
Vorlesung Programmieren Thema 2: Programmiersprachen Olaf Herden

Fakultät Technik Studiengang Informatik

$$L(Bsp) = \{a(b|c|bd|cd|d)^n e\}$$

Stand: 11/2023

Gliederung

- Grundbegriffe
- Algorithmen und ihre Beschreibung
- Beschreibung von Programmiersprachen
- Programmentwicklung

Grundbegriffe (I)

- Programmierung:
 - Erstellung von Computerprogrammen
- Softwareentwicklung:
 - Methoden zum Lösen von Problemen mit Hilfe eines Rechners
- Algorithmus:
 - Arbeitsanleitung für einen Computer
- Programmiersprache:
 - Computerverständliche Notation zur Formulierung von Algorithmen
- Programm:
 - In einer Programmiersprache formulierter Algorithmus
- "Programmieren im Kleinen":
 - Lösen kleiner Probleme, typischerweise alleine
- "Programmieren im Großen":
 - Lösen komplexer Probleme, typischerweise in einem Team

Grundbegriffe (II)

- Software-Engineering/Softwaretechnik:
 - Vorgehensmodelle, Entwicklungsmethoden, Entwicklungsumgebungen, Projekt-, Qualitäts- und Konfigurationsmanagement
- Programmierer*in:
 - Entwickler*in von Programmen
- Programmcode, Quellcode, Sourcecode:
 - Programmbeschreibung auf einer bestimmten Abstraktionsebene
- Ausführbares Programm:
 - Programm in maschinenverständlicher Form
- Programmaufruf:
 - Ausführung eines ausführbaren Programms

Übersicht

- Grundbegriffe
- Algorithmen und ihre Beschreibung
- Beschreibung von Programmiersprachen
- Programmentwicklung

Algorithmus (I)

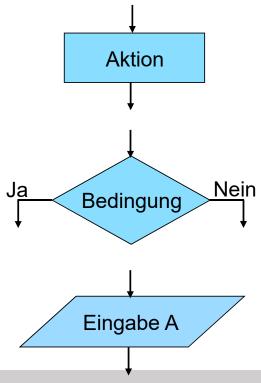
- Arbeitsanleitungen:
 - Kochrezepte, Bastelanleitungen, Partituren, Spielregeln
- Aufbau:
 - Menge von Anweisungen
- Charakteristika:
 - Anweisungssequenzen
 - Bedingte Anweisungen
 - Anweisungsschleifen
 - Zutaten / Voraussetzungen
 - Zum Teil "schwammige" Formulierungen

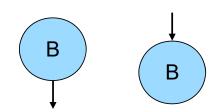
Algorithmus (II)

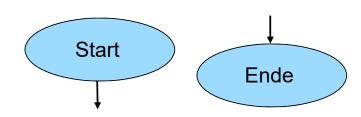
- Definition Algorithmus:
 - Arbeitsanleitung zum Lösen eines Problems bzw. einer Aufgabe, die so präzise formuliert ist, dass sie von einem Computer ausgeführt werden kann.
- Beschreibung von Algorithmen kann auf verschiedene Arten geschehen:
 - Umgangssprachlich
 - Programmiersprache
 - Programmablaufpläne
 - Struktogramme

Umgangsprachliche Beschreibung

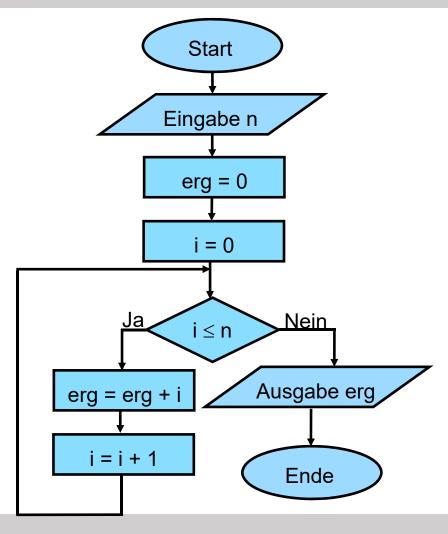
- Beispiel: Berechnung der Summe aller Zahlen von 1 bis n
- Umgangssprachliche Formulierung:
 - Addiere für eine vorgegebene natürliche Zahl n die Zahlen von 1 bis n
 - Dies ist das Resultat


• Programmiersprache bzw. Pseudocode:


```
int n = readInt();
int erg = 0;
int i = 0;
while (i <= n) {
   erg = erg + i;
   i = i + 1;
}
printInt(erg);</pre>
```



Programmablaufplan (I)

- Programmablaufplan (PAP) (Synonym: Flussdiagramm, Ablaufplan, Ablaufdiagramm)
- Normierte Methode zur graphischen Darstellung von Algorithmen
- Grundelemente:


Wechsel zwischen zwei Diagrammen

Anfang/Ende eines Programms

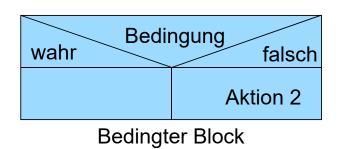
Programmablaufplan (II): Beispiel

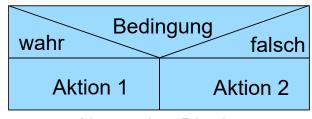
• .

Stuttgart Campus Horb

Programmablaufplan (III): DIN 66001

	-							
	Anh.	Sinnbild	Benennung, Bemerkung	D P	Sinnbild	Benennung, Bemerkung	D P	D = Verwendung im Datenflußplan, P = Verwendung im Programmablaufplan
 P. Stahlknecht / U. Hasenkamp: Einführung in die Wirtschaftsinformatik. 9. Auflage, Springer-Verlag, Berlin - Heideberg 1999. Das Kopieren auf eine Vortragskolie bzw. in eine Präsentationschafei ist gestattet. 	nedelberg 1363.		Verarbeitung, allgemein (einschließlich Ein-/Ausgabe)	D P		Daten, allgemein	D	
	et gestattet.		Manuelle Verarbeitung (einschließlich Ein-/Ausgabe)	D P		Daten auf Schriftstück (z.B.auf Bele- gen, Mikrofilm)	D	
	r. a. Auraga, opring Präsentationsdatei i	\Diamond	Verzweigung	Р		Daten auf Speicher mit nur sequen- tiellem Zugriff	D	¹⁾ Bei den Verbindungen gilt die Vorzugs- richtung von links nach rechts bzw. von oben nach unten. Abweichungen sind durch Pfeilspitzen zu kennzeichnen.
	ie bzw. in eine		Bemerkung (erläuternder Text)	D P		Daten auf Speicher mit auch direk- tem Zugriff ²⁾	D	²⁾ In der Praxis wird dieses Symbol häufig um 90° gedreht gezeichnet:
	if eine Vortragsfo		Verbindung ¹⁾ : Verarbeitungsfolge bzw. Zugriffsmöglichkeit	P D		Daten im Zentral- speicher	D	
	Das Kopieren au	7	Verbindung ¹⁾ zur Darstellung der Daten- übertragung	D P		Maschinell er- zeugte optische oder akustische	D	
	6		Grenzstelle (zur Umwelt) Verbindungs- stelle	D P D P		Daten Manuelle optische oder akustische Eingabedaten	D	Sinnbilder nach DIN 66001
					I			

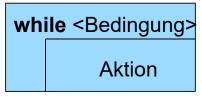



Struktogramme (I)

- Struktogramme/Nassi-Shneiderman-Diagramme:
 - Alternative graphische Notation zum Darstellen von Programmen
 - Neuere Notation als Flussdiagramme
 - Durch Strukturierung bessere Programme (vor allem Vermeidung von Sprüngen)
- Notationselemente (DIN 66261):

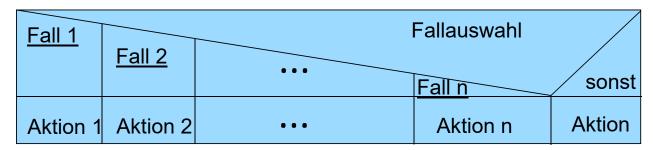
Aktion
Strukturblock
Aktion 1
Aktion 2
Aktion n

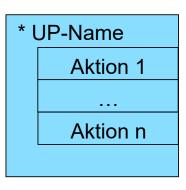
Folge (Aneinanderreihung von Strukturblöcken)



Alternative Blöcke

Struktogramme (II)


• Notationselemente (DIN 66261) Fortsetzung:


Abweisende Schleife

Nicht-Abweisende Schleife

Fallunterscheidung

Unterprogramm

Struktogramme (III)

• Beispiel: Summe der ersten n Zahlen

read (n)						
erg = 0						
i = 0						
while i <= n						
	erg = erg + i					
	i = i + 1					
print (erg)						

PAP vs. Struktogramme

• PAP:

- enthält explizit bedingte Verzweigungen
- schließt implizit unbedingte Verzweigungen nicht aus
- D.h.: Programmablauf ist verschieden vom Steuerfluss (zeitliche Reihenfolge der Abarbeitung der Anweisungen)

• Struktogramme:

- Unbedingte Verzweigungen sind ausgeschlossen
- Dies garantiert Übereinstimmung von Programmablauf und Steuerfluss
- Relative Länge der Strukturblöcke repräsentiert Steuerfluss

Eigenschaften von Algorithmen (I)

- Eindeutigkeit:
 - Beschreibung muss präzise genug sein, um Doppeldeutigkeiten auszuschließen
- Abstraktion/Parametrisierbarkeit:
 - Algorithmus löst i.A. Klasse von Problemen
 - Wahl eines einzelnen Problems erfolgt über Parameter
- Ausführbarkeit:
 - Algorithmus ist auf einer existierenden Maschine umsetzbar und danach ausführbar
- Terminierung:
 - Algorithmen, die für jede mögliche Eingabe nach endlich vielen Schritten anhalten, heißen terminierend, ansonsten nichtterminierend
 - Beide Klassen sind interessant (abhängig vom Problem)

Eigenschaften von Algorithmen (II)

• Determinismus:

- Zu jedem Zeitpunkt der Ausführung existiert höchstens eine mögliche Fortsetzung
- Hat Algorithmus zu einem Zeitpunkt mehrere Möglichkeiten, aus denen er wählen spricht man von Nicht-Determinismus

• Determiniertheit:

- Mit gleichen Eingabewerten und Startbedingungen liefert Algorithmus stets dasselbe Ergebnis
- Manchmal Abweichung bei Verwendung von Heuristiken

• Korrektheit:

- Algorithmus liefert für jeden möglichen Eingabewert das richtige Ergebnis
- Vollständigkeit:
 - Algorithmus ist auf alle (zugelassenen) Eingabewerte anwendbar
- Effizienz (bezgl. Zeit und/oder Speicher):
 - Speicher und Zeit sind i.A. knappe Ressourcen
 - Schonender Einsatz wird als Effizienz bezeichnet

Eigenschaften von Algorithmen (III)

Erweiterbarkeit:

 Algorithmus ist so konzipiert, dass er an (in der Zukunft möglicherweise auftretende) weitere Anforderungen leicht angepasst werden kann

Wiederverwendbarkeit:

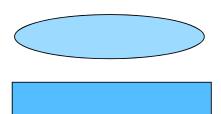
• Algorithmus ist so aufgebaut, dass er leicht in anderen Anwendungen verwendet werden kann

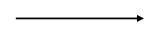
Portabilität:

 Algorithmus ist so aufgebaut, dass er leicht auf andere Plattformen oder in neue Versionen einer Sprache übertragen werden kann

Verständlichkeit:

Algorithmus ist so aufgebaut, dass er für einen Außenstehenden leicht nachzuvollziehen ist


Übersicht

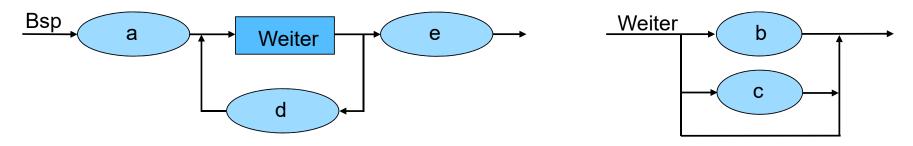

- Grundbegriffe
- Algorithmen und ihre Beschreibung
- Beschreibung von Programmiersprachen
- Programmentwicklung

Syntaxdiagramme (I)

- Programmiersprachen werden durch kontextfreie Grammatiken beschrieben (Siehe Informatik-VL)
- Eine wichtige graphische Notation sind dazu die Syntaxdiagramme
- Notationselemente:
 - Knoten
 - Ellipsen (Terminal-Symbole, nicht weiter ableitbar)
 - Rechtecke (Nichtterminal-Symbole, können weiter abgeleitet werden)
 - Kanten
 - Knotenverbindende Pfeile
 - Eintretender Pfeil (Eingangskante)
 - Austretender Pfeil (Ausgangskante)

Syntaxdiagramme (II)

• Interpretation:


 Durchläuft man ein Syntaxdiagramm von der Eingangs- zur Ausgangskante entlang den Pfeilen, dann ist die Folge der Knoteninhalte, die dabei "aufgesammelt" werden, aus dem Syntaxdiagramm ableitbar.

• Strukturregeln:

- Jedes Syntaxdiagramm (SD) besitzt eine Bezeichnung
- Elemente eines Syntaxdiagramms sind Knoten (Ellipsen, Rechtecke) und Kanten (Pfeile)
- Rechtecke enthalten die Bezeichnung eines (anderen) Syntaxdiagramms
- Ellipsen enthalten Token (Elemente der beschriebenen Sprache)
- In jeden Knoten führt genau ein Pfeil hinein
- Aus jedem Knoten führt genau ein Pfeil hinaus
- Pfeile dürfen sich aufspalten bzw. zusammengeführt werden
- Jedes SD besitzt genau eine eintretende Kante (kein Ausgangsknoten)
- Jedes SD besitzt genau eine austretende Kante (kein Eingangsknoten)

Syntaxdiagramme (III): Beispiel

• Gegeben sei folgendes Syntaxdiagramm:

• Syntaktisch korrekt:

ae

abe

abdce

abdbde

• Syntaktisch nicht korrekt:

be

ad

abce

adae

Syntaxdiagramme (IV)

- ullet Menge syntaktisch korrekter Ausdrücke nennt man die vom Syntaxdiagramm SD erzeugte Sprache L(SD)
- Notation:
 - ullet Das mehrfache Auftreten eines oder mehrerer Zeichen wird durch ein hochgestelltes n ausgedrückt
 - Das alternative Erscheinen eines oder mehrerer Zeichen durch (Alternative_1 | Alternative_2 | ... Alternative_n)
 - Im Beispiel erzeugte Sprache $L(Bsp) = \{a(b|c|bd|cd|d)^n e\}$

• BNF: Backus-Naur-Form:

- Technik zur textuellen Darstellung kontextfreier Grammatiken
- Verwendung von Ersetzungsregeln (Produktionen)
- Besitzen linke und rechte Seite
- Linke Seite: Nichtterminalsymbol
- Nichtterminalsymbol: durch <> gekennzeichnet
- Alternativen: durch | gekennzeichnet
- ε (Epsilon): leere Alternative

• EBNF:

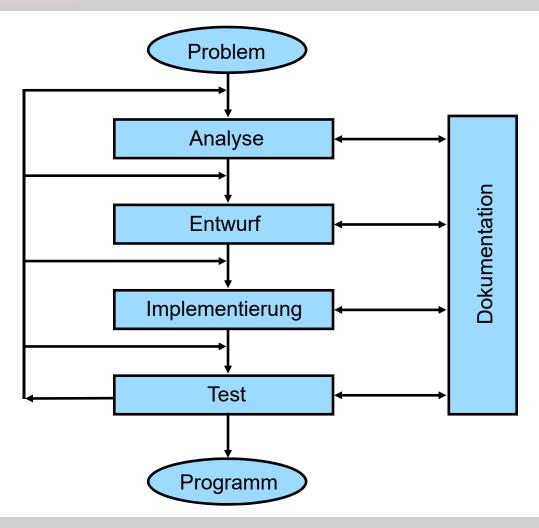
- Erweiterung der BNF (Abkürzungsmöglichkeiten)
- [...] bedeutet: Symbole in Klammern können auch wegfallen
- {...} bedeutet: Symbole in Klammern können beliebig oft wiederholt werden

(E)BNF (II): Beispiel

• BNF:

• EBNF:

```
<Bsp> ::= a<Weiter>{d<Weiter>}e


<Weiter> ::= b|c|ε
```


Übersicht

- Grundbegriffe
- Algorithmen und ihre Beschreibung
- Beschreibung von Programmiersprachen
- Programmentwicklung

Entwicklungsprozess

Analysephase

- Untersuchung des Problems und des Problemumfelds
- Diskussion mit anderen Personen
- Fragestellungen / Tätigkeiten:
 - Problemstellung exakt und vollständig
 - Gegebene Initialzustände und Eingabeparameter
 - Gewünschte Endzustände und Ausgabewerte
 - Randbedingungen, Constraints

Entwurfsphase

• Entwurf:

- Entwicklung des Algorithmus
- Kreativer Prozess (Auffassungsgabe, Intelligenz, Erfahrung)
- Fragestellungen / Tätigkeiten:
 - Existierende Lösungen für vergleichbare Probleme
 - Allgemeinere Probleme
 - (Rekursive) Aufteilung des Problems in Teilprobleme
 - Durchführung des Entwurfsprozess für Teilprobleme
 - Zusammensetzen der Lösungen der Teilprobleme zur Lösung des Gesamtproblems

Implementierung

- Übertragung des Entwurfs in eine Programmiersprache
- Fragestellungen / Tätigkeiten:
 - Editieren
 - Compilieren
 - Einige Fehler beheben

Testphase

- Überprüfung des Programms auf logische und technische Fehler
- Man kann nur die Existenz von Fehlern nachweisen, nicht die Abwesenheit!
- Fragestellungen / Tätigkeiten:
 - Korrektheit
 - Vollständigkeit
 - Debugging
- Teststrategien:
 - Andere Personen testen lassen
 - Testmengen konstruieren (Randfälle/Grenzwerte finden)
 - Nach Fehlerbeseitigung erneut testen

Dokumentation

- Exakte Problemstellung
- Beschreibung der generellen Lösungsidee
- Beschreibung des Algorithmus
- Programmcode
- Beschreibung der Testmengen
- Protokolle der Testläufe
- Aufgetretene Probleme
- Alternative Lösungsansätze

Weitere Tätgkeiten

- Einführung
- Effizienzverbesserung
- Wartung
- Erweiterung
- Portierung

Zusammenfassung (I)

- Grundbegriffe
 - Programmieren
 - Software Engineering
 - Algorithmus
 - Programm
- Algorithmen und ihre Beschreibung:
 - Umgangssprachlich
 - Programmiersprache/Pseudocode
 - Programmablaufplan
 - Struktogramm
 - Eigenschaften von Algorithmen

Zusammenfassung (II)

- Beschreibung von Programmiersprachen
 - Syntaxdiagramm
 - E(BNF)
- Programmentwicklung
 - Analyse
 - Entwurf
 - Implementierung
 - Testen

Aufgabe 1

Was bedeuten die beiden Eigenschaften Determinismus bzw. Determiniertheit von Algorithmen?

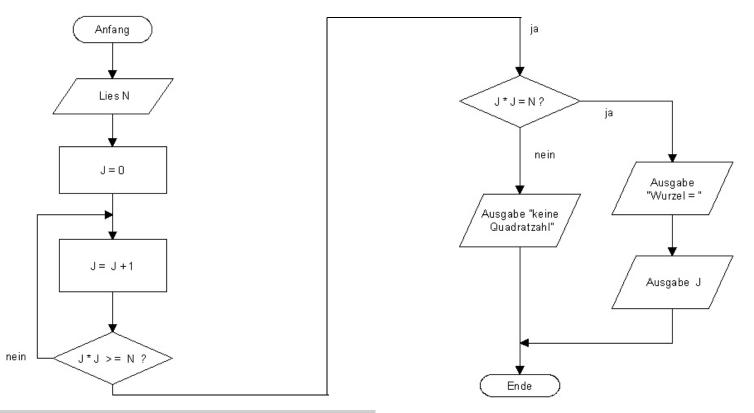
Aufgabe 2

Es soll ein Algorithmus entworfen werden, der zu einem eingelesenen Wert die Fakultät berechnet. Stellen Sie diesen als Flussdiagramm und als Struktogramm dar!

Aufgabe 3

- a) Geben Sie ein Syntaxdiagramm an, das die Sprache L = {abnc mit n>3} erzeugt!
- b) Welche Sprache erzeugt die folgende EBNF-Grammatik?

```
S ::= NatZahl | Addition


NatZahl ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Addition ::= "(" S "+" S ")"
```

c) Stellen Sie die EBNF-Regeln aus Teilaufgabe b) als Syntaxdiagramme dar!

Aufgabe 4

Gegeben sei der folgende Programmablaufplan. Stellen Sie diesen als Struktogramm dar!

