c90f3ee68b
Reviewed-by: coleenp, lkorinth
513 lines
17 KiB
C++
513 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/metaspaceShared.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/task.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "utilities/ostream.hpp"
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
// ChunkPool implementation
|
|
|
|
// MT-safe pool of chunks to reduce malloc/free thrashing
|
|
// NB: not using Mutex because pools are used before Threads are initialized
|
|
class ChunkPool: public CHeapObj<mtInternal> {
|
|
Chunk* _first; // first cached Chunk; its first word points to next chunk
|
|
size_t _num_chunks; // number of unused chunks in pool
|
|
size_t _num_used; // number of chunks currently checked out
|
|
const size_t _size; // size of each chunk (must be uniform)
|
|
|
|
// Our four static pools
|
|
static ChunkPool* _large_pool;
|
|
static ChunkPool* _medium_pool;
|
|
static ChunkPool* _small_pool;
|
|
static ChunkPool* _tiny_pool;
|
|
|
|
// return first element or null
|
|
void* get_first() {
|
|
Chunk* c = _first;
|
|
if (_first) {
|
|
_first = _first->next();
|
|
_num_chunks--;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
public:
|
|
// All chunks in a ChunkPool has the same size
|
|
ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
|
|
|
|
// Allocate a new chunk from the pool (might expand the pool)
|
|
NOINLINE void* allocate(size_t bytes, AllocFailType alloc_failmode) {
|
|
assert(bytes == _size, "bad size");
|
|
void* p = NULL;
|
|
// No VM lock can be taken inside ThreadCritical lock, so os::malloc
|
|
// should be done outside ThreadCritical lock due to NMT
|
|
{ ThreadCritical tc;
|
|
_num_used++;
|
|
p = get_first();
|
|
}
|
|
if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
|
|
if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
|
|
vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// Return a chunk to the pool
|
|
void free(Chunk* chunk) {
|
|
assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
|
|
ThreadCritical tc;
|
|
_num_used--;
|
|
|
|
// Add chunk to list
|
|
chunk->set_next(_first);
|
|
_first = chunk;
|
|
_num_chunks++;
|
|
}
|
|
|
|
// Prune the pool
|
|
void free_all_but(size_t n) {
|
|
Chunk* cur = NULL;
|
|
Chunk* next;
|
|
{
|
|
// if we have more than n chunks, free all of them
|
|
ThreadCritical tc;
|
|
if (_num_chunks > n) {
|
|
// free chunks at end of queue, for better locality
|
|
cur = _first;
|
|
for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
|
|
|
|
if (cur != NULL) {
|
|
next = cur->next();
|
|
cur->set_next(NULL);
|
|
cur = next;
|
|
|
|
// Free all remaining chunks while in ThreadCritical lock
|
|
// so NMT adjustment is stable.
|
|
while(cur != NULL) {
|
|
next = cur->next();
|
|
os::free(cur);
|
|
_num_chunks--;
|
|
cur = next;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Accessors to preallocated pool's
|
|
static ChunkPool* large_pool() { assert(_large_pool != NULL, "must be initialized"); return _large_pool; }
|
|
static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
|
|
static ChunkPool* small_pool() { assert(_small_pool != NULL, "must be initialized"); return _small_pool; }
|
|
static ChunkPool* tiny_pool() { assert(_tiny_pool != NULL, "must be initialized"); return _tiny_pool; }
|
|
|
|
static void initialize() {
|
|
_large_pool = new ChunkPool(Chunk::size + Chunk::aligned_overhead_size());
|
|
_medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
|
|
_small_pool = new ChunkPool(Chunk::init_size + Chunk::aligned_overhead_size());
|
|
_tiny_pool = new ChunkPool(Chunk::tiny_size + Chunk::aligned_overhead_size());
|
|
}
|
|
|
|
static void clean() {
|
|
enum { BlocksToKeep = 5 };
|
|
_tiny_pool->free_all_but(BlocksToKeep);
|
|
_small_pool->free_all_but(BlocksToKeep);
|
|
_medium_pool->free_all_but(BlocksToKeep);
|
|
_large_pool->free_all_but(BlocksToKeep);
|
|
}
|
|
};
|
|
|
|
ChunkPool* ChunkPool::_large_pool = NULL;
|
|
ChunkPool* ChunkPool::_medium_pool = NULL;
|
|
ChunkPool* ChunkPool::_small_pool = NULL;
|
|
ChunkPool* ChunkPool::_tiny_pool = NULL;
|
|
|
|
void chunkpool_init() {
|
|
ChunkPool::initialize();
|
|
}
|
|
|
|
void
|
|
Chunk::clean_chunk_pool() {
|
|
ChunkPool::clean();
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
// ChunkPoolCleaner implementation
|
|
//
|
|
|
|
class ChunkPoolCleaner : public PeriodicTask {
|
|
enum { CleaningInterval = 5000 }; // cleaning interval in ms
|
|
|
|
public:
|
|
ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
|
|
void task() {
|
|
ChunkPool::clean();
|
|
}
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
// Chunk implementation
|
|
|
|
void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
|
|
// requested_size is equal to sizeof(Chunk) but in order for the arena
|
|
// allocations to come out aligned as expected the size must be aligned
|
|
// to expected arena alignment.
|
|
// expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
|
|
assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
|
|
size_t bytes = ARENA_ALIGN(requested_size) + length;
|
|
switch (length) {
|
|
case Chunk::size: return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
|
|
case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
|
|
case Chunk::init_size: return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
|
|
case Chunk::tiny_size: return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
|
|
default: {
|
|
void* p = os::malloc(bytes, mtChunk, CALLER_PC);
|
|
if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
|
|
vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
|
|
}
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Chunk::operator delete(void* p) {
|
|
Chunk* c = (Chunk*)p;
|
|
switch (c->length()) {
|
|
case Chunk::size: ChunkPool::large_pool()->free(c); break;
|
|
case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
|
|
case Chunk::init_size: ChunkPool::small_pool()->free(c); break;
|
|
case Chunk::tiny_size: ChunkPool::tiny_pool()->free(c); break;
|
|
default:
|
|
ThreadCritical tc; // Free chunks under TC lock so that NMT adjustment is stable.
|
|
os::free(c);
|
|
}
|
|
}
|
|
|
|
Chunk::Chunk(size_t length) : _len(length) {
|
|
_next = NULL; // Chain on the linked list
|
|
}
|
|
|
|
void Chunk::chop() {
|
|
Chunk *k = this;
|
|
while( k ) {
|
|
Chunk *tmp = k->next();
|
|
// clear out this chunk (to detect allocation bugs)
|
|
if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
|
|
delete k; // Free chunk (was malloc'd)
|
|
k = tmp;
|
|
}
|
|
}
|
|
|
|
void Chunk::next_chop() {
|
|
_next->chop();
|
|
_next = NULL;
|
|
}
|
|
|
|
void Chunk::start_chunk_pool_cleaner_task() {
|
|
#ifdef ASSERT
|
|
static bool task_created = false;
|
|
assert(!task_created, "should not start chuck pool cleaner twice");
|
|
task_created = true;
|
|
#endif
|
|
ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
|
|
cleaner->enroll();
|
|
}
|
|
|
|
//------------------------------Arena------------------------------------------
|
|
|
|
Arena::Arena(MEMFLAGS flag, size_t init_size) : _flags(flag), _size_in_bytes(0) {
|
|
size_t round_size = (sizeof (char *)) - 1;
|
|
init_size = (init_size+round_size) & ~round_size;
|
|
_first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
|
|
_hwm = _chunk->bottom(); // Save the cached hwm, max
|
|
_max = _chunk->top();
|
|
MemTracker::record_new_arena(flag);
|
|
set_size_in_bytes(init_size);
|
|
}
|
|
|
|
Arena::Arena(MEMFLAGS flag) : _flags(flag), _size_in_bytes(0) {
|
|
_first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
|
|
_hwm = _chunk->bottom(); // Save the cached hwm, max
|
|
_max = _chunk->top();
|
|
MemTracker::record_new_arena(flag);
|
|
set_size_in_bytes(Chunk::init_size);
|
|
}
|
|
|
|
Arena *Arena::move_contents(Arena *copy) {
|
|
copy->destruct_contents();
|
|
copy->_chunk = _chunk;
|
|
copy->_hwm = _hwm;
|
|
copy->_max = _max;
|
|
copy->_first = _first;
|
|
|
|
// workaround rare racing condition, which could double count
|
|
// the arena size by native memory tracking
|
|
size_t size = size_in_bytes();
|
|
set_size_in_bytes(0);
|
|
copy->set_size_in_bytes(size);
|
|
// Destroy original arena
|
|
reset();
|
|
return copy; // Return Arena with contents
|
|
}
|
|
|
|
Arena::~Arena() {
|
|
destruct_contents();
|
|
MemTracker::record_arena_free(_flags);
|
|
}
|
|
|
|
void* Arena::operator new(size_t size) throw() {
|
|
assert(false, "Use dynamic memory type binding");
|
|
return NULL;
|
|
}
|
|
|
|
void* Arena::operator new (size_t size, const std::nothrow_t& nothrow_constant) throw() {
|
|
assert(false, "Use dynamic memory type binding");
|
|
return NULL;
|
|
}
|
|
|
|
// dynamic memory type binding
|
|
void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
|
|
return (void *) AllocateHeap(size, flags, CALLER_PC);
|
|
}
|
|
|
|
void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
|
|
return (void*)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
|
|
}
|
|
|
|
void Arena::operator delete(void* p) {
|
|
FreeHeap(p);
|
|
}
|
|
|
|
// Destroy this arenas contents and reset to empty
|
|
void Arena::destruct_contents() {
|
|
if (UseMallocOnly && _first != NULL) {
|
|
char* end = _first->next() ? _first->top() : _hwm;
|
|
free_malloced_objects(_first, _first->bottom(), end, _hwm);
|
|
}
|
|
// reset size before chop to avoid a rare racing condition
|
|
// that can have total arena memory exceed total chunk memory
|
|
set_size_in_bytes(0);
|
|
_first->chop();
|
|
reset();
|
|
}
|
|
|
|
// This is high traffic method, but many calls actually don't
|
|
// change the size
|
|
void Arena::set_size_in_bytes(size_t size) {
|
|
if (_size_in_bytes != size) {
|
|
long delta = (long)(size - size_in_bytes());
|
|
_size_in_bytes = size;
|
|
MemTracker::record_arena_size_change(delta, _flags);
|
|
}
|
|
}
|
|
|
|
// Total of all Chunks in arena
|
|
size_t Arena::used() const {
|
|
size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
|
|
Chunk *k = _first;
|
|
while( k != _chunk) { // Whilst have Chunks in a row
|
|
sum += k->length(); // Total size of this Chunk
|
|
k = k->next(); // Bump along to next Chunk
|
|
}
|
|
return sum; // Return total consumed space.
|
|
}
|
|
|
|
void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
|
|
vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, "%s", whence);
|
|
}
|
|
|
|
// Grow a new Chunk
|
|
void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
|
|
// Get minimal required size. Either real big, or even bigger for giant objs
|
|
size_t len = MAX2(x, (size_t) Chunk::size);
|
|
|
|
Chunk *k = _chunk; // Get filled-up chunk address
|
|
_chunk = new (alloc_failmode, len) Chunk(len);
|
|
|
|
if (_chunk == NULL) {
|
|
_chunk = k; // restore the previous value of _chunk
|
|
return NULL;
|
|
}
|
|
if (k) k->set_next(_chunk); // Append new chunk to end of linked list
|
|
else _first = _chunk;
|
|
_hwm = _chunk->bottom(); // Save the cached hwm, max
|
|
_max = _chunk->top();
|
|
set_size_in_bytes(size_in_bytes() + len);
|
|
void* result = _hwm;
|
|
_hwm += x;
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
// Reallocate storage in Arena.
|
|
void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
|
|
if (new_size == 0) return NULL;
|
|
#ifdef ASSERT
|
|
if (UseMallocOnly) {
|
|
// always allocate a new object (otherwise we'll free this one twice)
|
|
char* copy = (char*)Amalloc(new_size, alloc_failmode);
|
|
if (copy == NULL) {
|
|
return NULL;
|
|
}
|
|
size_t n = MIN2(old_size, new_size);
|
|
if (n > 0) memcpy(copy, old_ptr, n);
|
|
Afree(old_ptr,old_size); // Mostly done to keep stats accurate
|
|
return copy;
|
|
}
|
|
#endif
|
|
char *c_old = (char*)old_ptr; // Handy name
|
|
// Stupid fast special case
|
|
if( new_size <= old_size ) { // Shrink in-place
|
|
if( c_old+old_size == _hwm) // Attempt to free the excess bytes
|
|
_hwm = c_old+new_size; // Adjust hwm
|
|
return c_old;
|
|
}
|
|
|
|
// make sure that new_size is legal
|
|
size_t corrected_new_size = ARENA_ALIGN(new_size);
|
|
|
|
// See if we can resize in-place
|
|
if( (c_old+old_size == _hwm) && // Adjusting recent thing
|
|
(c_old+corrected_new_size <= _max) ) { // Still fits where it sits
|
|
_hwm = c_old+corrected_new_size; // Adjust hwm
|
|
return c_old; // Return old pointer
|
|
}
|
|
|
|
// Oops, got to relocate guts
|
|
void *new_ptr = Amalloc(new_size, alloc_failmode);
|
|
if (new_ptr == NULL) {
|
|
return NULL;
|
|
}
|
|
memcpy( new_ptr, c_old, old_size );
|
|
Afree(c_old,old_size); // Mostly done to keep stats accurate
|
|
return new_ptr;
|
|
}
|
|
|
|
|
|
// Determine if pointer belongs to this Arena or not.
|
|
bool Arena::contains( const void *ptr ) const {
|
|
#ifdef ASSERT
|
|
if (UseMallocOnly) {
|
|
// really slow, but not easy to make fast
|
|
if (_chunk == NULL) return false;
|
|
char** bottom = (char**)_chunk->bottom();
|
|
for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
|
|
if (*p == ptr) return true;
|
|
}
|
|
for (Chunk *c = _first; c != NULL; c = c->next()) {
|
|
if (c == _chunk) continue; // current chunk has been processed
|
|
char** bottom = (char**)c->bottom();
|
|
for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
|
|
if (*p == ptr) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
|
|
return true; // Check for in this chunk
|
|
for (Chunk *c = _first; c; c = c->next()) {
|
|
if (c == _chunk) continue; // current chunk has been processed
|
|
if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
|
|
return true; // Check for every chunk in Arena
|
|
}
|
|
}
|
|
return false; // Not in any Chunk, so not in Arena
|
|
}
|
|
|
|
|
|
#ifdef ASSERT
|
|
void* Arena::malloc(size_t size) {
|
|
assert(UseMallocOnly, "shouldn't call");
|
|
// use malloc, but save pointer in res. area for later freeing
|
|
char** save = (char**)internal_malloc_4(sizeof(char*));
|
|
return (*save = (char*)os::malloc(size, mtChunk));
|
|
}
|
|
|
|
// for debugging with UseMallocOnly
|
|
void* Arena::internal_malloc_4(size_t x) {
|
|
assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
|
|
check_for_overflow(x, "Arena::internal_malloc_4");
|
|
if (_hwm + x > _max) {
|
|
return grow(x);
|
|
} else {
|
|
char *old = _hwm;
|
|
_hwm += x;
|
|
return old;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
//--------------------------------------------------------------------------------------
|
|
// Non-product code
|
|
|
|
#ifndef PRODUCT
|
|
|
|
julong Arena::_bytes_allocated = 0;
|
|
|
|
void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
|
|
|
|
// debugging code
|
|
inline void Arena::free_all(char** start, char** end) {
|
|
for (char** p = start; p < end; p++) if (*p) os::free(*p);
|
|
}
|
|
|
|
void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
|
|
assert(UseMallocOnly, "should not call");
|
|
// free all objects malloced since resource mark was created; resource area
|
|
// contains their addresses
|
|
if (chunk->next()) {
|
|
// this chunk is full, and some others too
|
|
for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
|
|
char* top = c->top();
|
|
if (c->next() == NULL) {
|
|
top = hwm2; // last junk is only used up to hwm2
|
|
assert(c->contains(hwm2), "bad hwm2");
|
|
}
|
|
free_all((char**)c->bottom(), (char**)top);
|
|
}
|
|
assert(chunk->contains(hwm), "bad hwm");
|
|
assert(chunk->contains(max), "bad max");
|
|
free_all((char**)hwm, (char**)max);
|
|
} else {
|
|
// this chunk was partially used
|
|
assert(chunk->contains(hwm), "bad hwm");
|
|
assert(chunk->contains(hwm2), "bad hwm2");
|
|
free_all((char**)hwm, (char**)hwm2);
|
|
}
|
|
}
|
|
|
|
#endif // Non-product
|