;
|
|
|
|
void print_summary(const char* str, const NumberSeq* seq) const;
|
|
void print_summary_sd(const char* str, const NumberSeq* seq) const;
|
|
|
|
public:
|
|
TraceYoungGenTimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
|
|
void record_start_collection(double time_to_stop_the_world_ms);
|
|
void record_yield_time(double yield_time_ms);
|
|
void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
|
|
void increment_young_collection_count();
|
|
void increment_mixed_collection_count();
|
|
void print() const;
|
|
};
|
|
|
|
class TraceOldGenTimeData : public CHeapObj<mtGC> {
|
|
private:
|
|
NumberSeq _all_full_gc_times;
|
|
|
|
public:
|
|
void record_full_collection(double full_gc_time_ms);
|
|
void print() const;
|
|
};
|
|
|
|
// There are three command line options related to the young gen size:
|
|
// NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
|
|
// just a short form for NewSize==MaxNewSize). G1 will use its internal
|
|
// heuristics to calculate the actual young gen size, so these options
|
|
// basically only limit the range within which G1 can pick a young gen
|
|
// size. Also, these are general options taking byte sizes. G1 will
|
|
// internally work with a number of regions instead. So, some rounding
|
|
// will occur.
|
|
//
|
|
// If nothing related to the the young gen size is set on the command
|
|
// line we should allow the young gen to be between G1NewSizePercent
|
|
// and G1MaxNewSizePercent of the heap size. This means that every time
|
|
// the heap size changes, the limits for the young gen size will be
|
|
// recalculated.
|
|
//
|
|
// If only -XX:NewSize is set we should use the specified value as the
|
|
// minimum size for young gen. Still using G1MaxNewSizePercent of the
|
|
// heap as maximum.
|
|
//
|
|
// If only -XX:MaxNewSize is set we should use the specified value as the
|
|
// maximum size for young gen. Still using G1NewSizePercent of the heap
|
|
// as minimum.
|
|
//
|
|
// If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
|
|
// No updates when the heap size changes. There is a special case when
|
|
// NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
|
|
// different heuristic for calculating the collection set when we do mixed
|
|
// collection.
|
|
//
|
|
// If only -XX:NewRatio is set we should use the specified ratio of the heap
|
|
// as both min and max. This will be interpreted as "fixed" just like the
|
|
// NewSize==MaxNewSize case above. But we will update the min and max
|
|
// every time the heap size changes.
|
|
//
|
|
// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
|
|
// combined with either NewSize or MaxNewSize. (A warning message is printed.)
|
|
class G1YoungGenSizer : public CHeapObj<mtGC> {
|
|
private:
|
|
enum SizerKind {
|
|
SizerDefaults,
|
|
SizerNewSizeOnly,
|
|
SizerMaxNewSizeOnly,
|
|
SizerMaxAndNewSize,
|
|
SizerNewRatio
|
|
};
|
|
SizerKind _sizer_kind;
|
|
uint _min_desired_young_length;
|
|
uint _max_desired_young_length;
|
|
bool _adaptive_size;
|
|
uint calculate_default_min_length(uint new_number_of_heap_regions);
|
|
uint calculate_default_max_length(uint new_number_of_heap_regions);
|
|
|
|
// Update the given values for minimum and maximum young gen length in regions
|
|
// given the number of heap regions depending on the kind of sizing algorithm.
|
|
void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
|
|
|
|
public:
|
|
G1YoungGenSizer();
|
|
// Calculate the maximum length of the young gen given the number of regions
|
|
// depending on the sizing algorithm.
|
|
uint max_young_length(uint number_of_heap_regions);
|
|
|
|
void heap_size_changed(uint new_number_of_heap_regions);
|
|
uint min_desired_young_length() {
|
|
return _min_desired_young_length;
|
|
}
|
|
uint max_desired_young_length() {
|
|
return _max_desired_young_length;
|
|
}
|
|
bool adaptive_young_list_length() {
|
|
return _adaptive_size;
|
|
}
|
|
};
|
|
|
|
class G1CollectorPolicy: public CollectorPolicy {
|
|
private:
|
|
// either equal to the number of parallel threads, if ParallelGCThreads
|
|
// has been set, or 1 otherwise
|
|
int _parallel_gc_threads;
|
|
|
|
// The number of GC threads currently active.
|
|
uintx _no_of_gc_threads;
|
|
|
|
enum SomePrivateConstants {
|
|
NumPrevPausesForHeuristics = 10
|
|
};
|
|
|
|
G1MMUTracker* _mmu_tracker;
|
|
|
|
void initialize_alignments();
|
|
void initialize_flags();
|
|
|
|
CollectionSetChooser* _collectionSetChooser;
|
|
|
|
double _full_collection_start_sec;
|
|
uint _cur_collection_pause_used_regions_at_start;
|
|
|
|
// These exclude marking times.
|
|
TruncatedSeq* _recent_gc_times_ms;
|
|
|
|
TruncatedSeq* _concurrent_mark_remark_times_ms;
|
|
TruncatedSeq* _concurrent_mark_cleanup_times_ms;
|
|
|
|
TraceYoungGenTimeData _trace_young_gen_time_data;
|
|
TraceOldGenTimeData _trace_old_gen_time_data;
|
|
|
|
double _stop_world_start;
|
|
|
|
// indicates whether we are in young or mixed GC mode
|
|
bool _gcs_are_young;
|
|
|
|
uint _young_list_target_length;
|
|
uint _young_list_fixed_length;
|
|
|
|
// The max number of regions we can extend the eden by while the GC
|
|
// locker is active. This should be >= _young_list_target_length;
|
|
uint _young_list_max_length;
|
|
|
|
bool _last_gc_was_young;
|
|
|
|
bool _during_marking;
|
|
bool _in_marking_window;
|
|
bool _in_marking_window_im;
|
|
|
|
SurvRateGroup* _short_lived_surv_rate_group;
|
|
SurvRateGroup* _survivor_surv_rate_group;
|
|
// add here any more surv rate groups
|
|
|
|
double _gc_overhead_perc;
|
|
|
|
double _reserve_factor;
|
|
uint _reserve_regions;
|
|
|
|
bool during_marking() {
|
|
return _during_marking;
|
|
}
|
|
|
|
enum PredictionConstants {
|
|
TruncatedSeqLength = 10
|
|
};
|
|
|
|
TruncatedSeq* _alloc_rate_ms_seq;
|
|
double _prev_collection_pause_end_ms;
|
|
|
|
TruncatedSeq* _rs_length_diff_seq;
|
|
TruncatedSeq* _cost_per_card_ms_seq;
|
|
TruncatedSeq* _young_cards_per_entry_ratio_seq;
|
|
TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
|
|
TruncatedSeq* _cost_per_entry_ms_seq;
|
|
TruncatedSeq* _mixed_cost_per_entry_ms_seq;
|
|
TruncatedSeq* _cost_per_byte_ms_seq;
|
|
TruncatedSeq* _constant_other_time_ms_seq;
|
|
TruncatedSeq* _young_other_cost_per_region_ms_seq;
|
|
TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
|
|
|
|
TruncatedSeq* _pending_cards_seq;
|
|
TruncatedSeq* _rs_lengths_seq;
|
|
|
|
TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
|
|
|
|
G1YoungGenSizer* _young_gen_sizer;
|
|
|
|
uint _eden_cset_region_length;
|
|
uint _survivor_cset_region_length;
|
|
uint _old_cset_region_length;
|
|
|
|
void init_cset_region_lengths(uint eden_cset_region_length,
|
|
uint survivor_cset_region_length);
|
|
|
|
uint eden_cset_region_length() { return _eden_cset_region_length; }
|
|
uint survivor_cset_region_length() { return _survivor_cset_region_length; }
|
|
uint old_cset_region_length() { return _old_cset_region_length; }
|
|
|
|
uint _free_regions_at_end_of_collection;
|
|
|
|
size_t _recorded_rs_lengths;
|
|
size_t _max_rs_lengths;
|
|
double _sigma;
|
|
|
|
size_t _rs_lengths_prediction;
|
|
|
|
double sigma() { return _sigma; }
|
|
|
|
// A function that prevents us putting too much stock in small sample
|
|
// sets. Returns a number between 2.0 and 1.0, depending on the number
|
|
// of samples. 5 or more samples yields one; fewer scales linearly from
|
|
// 2.0 at 1 sample to 1.0 at 5.
|
|
double confidence_factor(int samples) {
|
|
if (samples > 4) return 1.0;
|
|
else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
|
|
}
|
|
|
|
double get_new_neg_prediction(TruncatedSeq* seq) {
|
|
return seq->davg() - sigma() * seq->dsd();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
|
|
#endif // PRODUCT
|
|
|
|
void adjust_concurrent_refinement(double update_rs_time,
|
|
double update_rs_processed_buffers,
|
|
double goal_ms);
|
|
|
|
uintx no_of_gc_threads() { return _no_of_gc_threads; }
|
|
void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
|
|
|
|
double _pause_time_target_ms;
|
|
|
|
size_t _pending_cards;
|
|
|
|
public:
|
|
// Accessors
|
|
|
|
void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
|
|
hr->set_eden();
|
|
hr->install_surv_rate_group(_short_lived_surv_rate_group);
|
|
hr->set_young_index_in_cset(young_index_in_cset);
|
|
}
|
|
|
|
void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
|
|
assert(hr->is_survivor(), "pre-condition");
|
|
hr->install_surv_rate_group(_survivor_surv_rate_group);
|
|
hr->set_young_index_in_cset(young_index_in_cset);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
bool verify_young_ages();
|
|
#endif // PRODUCT
|
|
|
|
double get_new_prediction(TruncatedSeq* seq) {
|
|
return MAX2(seq->davg() + sigma() * seq->dsd(),
|
|
seq->davg() * confidence_factor(seq->num()));
|
|
}
|
|
|
|
void record_max_rs_lengths(size_t rs_lengths) {
|
|
_max_rs_lengths = rs_lengths;
|
|
}
|
|
|
|
size_t predict_rs_length_diff() {
|
|
return (size_t) get_new_prediction(_rs_length_diff_seq);
|
|
}
|
|
|
|
double predict_alloc_rate_ms() {
|
|
return get_new_prediction(_alloc_rate_ms_seq);
|
|
}
|
|
|
|
double predict_cost_per_card_ms() {
|
|
return get_new_prediction(_cost_per_card_ms_seq);
|
|
}
|
|
|
|
double predict_rs_update_time_ms(size_t pending_cards) {
|
|
return (double) pending_cards * predict_cost_per_card_ms();
|
|
}
|
|
|
|
double predict_young_cards_per_entry_ratio() {
|
|
return get_new_prediction(_young_cards_per_entry_ratio_seq);
|
|
}
|
|
|
|
double predict_mixed_cards_per_entry_ratio() {
|
|
if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
|
|
return predict_young_cards_per_entry_ratio();
|
|
} else {
|
|
return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
|
|
}
|
|
}
|
|
|
|
size_t predict_young_card_num(size_t rs_length) {
|
|
return (size_t) ((double) rs_length *
|
|
predict_young_cards_per_entry_ratio());
|
|
}
|
|
|
|
size_t predict_non_young_card_num(size_t rs_length) {
|
|
return (size_t) ((double) rs_length *
|
|
predict_mixed_cards_per_entry_ratio());
|
|
}
|
|
|
|
double predict_rs_scan_time_ms(size_t card_num) {
|
|
if (gcs_are_young()) {
|
|
return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
|
|
} else {
|
|
return predict_mixed_rs_scan_time_ms(card_num);
|
|
}
|
|
}
|
|
|
|
double predict_mixed_rs_scan_time_ms(size_t card_num) {
|
|
if (_mixed_cost_per_entry_ms_seq->num() < 3) {
|
|
return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
|
|
} else {
|
|
return (double) (card_num *
|
|
get_new_prediction(_mixed_cost_per_entry_ms_seq));
|
|
}
|
|
}
|
|
|
|
double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
|
|
if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
|
|
return (1.1 * (double) bytes_to_copy) *
|
|
get_new_prediction(_cost_per_byte_ms_seq);
|
|
} else {
|
|
return (double) bytes_to_copy *
|
|
get_new_prediction(_cost_per_byte_ms_during_cm_seq);
|
|
}
|
|
}
|
|
|
|
double predict_object_copy_time_ms(size_t bytes_to_copy) {
|
|
if (_in_marking_window && !_in_marking_window_im) {
|
|
return predict_object_copy_time_ms_during_cm(bytes_to_copy);
|
|
} else {
|
|
return (double) bytes_to_copy *
|
|
get_new_prediction(_cost_per_byte_ms_seq);
|
|
}
|
|
}
|
|
|
|
double predict_constant_other_time_ms() {
|
|
return get_new_prediction(_constant_other_time_ms_seq);
|
|
}
|
|
|
|
double predict_young_other_time_ms(size_t young_num) {
|
|
return (double) young_num *
|
|
get_new_prediction(_young_other_cost_per_region_ms_seq);
|
|
}
|
|
|
|
double predict_non_young_other_time_ms(size_t non_young_num) {
|
|
return (double) non_young_num *
|
|
get_new_prediction(_non_young_other_cost_per_region_ms_seq);
|
|
}
|
|
|
|
double predict_base_elapsed_time_ms(size_t pending_cards);
|
|
double predict_base_elapsed_time_ms(size_t pending_cards,
|
|
size_t scanned_cards);
|
|
size_t predict_bytes_to_copy(HeapRegion* hr);
|
|
double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
|
|
|
|
void set_recorded_rs_lengths(size_t rs_lengths);
|
|
|
|
uint cset_region_length() { return young_cset_region_length() +
|
|
old_cset_region_length(); }
|
|
uint young_cset_region_length() { return eden_cset_region_length() +
|
|
survivor_cset_region_length(); }
|
|
|
|
double predict_survivor_regions_evac_time();
|
|
|
|
void cset_regions_freed() {
|
|
bool propagate = _last_gc_was_young && !_in_marking_window;
|
|
_short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
|
|
_survivor_surv_rate_group->all_surviving_words_recorded(propagate);
|
|
// also call it on any more surv rate groups
|
|
}
|
|
|
|
G1MMUTracker* mmu_tracker() {
|
|
return _mmu_tracker;
|
|
}
|
|
|
|
double max_pause_time_ms() {
|
|
return _mmu_tracker->max_gc_time() * 1000.0;
|
|
}
|
|
|
|
double predict_remark_time_ms() {
|
|
return get_new_prediction(_concurrent_mark_remark_times_ms);
|
|
}
|
|
|
|
double predict_cleanup_time_ms() {
|
|
return get_new_prediction(_concurrent_mark_cleanup_times_ms);
|
|
}
|
|
|
|
// Returns an estimate of the survival rate of the region at yg-age
|
|
// "yg_age".
|
|
double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
|
|
TruncatedSeq* seq = surv_rate_group->get_seq(age);
|
|
if (seq->num() == 0)
|
|
gclog_or_tty->print("BARF! age is %d", age);
|
|
guarantee( seq->num() > 0, "invariant" );
|
|
double pred = get_new_prediction(seq);
|
|
if (pred > 1.0)
|
|
pred = 1.0;
|
|
return pred;
|
|
}
|
|
|
|
double predict_yg_surv_rate(int age) {
|
|
return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
|
|
}
|
|
|
|
double accum_yg_surv_rate_pred(int age) {
|
|
return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
|
|
}
|
|
|
|
private:
|
|
// Statistics kept per GC stoppage, pause or full.
|
|
TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
|
|
|
|
// Add a new GC of the given duration and end time to the record.
|
|
void update_recent_gc_times(double end_time_sec, double elapsed_ms);
|
|
|
|
// The head of the list (via "next_in_collection_set()") representing the
|
|
// current collection set. Set from the incrementally built collection
|
|
// set at the start of the pause.
|
|
HeapRegion* _collection_set;
|
|
|
|
// The number of bytes in the collection set before the pause. Set from
|
|
// the incrementally built collection set at the start of an evacuation
|
|
// pause, and incremented in finalize_cset() when adding old regions
|
|
// (if any) to the collection set.
|
|
size_t _collection_set_bytes_used_before;
|
|
|
|
// The number of bytes copied during the GC.
|
|
size_t _bytes_copied_during_gc;
|
|
|
|
// The associated information that is maintained while the incremental
|
|
// collection set is being built with young regions. Used to populate
|
|
// the recorded info for the evacuation pause.
|
|
|
|
enum CSetBuildType {
|
|
Active, // We are actively building the collection set
|
|
Inactive // We are not actively building the collection set
|
|
};
|
|
|
|
CSetBuildType _inc_cset_build_state;
|
|
|
|
// The head of the incrementally built collection set.
|
|
HeapRegion* _inc_cset_head;
|
|
|
|
// The tail of the incrementally built collection set.
|
|
HeapRegion* _inc_cset_tail;
|
|
|
|
// The number of bytes in the incrementally built collection set.
|
|
// Used to set _collection_set_bytes_used_before at the start of
|
|
// an evacuation pause.
|
|
size_t _inc_cset_bytes_used_before;
|
|
|
|
// Used to record the highest end of heap region in collection set
|
|
HeapWord* _inc_cset_max_finger;
|
|
|
|
// The RSet lengths recorded for regions in the CSet. It is updated
|
|
// by the thread that adds a new region to the CSet. We assume that
|
|
// only one thread can be allocating a new CSet region (currently,
|
|
// it does so after taking the Heap_lock) hence no need to
|
|
// synchronize updates to this field.
|
|
size_t _inc_cset_recorded_rs_lengths;
|
|
|
|
// A concurrent refinement thread periodically samples the young
|
|
// region RSets and needs to update _inc_cset_recorded_rs_lengths as
|
|
// the RSets grow. Instead of having to synchronize updates to that
|
|
// field we accumulate them in this field and add it to
|
|
// _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
|
|
ssize_t _inc_cset_recorded_rs_lengths_diffs;
|
|
|
|
// The predicted elapsed time it will take to collect the regions in
|
|
// the CSet. This is updated by the thread that adds a new region to
|
|
// the CSet. See the comment for _inc_cset_recorded_rs_lengths about
|
|
// MT-safety assumptions.
|
|
double _inc_cset_predicted_elapsed_time_ms;
|
|
|
|
// See the comment for _inc_cset_recorded_rs_lengths_diffs.
|
|
double _inc_cset_predicted_elapsed_time_ms_diffs;
|
|
|
|
// Stash a pointer to the g1 heap.
|
|
G1CollectedHeap* _g1;
|
|
|
|
G1GCPhaseTimes* _phase_times;
|
|
|
|
// The ratio of gc time to elapsed time, computed over recent pauses.
|
|
double _recent_avg_pause_time_ratio;
|
|
|
|
double recent_avg_pause_time_ratio() {
|
|
return _recent_avg_pause_time_ratio;
|
|
}
|
|
|
|
// At the end of a pause we check the heap occupancy and we decide
|
|
// whether we will start a marking cycle during the next pause. If
|
|
// we decide that we want to do that, we will set this parameter to
|
|
// true. So, this parameter will stay true between the end of a
|
|
// pause and the beginning of a subsequent pause (not necessarily
|
|
// the next one, see the comments on the next field) when we decide
|
|
// that we will indeed start a marking cycle and do the initial-mark
|
|
// work.
|
|
volatile bool _initiate_conc_mark_if_possible;
|
|
|
|
// If initiate_conc_mark_if_possible() is set at the beginning of a
|
|
// pause, it is a suggestion that the pause should start a marking
|
|
// cycle by doing the initial-mark work. However, it is possible
|
|
// that the concurrent marking thread is still finishing up the
|
|
// previous marking cycle (e.g., clearing the next marking
|
|
// bitmap). If that is the case we cannot start a new cycle and
|
|
// we'll have to wait for the concurrent marking thread to finish
|
|
// what it is doing. In this case we will postpone the marking cycle
|
|
// initiation decision for the next pause. When we eventually decide
|
|
// to start a cycle, we will set _during_initial_mark_pause which
|
|
// will stay true until the end of the initial-mark pause and it's
|
|
// the condition that indicates that a pause is doing the
|
|
// initial-mark work.
|
|
volatile bool _during_initial_mark_pause;
|
|
|
|
bool _last_young_gc;
|
|
|
|
// This set of variables tracks the collector efficiency, in order to
|
|
// determine whether we should initiate a new marking.
|
|
double _cur_mark_stop_world_time_ms;
|
|
double _mark_remark_start_sec;
|
|
double _mark_cleanup_start_sec;
|
|
|
|
// Update the young list target length either by setting it to the
|
|
// desired fixed value or by calculating it using G1's pause
|
|
// prediction model. If no rs_lengths parameter is passed, predict
|
|
// the RS lengths using the prediction model, otherwise use the
|
|
// given rs_lengths as the prediction.
|
|
void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
|
|
|
|
// Calculate and return the minimum desired young list target
|
|
// length. This is the minimum desired young list length according
|
|
// to the user's inputs.
|
|
uint calculate_young_list_desired_min_length(uint base_min_length);
|
|
|
|
// Calculate and return the maximum desired young list target
|
|
// length. This is the maximum desired young list length according
|
|
// to the user's inputs.
|
|
uint calculate_young_list_desired_max_length();
|
|
|
|
// Calculate and return the maximum young list target length that
|
|
// can fit into the pause time goal. The parameters are: rs_lengths
|
|
// represent the prediction of how large the young RSet lengths will
|
|
// be, base_min_length is the already existing number of regions in
|
|
// the young list, min_length and max_length are the desired min and
|
|
// max young list length according to the user's inputs.
|
|
uint calculate_young_list_target_length(size_t rs_lengths,
|
|
uint base_min_length,
|
|
uint desired_min_length,
|
|
uint desired_max_length);
|
|
|
|
// Calculate and return chunk size (in number of regions) for parallel
|
|
// concurrent mark cleanup.
|
|
uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions);
|
|
|
|
// Check whether a given young length (young_length) fits into the
|
|
// given target pause time and whether the prediction for the amount
|
|
// of objects to be copied for the given length will fit into the
|
|
// given free space (expressed by base_free_regions). It is used by
|
|
// calculate_young_list_target_length().
|
|
bool predict_will_fit(uint young_length, double base_time_ms,
|
|
uint base_free_regions, double target_pause_time_ms);
|
|
|
|
// Calculate the minimum number of old regions we'll add to the CSet
|
|
// during a mixed GC.
|
|
uint calc_min_old_cset_length();
|
|
|
|
// Calculate the maximum number of old regions we'll add to the CSet
|
|
// during a mixed GC.
|
|
uint calc_max_old_cset_length();
|
|
|
|
// Returns the given amount of uncollected reclaimable space
|
|
// as a percentage of the current heap capacity.
|
|
double reclaimable_bytes_perc(size_t reclaimable_bytes);
|
|
|
|
public:
|
|
|
|
G1CollectorPolicy();
|
|
|
|
virtual G1CollectorPolicy* as_g1_policy() { return this; }
|
|
|
|
virtual CollectorPolicy::Name kind() {
|
|
return CollectorPolicy::G1CollectorPolicyKind;
|
|
}
|
|
|
|
G1GCPhaseTimes* phase_times() const { return _phase_times; }
|
|
|
|
// Check the current value of the young list RSet lengths and
|
|
// compare it against the last prediction. If the current value is
|
|
// higher, recalculate the young list target length prediction.
|
|
void revise_young_list_target_length_if_necessary();
|
|
|
|
// This should be called after the heap is resized.
|
|
void record_new_heap_size(uint new_number_of_regions);
|
|
|
|
void init();
|
|
|
|
// Create jstat counters for the policy.
|
|
virtual void initialize_gc_policy_counters();
|
|
|
|
virtual HeapWord* mem_allocate_work(size_t size,
|
|
bool is_tlab,
|
|
bool* gc_overhead_limit_was_exceeded);
|
|
|
|
// This method controls how a collector handles one or more
|
|
// of its generations being fully allocated.
|
|
virtual HeapWord* satisfy_failed_allocation(size_t size,
|
|
bool is_tlab);
|
|
|
|
BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
|
|
|
|
bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
|
|
|
|
// Record the start and end of an evacuation pause.
|
|
void record_collection_pause_start(double start_time_sec);
|
|
void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
|
|
|
|
// Record the start and end of a full collection.
|
|
void record_full_collection_start();
|
|
void record_full_collection_end();
|
|
|
|
// Must currently be called while the world is stopped.
|
|
void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
|
|
|
|
// Record start and end of remark.
|
|
void record_concurrent_mark_remark_start();
|
|
void record_concurrent_mark_remark_end();
|
|
|
|
// Record start, end, and completion of cleanup.
|
|
void record_concurrent_mark_cleanup_start();
|
|
void record_concurrent_mark_cleanup_end(uint n_workers);
|
|
void record_concurrent_mark_cleanup_completed();
|
|
|
|
// Records the information about the heap size for reporting in
|
|
// print_detailed_heap_transition
|
|
void record_heap_size_info_at_start(bool full);
|
|
|
|
// Print heap sizing transition (with less and more detail).
|
|
|
|
void print_heap_transition(size_t bytes_before);
|
|
void print_heap_transition();
|
|
void print_detailed_heap_transition(bool full = false);
|
|
|
|
void record_stop_world_start();
|
|
void record_concurrent_pause();
|
|
|
|
// Record how much space we copied during a GC. This is typically
|
|
// called when a GC alloc region is being retired.
|
|
void record_bytes_copied_during_gc(size_t bytes) {
|
|
_bytes_copied_during_gc += bytes;
|
|
}
|
|
|
|
// The amount of space we copied during a GC.
|
|
size_t bytes_copied_during_gc() {
|
|
return _bytes_copied_during_gc;
|
|
}
|
|
|
|
// Determine whether there are candidate regions so that the
|
|
// next GC should be mixed. The two action strings are used
|
|
// in the ergo output when the method returns true or false.
|
|
bool next_gc_should_be_mixed(const char* true_action_str,
|
|
const char* false_action_str);
|
|
|
|
// Choose a new collection set. Marks the chosen regions as being
|
|
// "in_collection_set", and links them together. The head and number of
|
|
// the collection set are available via access methods.
|
|
void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
|
|
|
|
// The head of the list (via "next_in_collection_set()") representing the
|
|
// current collection set.
|
|
HeapRegion* collection_set() { return _collection_set; }
|
|
|
|
void clear_collection_set() { _collection_set = NULL; }
|
|
|
|
// Add old region "hr" to the CSet.
|
|
void add_old_region_to_cset(HeapRegion* hr);
|
|
|
|
// Incremental CSet Support
|
|
|
|
// The head of the incrementally built collection set.
|
|
HeapRegion* inc_cset_head() { return _inc_cset_head; }
|
|
|
|
// The tail of the incrementally built collection set.
|
|
HeapRegion* inc_set_tail() { return _inc_cset_tail; }
|
|
|
|
// Initialize incremental collection set info.
|
|
void start_incremental_cset_building();
|
|
|
|
// Perform any final calculations on the incremental CSet fields
|
|
// before we can use them.
|
|
void finalize_incremental_cset_building();
|
|
|
|
void clear_incremental_cset() {
|
|
_inc_cset_head = NULL;
|
|
_inc_cset_tail = NULL;
|
|
}
|
|
|
|
// Stop adding regions to the incremental collection set
|
|
void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
|
|
|
|
// Add information about hr to the aggregated information for the
|
|
// incrementally built collection set.
|
|
void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
|
|
|
|
// Update information about hr in the aggregated information for
|
|
// the incrementally built collection set.
|
|
void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
|
|
|
|
private:
|
|
// Update the incremental cset information when adding a region
|
|
// (should not be called directly).
|
|
void add_region_to_incremental_cset_common(HeapRegion* hr);
|
|
|
|
public:
|
|
// Add hr to the LHS of the incremental collection set.
|
|
void add_region_to_incremental_cset_lhs(HeapRegion* hr);
|
|
|
|
// Add hr to the RHS of the incremental collection set.
|
|
void add_region_to_incremental_cset_rhs(HeapRegion* hr);
|
|
|
|
#ifndef PRODUCT
|
|
void print_collection_set(HeapRegion* list_head, outputStream* st);
|
|
#endif // !PRODUCT
|
|
|
|
bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
|
|
void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
|
|
void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
|
|
|
|
bool during_initial_mark_pause() { return _during_initial_mark_pause; }
|
|
void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
|
|
void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
|
|
|
|
// This sets the initiate_conc_mark_if_possible() flag to start a
|
|
// new cycle, as long as we are not already in one. It's best if it
|
|
// is called during a safepoint when the test whether a cycle is in
|
|
// progress or not is stable.
|
|
bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
|
|
|
|
// This is called at the very beginning of an evacuation pause (it
|
|
// has to be the first thing that the pause does). If
|
|
// initiate_conc_mark_if_possible() is true, and the concurrent
|
|
// marking thread has completed its work during the previous cycle,
|
|
// it will set during_initial_mark_pause() to so that the pause does
|
|
// the initial-mark work and start a marking cycle.
|
|
void decide_on_conc_mark_initiation();
|
|
|
|
// If an expansion would be appropriate, because recent GC overhead had
|
|
// exceeded the desired limit, return an amount to expand by.
|
|
virtual size_t expansion_amount();
|
|
|
|
// Print tracing information.
|
|
void print_tracing_info() const;
|
|
|
|
// Print stats on young survival ratio
|
|
void print_yg_surv_rate_info() const;
|
|
|
|
void finished_recalculating_age_indexes(bool is_survivors) {
|
|
if (is_survivors) {
|
|
_survivor_surv_rate_group->finished_recalculating_age_indexes();
|
|
} else {
|
|
_short_lived_surv_rate_group->finished_recalculating_age_indexes();
|
|
}
|
|
// do that for any other surv rate groups
|
|
}
|
|
|
|
size_t young_list_target_length() const { return _young_list_target_length; }
|
|
|
|
bool is_young_list_full();
|
|
|
|
bool can_expand_young_list();
|
|
|
|
uint young_list_max_length() {
|
|
return _young_list_max_length;
|
|
}
|
|
|
|
bool gcs_are_young() {
|
|
return _gcs_are_young;
|
|
}
|
|
void set_gcs_are_young(bool gcs_are_young) {
|
|
_gcs_are_young = gcs_are_young;
|
|
}
|
|
|
|
bool adaptive_young_list_length() {
|
|
return _young_gen_sizer->adaptive_young_list_length();
|
|
}
|
|
|
|
private:
|
|
//
|
|
// Survivor regions policy.
|
|
//
|
|
|
|
// Current tenuring threshold, set to 0 if the collector reaches the
|
|
// maximum amount of survivors regions.
|
|
uint _tenuring_threshold;
|
|
|
|
// The limit on the number of regions allocated for survivors.
|
|
uint _max_survivor_regions;
|
|
|
|
// For reporting purposes.
|
|
// The value of _heap_bytes_before_gc is also used to calculate
|
|
// the cost of copying.
|
|
|
|
size_t _eden_used_bytes_before_gc; // Eden occupancy before GC
|
|
size_t _survivor_used_bytes_before_gc; // Survivor occupancy before GC
|
|
size_t _heap_used_bytes_before_gc; // Heap occupancy before GC
|
|
size_t _metaspace_used_bytes_before_gc; // Metaspace occupancy before GC
|
|
|
|
size_t _eden_capacity_bytes_before_gc; // Eden capacity before GC
|
|
size_t _heap_capacity_bytes_before_gc; // Heap capacity before GC
|
|
|
|
// The amount of survivor regions after a collection.
|
|
uint _recorded_survivor_regions;
|
|
// List of survivor regions.
|
|
HeapRegion* _recorded_survivor_head;
|
|
HeapRegion* _recorded_survivor_tail;
|
|
|
|
ageTable _survivors_age_table;
|
|
|
|
public:
|
|
uint tenuring_threshold() const { return _tenuring_threshold; }
|
|
|
|
static const uint REGIONS_UNLIMITED = (uint) -1;
|
|
|
|
uint max_regions(InCSetState dest) {
|
|
switch (dest.value()) {
|
|
case InCSetState::Young:
|
|
return _max_survivor_regions;
|
|
case InCSetState::Old:
|
|
return REGIONS_UNLIMITED;
|
|
default:
|
|
assert(false, err_msg("Unknown dest state: " CSETSTATE_FORMAT, dest.value()));
|
|
break;
|
|
}
|
|
// keep some compilers happy
|
|
return 0;
|
|
}
|
|
|
|
void note_start_adding_survivor_regions() {
|
|
_survivor_surv_rate_group->start_adding_regions();
|
|
}
|
|
|
|
void note_stop_adding_survivor_regions() {
|
|
_survivor_surv_rate_group->stop_adding_regions();
|
|
}
|
|
|
|
void record_survivor_regions(uint regions,
|
|
HeapRegion* head,
|
|
HeapRegion* tail) {
|
|
_recorded_survivor_regions = regions;
|
|
_recorded_survivor_head = head;
|
|
_recorded_survivor_tail = tail;
|
|
}
|
|
|
|
uint recorded_survivor_regions() {
|
|
return _recorded_survivor_regions;
|
|
}
|
|
|
|
void record_thread_age_table(ageTable* age_table) {
|
|
_survivors_age_table.merge_par(age_table);
|
|
}
|
|
|
|
void update_max_gc_locker_expansion();
|
|
|
|
// Calculates survivor space parameters.
|
|
void update_survivors_policy();
|
|
|
|
virtual void post_heap_initialize();
|
|
};
|
|
|
|
// This should move to some place more general...
|
|
|
|
// If we have "n" measurements, and we've kept track of their "sum" and the
|
|
// "sum_of_squares" of the measurements, this returns the variance of the
|
|
// sequence.
|
|
inline double variance(int n, double sum_of_squares, double sum) {
|
|
double n_d = (double)n;
|
|
double avg = sum/n_d;
|
|
return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
|
|
}
|
|
|
|
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
|