2021-11-05 17:04:39 +00:00

821 lines
29 KiB
C++

/*
* Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/os.hpp"
#include "runtime/thread.hpp"
#include "services/memTracker.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include "utilities/ostream.hpp"
#include "utilities/align.hpp"
#include "unittest.hpp"
static size_t small_page_size() {
return os::vm_page_size();
}
static size_t large_page_size() {
const size_t large_page_size_example = 4 * M;
return os::page_size_for_region_aligned(large_page_size_example, 1);
}
TEST_VM(os, page_size_for_region) {
size_t large_page_example = 4 * M;
size_t large_page = os::page_size_for_region_aligned(large_page_example, 1);
size_t small_page = os::vm_page_size();
if (large_page > small_page) {
size_t num_small_in_large = large_page / small_page;
size_t page = os::page_size_for_region_aligned(large_page, num_small_in_large);
ASSERT_EQ(page, small_page) << "Did not get a small page";
}
}
TEST_VM(os, page_size_for_region_aligned) {
if (UseLargePages) {
const size_t small_page = small_page_size();
const size_t large_page = large_page_size();
if (large_page > small_page) {
size_t num_small_pages_in_large = large_page / small_page;
size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
ASSERT_EQ(page, small_page);
}
}
}
TEST_VM(os, page_size_for_region_alignment) {
if (UseLargePages) {
const size_t small_page = small_page_size();
const size_t large_page = large_page_size();
if (large_page > small_page) {
const size_t unaligned_region = large_page + 17;
size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
ASSERT_EQ(page, small_page);
const size_t num_pages = 5;
const size_t aligned_region = large_page * num_pages;
page = os::page_size_for_region_aligned(aligned_region, num_pages);
ASSERT_EQ(page, large_page);
}
}
}
TEST_VM(os, page_size_for_region_unaligned) {
if (UseLargePages) {
// Given exact page size, should return that page size.
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
size_t actual = os::page_size_for_region_unaligned(s, 1);
ASSERT_EQ(s, actual);
}
// Given slightly larger size than a page size, return the page size.
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
size_t actual = os::page_size_for_region_unaligned(s + 17, 1);
ASSERT_EQ(s, actual);
}
// Given a slightly smaller size than a page size,
// return the next smaller page size.
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
const size_t expected = os::page_sizes().next_smaller(s);
if (expected != 0) {
size_t actual = os::page_size_for_region_unaligned(s - 17, 1);
ASSERT_EQ(actual, expected);
}
}
// Return small page size for values less than a small page.
size_t small_page = os::page_sizes().smallest();
size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
ASSERT_EQ(small_page, actual);
}
}
TEST(os, test_random) {
const double m = 2147483647;
double mean = 0.0, variance = 0.0, t;
const int reps = 10000;
unsigned int seed = 1;
// tty->print_cr("seed %ld for %ld repeats...", seed, reps);
int num;
for (int k = 0; k < reps; k++) {
// Use next_random so the calculation is stateless.
num = seed = os::next_random(seed);
double u = (double)num / m;
ASSERT_TRUE(u >= 0.0 && u <= 1.0) << "bad random number!";
// calculate mean and variance of the random sequence
mean += u;
variance += (u*u);
}
mean /= reps;
variance /= (reps - 1);
ASSERT_EQ(num, 1043618065) << "bad seed";
// tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
int intmean = mean*100;
ASSERT_EQ(intmean, 50);
// tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
int intvariance = variance*100;
ASSERT_EQ(intvariance, 33);
const double eps = 0.0001;
t = fabsd(mean - 0.5018);
ASSERT_LT(t, eps) << "bad mean";
t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
ASSERT_LT(t, eps) << "bad variance";
}
#ifdef ASSERT
TEST_VM_ASSERT_MSG(os, page_size_for_region_with_zero_min_pages,
"assert.min_pages > 0. failed: sanity") {
size_t region_size = 16 * os::vm_page_size();
os::page_size_for_region_aligned(region_size, 0); // should assert
}
#endif
static void do_test_print_hex_dump(address addr, size_t len, int unitsize, const char* expected) {
char buf[256];
buf[0] = '\0';
stringStream ss(buf, sizeof(buf));
os::print_hex_dump(&ss, addr, addr + len, unitsize);
// tty->print_cr("expected: %s", expected);
// tty->print_cr("result: %s", buf);
ASSERT_NE(strstr(buf, expected), (char*)NULL);
}
TEST_VM(os, test_print_hex_dump) {
const char* pattern [4] = {
#ifdef VM_LITTLE_ENDIAN
"00 01 02 03 04 05 06 07",
"0100 0302 0504 0706",
"03020100 07060504",
"0706050403020100"
#else
"00 01 02 03 04 05 06 07",
"0001 0203 0405 0607",
"00010203 04050607",
"0001020304050607"
#endif
};
const char* pattern_not_readable [4] = {
"?? ?? ?? ?? ?? ?? ?? ??",
"???? ???? ???? ????",
"???????? ????????",
"????????????????"
};
// On AIX, zero page is readable.
address unreadable =
#ifdef AIX
(address) 0xFFFFFFFFFFFF0000ULL;
#else
(address) 0
#endif
;
ResourceMark rm;
char buf[64];
stringStream ss(buf, sizeof(buf));
outputStream* out = &ss;
// outputStream* out = tty; // enable for printout
// Test dumping unreadable memory
// Exclude test for Windows for now, since it needs SEH handling to work which cannot be
// guaranteed when we call directly into VM code. (see JDK-8220220)
#ifndef _WIN32
do_test_print_hex_dump(unreadable, 100, 1, pattern_not_readable[0]);
do_test_print_hex_dump(unreadable, 100, 2, pattern_not_readable[1]);
do_test_print_hex_dump(unreadable, 100, 4, pattern_not_readable[2]);
do_test_print_hex_dump(unreadable, 100, 8, pattern_not_readable[3]);
#endif
// Test dumping readable memory
address arr = (address)os::malloc(100, mtInternal);
for (int c = 0; c < 100; c++) {
arr[c] = c;
}
// properly aligned
do_test_print_hex_dump(arr, 100, 1, pattern[0]);
do_test_print_hex_dump(arr, 100, 2, pattern[1]);
do_test_print_hex_dump(arr, 100, 4, pattern[2]);
do_test_print_hex_dump(arr, 100, 8, pattern[3]);
// Not properly aligned. Should automatically down-align by unitsize
do_test_print_hex_dump(arr + 1, 100, 2, pattern[1]);
do_test_print_hex_dump(arr + 1, 100, 4, pattern[2]);
do_test_print_hex_dump(arr + 1, 100, 8, pattern[3]);
os::free(arr);
}
//////////////////////////////////////////////////////////////////////////////
// Test os::vsnprintf and friends.
static void check_snprintf_result(int expected, size_t limit, int actual, bool expect_count) {
if (expect_count || ((size_t)expected < limit)) {
ASSERT_EQ(expected, actual);
} else {
ASSERT_GT(0, actual);
}
}
// PrintFn is expected to be int (*)(char*, size_t, const char*, ...).
// But jio_snprintf is a C-linkage function with that signature, which
// has a different type on some platforms (like Solaris).
template<typename PrintFn>
static void test_snprintf(PrintFn pf, bool expect_count) {
const char expected[] = "abcdefghijklmnopqrstuvwxyz";
const int expected_len = sizeof(expected) - 1;
const size_t padding_size = 10;
char buffer[2 * (sizeof(expected) + padding_size)];
char check_buffer[sizeof(buffer)];
const char check_char = '1'; // Something not in expected.
memset(check_buffer, check_char, sizeof(check_buffer));
const size_t sizes_to_test[] = {
sizeof(buffer) - padding_size, // Fits, with plenty of space to spare.
sizeof(buffer)/2, // Fits, with space to spare.
sizeof(buffer)/4, // Doesn't fit.
sizeof(expected) + padding_size + 1, // Fits, with a little room to spare
sizeof(expected) + padding_size, // Fits exactly.
sizeof(expected) + padding_size - 1, // Doesn't quite fit.
2, // One char + terminating NUL.
1, // Only space for terminating NUL.
0 }; // No space at all.
for (unsigned i = 0; i < ARRAY_SIZE(sizes_to_test); ++i) {
memset(buffer, check_char, sizeof(buffer)); // To catch stray writes.
size_t test_size = sizes_to_test[i];
ResourceMark rm;
stringStream s;
s.print("test_size: " SIZE_FORMAT, test_size);
SCOPED_TRACE(s.as_string());
size_t prefix_size = padding_size;
guarantee(test_size <= (sizeof(buffer) - prefix_size), "invariant");
size_t write_size = MIN2(sizeof(expected), test_size);
size_t suffix_size = sizeof(buffer) - prefix_size - write_size;
char* write_start = buffer + prefix_size;
char* write_end = write_start + write_size;
int result = pf(write_start, test_size, "%s", expected);
check_snprintf_result(expected_len, test_size, result, expect_count);
// Verify expected output.
if (test_size > 0) {
ASSERT_EQ(0, strncmp(write_start, expected, write_size - 1));
// Verify terminating NUL of output.
ASSERT_EQ('\0', write_start[write_size - 1]);
} else {
guarantee(test_size == 0, "invariant");
guarantee(write_size == 0, "invariant");
guarantee(prefix_size + suffix_size == sizeof(buffer), "invariant");
guarantee(write_start == write_end, "invariant");
}
// Verify no scribbling on prefix or suffix.
ASSERT_EQ(0, strncmp(buffer, check_buffer, prefix_size));
ASSERT_EQ(0, strncmp(write_end, check_buffer, suffix_size));
}
// Special case of 0-length buffer with empty (except for terminator) output.
check_snprintf_result(0, 0, pf(NULL, 0, "%s", ""), expect_count);
check_snprintf_result(0, 0, pf(NULL, 0, ""), expect_count);
}
// This is probably equivalent to os::snprintf, but we're being
// explicit about what we're testing here.
static int vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
int result = os::vsnprintf(buf, len, fmt, args);
va_end(args);
return result;
}
TEST_VM(os, vsnprintf) {
test_snprintf(vsnprintf_wrapper, true);
}
TEST_VM(os, snprintf) {
test_snprintf(os::snprintf, true);
}
// These are declared in jvm.h; test here, with related functions.
extern "C" {
int jio_vsnprintf(char*, size_t, const char*, va_list);
int jio_snprintf(char*, size_t, const char*, ...);
}
// This is probably equivalent to jio_snprintf, but we're being
// explicit about what we're testing here.
static int jio_vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
int result = jio_vsnprintf(buf, len, fmt, args);
va_end(args);
return result;
}
TEST_VM(os, jio_vsnprintf) {
test_snprintf(jio_vsnprintf_wrapper, false);
}
TEST_VM(os, jio_snprintf) {
test_snprintf(jio_snprintf, false);
}
// Test that os::release_memory() can deal with areas containing multiple mappings.
#define PRINT_MAPPINGS(s) { tty->print_cr("%s", s); os::print_memory_mappings((char*)p, total_range_len, tty); }
//#define PRINT_MAPPINGS
#ifndef _AIX // JDK-8257041
// Reserve an area consisting of multiple mappings
// (from multiple calls to os::reserve_memory)
static address reserve_multiple(int num_stripes, size_t stripe_len) {
assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity");
size_t total_range_len = num_stripes * stripe_len;
// Reserve a large contiguous area to get the address space...
address p = (address)os::reserve_memory(total_range_len);
EXPECT_NE(p, (address)NULL);
// .. release it...
EXPECT_TRUE(os::release_memory((char*)p, total_range_len));
// ... re-reserve in the same spot multiple areas...
for (int stripe = 0; stripe < num_stripes; stripe++) {
address q = p + (stripe * stripe_len);
// Commit, alternatingly with or without exec permission,
// to prevent kernel from folding these mappings.
const bool executable = stripe % 2 == 0;
q = (address)os::attempt_reserve_memory_at((char*)q, stripe_len, executable);
EXPECT_NE(q, (address)NULL);
EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, executable));
}
return p;
}
#endif // !AIX
// Reserve an area with a single call to os::reserve_memory,
// with multiple committed and uncommitted regions
static address reserve_one_commit_multiple(int num_stripes, size_t stripe_len) {
assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity");
size_t total_range_len = num_stripes * stripe_len;
address p = (address)os::reserve_memory(total_range_len);
EXPECT_NE(p, (address)NULL);
for (int stripe = 0; stripe < num_stripes; stripe++) {
address q = p + (stripe * stripe_len);
if (stripe % 2 == 0) {
EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, false));
}
}
return p;
}
#ifdef _WIN32
// Release a range allocated with reserve_multiple carefully, to not trip mapping
// asserts on Windows in os::release_memory()
static void carefully_release_multiple(address start, int num_stripes, size_t stripe_len) {
for (int stripe = 0; stripe < num_stripes; stripe++) {
address q = start + (stripe * stripe_len);
EXPECT_TRUE(os::release_memory((char*)q, stripe_len));
}
}
struct NUMASwitcher {
const bool _b;
NUMASwitcher(bool v): _b(UseNUMAInterleaving) { UseNUMAInterleaving = v; }
~NUMASwitcher() { UseNUMAInterleaving = _b; }
};
#endif
#ifndef _AIX // JDK-8257041
#if defined(__APPLE__) && !defined(AARCH64) // See JDK-8267341.
TEST_VM(os, DISABLED_release_multi_mappings) {
#else
TEST_VM(os, release_multi_mappings) {
#endif
// With NMT enabled, this will trigger JDK-8263464. For now disable the test if NMT=on.
if (MemTracker::tracking_level() > NMT_off) {
return;
}
// Test that we can release an area created with multiple reservation calls
const size_t stripe_len = 4 * M;
const int num_stripes = 4;
const size_t total_range_len = stripe_len * num_stripes;
// reserve address space...
address p = reserve_multiple(num_stripes, stripe_len);
ASSERT_NE(p, (address)NULL);
PRINT_MAPPINGS("A");
// .. release it...
{
// On Windows, use UseNUMAInterleaving=1 which makes
// os::release_memory accept multi-map-ranges.
// Otherwise we would assert (see below for death test).
WINDOWS_ONLY(NUMASwitcher b(true);)
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
}
PRINT_MAPPINGS("B");
// re-reserve it. This should work unless release failed.
address p2 = (address)os::attempt_reserve_memory_at((char*)p, total_range_len);
ASSERT_EQ(p2, p);
PRINT_MAPPINGS("C");
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
}
#endif // !AIX
#ifdef _WIN32
// On Windows, test that we recognize bad ranges.
// On debug this would assert. Test that too.
// On other platforms, we are unable to recognize bad ranges.
#ifdef ASSERT
TEST_VM_ASSERT_MSG(os, release_bad_ranges, ".*bad release") {
#else
TEST_VM(os, release_bad_ranges) {
#endif
char* p = os::reserve_memory(4 * M);
ASSERT_NE(p, (char*)NULL);
// Release part of range
ASSERT_FALSE(os::release_memory(p, M));
// Release part of range
ASSERT_FALSE(os::release_memory(p + M, M));
// Release more than the range (explicitly switch off NUMA here
// to make os::release_memory() test more strictly and to not
// accidentally release neighbors)
{
NUMASwitcher b(false);
ASSERT_FALSE(os::release_memory(p, M * 5));
ASSERT_FALSE(os::release_memory(p - M, M * 5));
ASSERT_FALSE(os::release_memory(p - M, M * 6));
}
ASSERT_TRUE(os::release_memory(p, 4 * M)); // Release for real
ASSERT_FALSE(os::release_memory(p, 4 * M)); // Again, should fail
}
#endif // _WIN32
TEST_VM(os, release_one_mapping_multi_commits) {
// Test that we can release an area consisting of interleaved
// committed and uncommitted regions:
const size_t stripe_len = 4 * M;
const int num_stripes = 4;
const size_t total_range_len = stripe_len * num_stripes;
// reserve address space...
address p = reserve_one_commit_multiple(num_stripes, stripe_len);
ASSERT_NE(p, (address)NULL);
PRINT_MAPPINGS("A");
// .. release it...
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
PRINT_MAPPINGS("B");
// re-reserve it. This should work unless release failed.
address p2 = (address)os::attempt_reserve_memory_at((char*)p, total_range_len);
ASSERT_EQ(p2, p);
PRINT_MAPPINGS("C");
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
PRINT_MAPPINGS("D");
}
static void test_show_mappings(address start, size_t size) {
// Note: should this overflow, thats okay. stream will silently truncate. Does not matter for the test.
const size_t buflen = 4 * M;
char* buf = NEW_C_HEAP_ARRAY(char, buflen, mtInternal);
buf[0] = '\0';
stringStream ss(buf, buflen);
if (start != nullptr) {
os::print_memory_mappings((char*)start, size, &ss);
} else {
os::print_memory_mappings(&ss); // prints full address space
}
// Still an empty implementation on MacOS and AIX
#if defined(LINUX) || defined(_WIN32)
EXPECT_NE(buf[0], '\0');
#endif
// buf[buflen - 1] = '\0';
// tty->print_raw(buf);
FREE_C_HEAP_ARRAY(char, buf);
}
TEST_VM(os, show_mappings_small_range) {
test_show_mappings((address)0x100000, 2 * G);
}
TEST_VM(os, show_mappings_full_range) {
// Reserve a small range and fill it with a marker string, should show up
// on implementations displaying range snippets
char* p = os::reserve_memory(1 * M, false, mtInternal);
if (p != nullptr) {
if (os::commit_memory(p, 1 * M, false)) {
strcpy(p, "ABCDEFGHIJKLMNOPQRSTUVWXYZ");
}
}
test_show_mappings(nullptr, 0);
if (p != nullptr) {
os::release_memory(p, 1 * M);
}
}
#ifdef _WIN32
// Test os::win32::find_mapping
TEST_VM(os, find_mapping_simple) {
const size_t total_range_len = 4 * M;
os::win32::mapping_info_t mapping_info;
// Some obvious negatives
ASSERT_FALSE(os::win32::find_mapping((address)NULL, &mapping_info));
ASSERT_FALSE(os::win32::find_mapping((address)4711, &mapping_info));
// A simple allocation
{
address p = (address)os::reserve_memory(total_range_len);
ASSERT_NE(p, (address)NULL);
PRINT_MAPPINGS("A");
for (size_t offset = 0; offset < total_range_len; offset += 4711) {
ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info));
ASSERT_EQ(mapping_info.base, p);
ASSERT_EQ(mapping_info.regions, 1);
ASSERT_EQ(mapping_info.size, total_range_len);
ASSERT_EQ(mapping_info.committed_size, 0);
}
// Test just outside the allocation
if (os::win32::find_mapping(p - 1, &mapping_info)) {
ASSERT_NE(mapping_info.base, p);
}
if (os::win32::find_mapping(p + total_range_len, &mapping_info)) {
ASSERT_NE(mapping_info.base, p);
}
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
PRINT_MAPPINGS("B");
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
}
}
TEST_VM(os, find_mapping_2) {
// A more complex allocation, consisting of multiple regions.
const size_t total_range_len = 4 * M;
os::win32::mapping_info_t mapping_info;
const size_t stripe_len = total_range_len / 4;
address p = reserve_one_commit_multiple(4, stripe_len);
ASSERT_NE(p, (address)NULL);
PRINT_MAPPINGS("A");
for (size_t offset = 0; offset < total_range_len; offset += 4711) {
ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info));
ASSERT_EQ(mapping_info.base, p);
ASSERT_EQ(mapping_info.regions, 4);
ASSERT_EQ(mapping_info.size, total_range_len);
ASSERT_EQ(mapping_info.committed_size, total_range_len / 2);
}
// Test just outside the allocation
if (os::win32::find_mapping(p - 1, &mapping_info)) {
ASSERT_NE(mapping_info.base, p);
}
if (os::win32::find_mapping(p + total_range_len, &mapping_info)) {
ASSERT_NE(mapping_info.base, p);
}
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
PRINT_MAPPINGS("B");
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
}
TEST_VM(os, find_mapping_3) {
const size_t total_range_len = 4 * M;
os::win32::mapping_info_t mapping_info;
// A more complex case, consisting of multiple allocations.
{
const size_t stripe_len = total_range_len / 4;
address p = reserve_multiple(4, stripe_len);
ASSERT_NE(p, (address)NULL);
PRINT_MAPPINGS("E");
for (int stripe = 0; stripe < 4; stripe++) {
ASSERT_TRUE(os::win32::find_mapping(p + (stripe * stripe_len), &mapping_info));
ASSERT_EQ(mapping_info.base, p + (stripe * stripe_len));
ASSERT_EQ(mapping_info.regions, 1);
ASSERT_EQ(mapping_info.size, stripe_len);
ASSERT_EQ(mapping_info.committed_size, stripe_len);
}
carefully_release_multiple(p, 4, stripe_len);
PRINT_MAPPINGS("F");
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
}
}
#endif // _WIN32
TEST_VM(os, os_pagesizes) {
ASSERT_EQ(os::min_page_size(), 4 * K);
ASSERT_LE(os::min_page_size(), (size_t)os::vm_page_size());
// The vm_page_size should be the smallest in the set of allowed page sizes
// (contract says "default" page size but a lot of code actually assumes
// this to be the smallest page size; notable, deliberate exception is
// AIX which can have smaller page sizes but those are not part of the
// page_sizes() set).
ASSERT_EQ(os::page_sizes().smallest(), (size_t)os::vm_page_size());
// The large page size, if it exists, shall be part of the set
if (UseLargePages) {
ASSERT_GT(os::large_page_size(), (size_t)os::vm_page_size());
ASSERT_TRUE(os::page_sizes().contains(os::large_page_size()));
}
os::page_sizes().print_on(tty);
tty->cr();
}
static const int min_page_size_log2 = exact_log2(os::min_page_size());
static const int max_page_size_log2 = (int)BitsPerWord;
TEST_VM(os, pagesizes_test_range) {
for (int bit = min_page_size_log2; bit < max_page_size_log2; bit++) {
for (int bit2 = min_page_size_log2; bit2 < max_page_size_log2; bit2++) {
const size_t s = (size_t)1 << bit;
const size_t s2 = (size_t)1 << bit2;
os::PageSizes pss;
ASSERT_EQ((size_t)0, pss.smallest());
ASSERT_EQ((size_t)0, pss.largest());
// one size set
pss.add(s);
ASSERT_TRUE(pss.contains(s));
ASSERT_EQ(s, pss.smallest());
ASSERT_EQ(s, pss.largest());
ASSERT_EQ(pss.next_larger(s), (size_t)0);
ASSERT_EQ(pss.next_smaller(s), (size_t)0);
// two set
pss.add(s2);
ASSERT_TRUE(pss.contains(s2));
if (s2 < s) {
ASSERT_EQ(s2, pss.smallest());
ASSERT_EQ(s, pss.largest());
ASSERT_EQ(pss.next_larger(s2), (size_t)s);
ASSERT_EQ(pss.next_smaller(s2), (size_t)0);
ASSERT_EQ(pss.next_larger(s), (size_t)0);
ASSERT_EQ(pss.next_smaller(s), (size_t)s2);
} else if (s2 > s) {
ASSERT_EQ(s, pss.smallest());
ASSERT_EQ(s2, pss.largest());
ASSERT_EQ(pss.next_larger(s), (size_t)s2);
ASSERT_EQ(pss.next_smaller(s), (size_t)0);
ASSERT_EQ(pss.next_larger(s2), (size_t)0);
ASSERT_EQ(pss.next_smaller(s2), (size_t)s);
}
for (int bit3 = min_page_size_log2; bit3 < max_page_size_log2; bit3++) {
const size_t s3 = (size_t)1 << bit3;
ASSERT_EQ(s3 == s || s3 == s2, pss.contains(s3));
}
}
}
}
TEST_VM(os, pagesizes_test_print) {
os::PageSizes pss;
const size_t sizes[] = { 16 * K, 64 * K, 128 * K, 1 * M, 4 * M, 1 * G, 2 * G, 0 };
static const char* const expected = "16k, 64k, 128k, 1M, 4M, 1G, 2G";
for (int i = 0; sizes[i] != 0; i++) {
pss.add(sizes[i]);
}
char buffer[256];
stringStream ss(buffer, sizeof(buffer));
pss.print_on(&ss);
ASSERT_EQ(strcmp(expected, buffer), 0);
}
TEST_VM(os, dll_address_to_function_and_library_name) {
char tmp[1024];
char output[1024];
stringStream st(output, sizeof(output));
#define EXPECT_CONTAINS(haystack, needle) \
EXPECT_NE(::strstr(haystack, needle), (char*)NULL)
#define EXPECT_DOES_NOT_CONTAIN(haystack, needle) \
EXPECT_EQ(::strstr(haystack, needle), (char*)NULL)
// #define LOG(...) tty->print_cr(__VA_ARGS__); // enable if needed
#define LOG(...)
// Invalid addresses
LOG("os::print_function_and_library_name(st, -1) expects FALSE.");
address addr = (address)(intptr_t)-1;
EXPECT_FALSE(os::print_function_and_library_name(&st, addr));
LOG("os::print_function_and_library_name(st, NULL) expects FALSE.");
addr = NULL;
EXPECT_FALSE(os::print_function_and_library_name(&st, addr));
// Valid addresses
// Test with or without shorten-paths, demangle, and scratch buffer
for (int i = 0; i < 16; i++) {
const bool shorten_paths = (i & 1) != 0;
const bool demangle = (i & 2) != 0;
const bool strip_arguments = (i & 4) != 0;
const bool provide_scratch_buffer = (i & 8) != 0;
LOG("shorten_paths=%d, demangle=%d, strip_arguments=%d, provide_scratch_buffer=%d",
shorten_paths, demangle, strip_arguments, provide_scratch_buffer);
// Should show os::min_page_size in libjvm
addr = CAST_FROM_FN_PTR(address, Threads::create_vm);
st.reset();
EXPECT_TRUE(os::print_function_and_library_name(&st, addr,
provide_scratch_buffer ? tmp : NULL,
sizeof(tmp),
shorten_paths, demangle,
strip_arguments));
EXPECT_CONTAINS(output, "Threads");
EXPECT_CONTAINS(output, "create_vm");
EXPECT_CONTAINS(output, "jvm"); // "jvm.dll" or "libjvm.so" or similar
LOG("%s", output);
// Test truncation on scratch buffer
if (provide_scratch_buffer) {
st.reset();
tmp[10] = 'X';
EXPECT_TRUE(os::print_function_and_library_name(&st, addr, tmp, 10,
shorten_paths, demangle));
EXPECT_EQ(tmp[10], 'X');
LOG("%s", output);
}
}
}
// Not a regex! Very primitive, just match:
// "d" - digit
// "a" - ascii
// "." - everything
// rest must match
static bool very_simple_string_matcher(const char* pattern, const char* s) {
const size_t lp = strlen(pattern);
const size_t ls = strlen(s);
if (ls < lp) {
return false;
}
for (size_t i = 0; i < lp; i ++) {
switch (pattern[i]) {
case '.': continue;
case 'd': if (!isdigit(s[i])) return false; break;
case 'a': if (!isascii(s[i])) return false; break;
default: if (s[i] != pattern[i]) return false; break;
}
}
return true;
}
TEST_VM(os, iso8601_time) {
char buffer[os::iso8601_timestamp_size + 1]; // + space for canary
buffer[os::iso8601_timestamp_size] = 'X'; // canary
const char* result = NULL;
// YYYY-MM-DDThh:mm:ss.mmm+zzzz
const char* const pattern_utc = "dddd-dd-dd.dd:dd:dd.ddd.0000";
const char* const pattern_local = "dddd-dd-dd.dd:dd:dd.ddd.dddd";
result = os::iso8601_time(buffer, sizeof(buffer), true);
tty->print_cr("%s", result);
EXPECT_EQ(result, buffer);
EXPECT_TRUE(very_simple_string_matcher(pattern_utc, result));
result = os::iso8601_time(buffer, sizeof(buffer), false);
tty->print_cr("%s", result);
EXPECT_EQ(result, buffer);
EXPECT_TRUE(very_simple_string_matcher(pattern_local, result));
// Test with explicit timestamps
result = os::iso8601_time(0, buffer, sizeof(buffer), true);
tty->print_cr("%s", result);
EXPECT_EQ(result, buffer);
EXPECT_TRUE(very_simple_string_matcher("1970-01-01.00:00:00.000+0000", result));
result = os::iso8601_time(17, buffer, sizeof(buffer), true);
tty->print_cr("%s", result);
EXPECT_EQ(result, buffer);
EXPECT_TRUE(very_simple_string_matcher("1970-01-01.00:00:00.017+0000", result));
// Canary should still be intact
EXPECT_EQ(buffer[os::iso8601_timestamp_size], 'X');
}