Merge branch 'unify-test' of ssh://gohorb.ba-horb.de/bahome/projekt/git/JavaCompilerCore into unify-test

This commit is contained in:
Fayez Abu Alia 2018-11-14 13:02:53 +01:00
commit 95043455fa
8 changed files with 842 additions and 281 deletions

View File

@ -103,7 +103,7 @@ public class JavaTXCompiler {
return new ArrayList<>(allClasses); return new ArrayList<>(allClasses);
} }
public List<ResultSet> typeInference() throws ClassNotFoundException { public List<ResultSet> typeInferenceOld() throws ClassNotFoundException {
List<ClassOrInterface> allClasses = new ArrayList<>();//environment.getAllAvailableClasses(); List<ClassOrInterface> allClasses = new ArrayList<>();//environment.getAllAvailableClasses();
//Alle Importierten Klassen in allen geparsten Sourcefiles kommen ins FC //Alle Importierten Klassen in allen geparsten Sourcefiles kommen ins FC
for(SourceFile sf : this.sourceFiles.values()) { for(SourceFile sf : this.sourceFiles.values()) {
@ -176,10 +176,7 @@ public class JavaTXCompiler {
} }
} }
return x;//HIER DIE JEWEILS RECHT BZW. LINKE SEITE AUF GLEICHE VARIANZ SETZEN WIE DIE JEWEILS ANDERE SEITE return x;//HIER DIE JEWEILS RECHT BZW. LINKE SEITE AUF GLEICHE VARIANZ SETZEN WIE DIE JEWEILS ANDERE SEITE
}) }).map( y -> {
/* PL 2018-11-07 wird in varianceInheritance erledigt
.map( y -> {
if ((y.getLhsType() instanceof PlaceholderType) && (y.getRhsType() instanceof PlaceholderType)) { if ((y.getLhsType() instanceof PlaceholderType) && (y.getRhsType() instanceof PlaceholderType)) {
if (((PlaceholderType)y.getLhsType()).getVariance() != 0 && ((PlaceholderType)y.getRhsType()).getVariance() == 0) { if (((PlaceholderType)y.getLhsType()).getVariance() != 0 && ((PlaceholderType)y.getRhsType()).getVariance() == 0) {
((PlaceholderType)y.getRhsType()).setVariance(((PlaceholderType)y.getLhsType()).getVariance()); ((PlaceholderType)y.getRhsType()).setVariance(((PlaceholderType)y.getLhsType()).getVariance());
@ -189,12 +186,8 @@ public class JavaTXCompiler {
} }
} }
return y; } ) return y; } )
*/
.collect(Collectors.toCollection(HashSet::new)); .collect(Collectors.toCollection(HashSet::new));
varianceInheritance(xConsSet); varianceInheritance(xConsSet);
Set<Set<UnifyPair>> result = unify.unifySequential(xConsSet, finiteClosure, logFile, log); Set<Set<UnifyPair>> result = unify.unifySequential(xConsSet, finiteClosure, logFile, log);
//Set<Set<UnifyPair>> result = unify.unify(xConsSet, finiteClosure); //Set<Set<UnifyPair>> result = unify.unify(xConsSet, finiteClosure);
System.out.println("RESULT: " + result); System.out.println("RESULT: " + result);
@ -223,7 +216,8 @@ public class JavaTXCompiler {
} }
/** /**
* Vererbt alle Variancen * Vererbt alle Variancen bei Paaren (a <. theta) oder (Theta <. a)
* wenn a eine Variance !=0 hat auf alle Typvariablen in Theta.
* @param eq The set of constraints * @param eq The set of constraints
*/ */
private void varianceInheritance(Set<UnifyPair> eq) { private void varianceInheritance(Set<UnifyPair> eq) {
@ -253,6 +247,171 @@ public class JavaTXCompiler {
} }
} }
public List<ResultSet> typeInference() throws ClassNotFoundException {
List<ClassOrInterface> allClasses = new ArrayList<>();//environment.getAllAvailableClasses();
//Alle Importierten Klassen in allen geparsten Sourcefiles kommen ins FC
for(SourceFile sf : this.sourceFiles.values()) {
allClasses.addAll(getAvailableClasses(sf));
allClasses.addAll(sf.getClasses());
}
final ConstraintSet<Pair> cons = getConstraints();
FiniteClosure finiteClosure = UnifyTypeFactory.generateFC(allClasses);
System.out.println(finiteClosure);
ConstraintSet<UnifyPair> unifyCons = UnifyTypeFactory.convert(cons);
TypeUnify unify = new TypeUnify();
Set<Set<UnifyPair>> results = new HashSet<>();
try {
FileWriter logFile = new FileWriter(new File(System.getProperty("user.dir")+"/test/logFiles/"+"log"));
logFile.write("FC:\\" + finiteClosure.toString()+"\n");
for(SourceFile sf : this.sourceFiles.values()) {
logFile.write(ASTTypePrinter.print(sf));
}
logFile.flush();
Set<String> paraTypeVarNames = allClasses.stream().map(x -> x.getMethods().stream().map(y -> y.getParameterList().getFormalparalist()
.stream().filter(z -> z.getType() instanceof TypePlaceholder)
.map(z -> ((TypePlaceholder)z.getType()).getName()).collect(Collectors.toCollection(HashSet::new)))
.reduce(new HashSet<String>(), (a,b) -> { a.addAll(b); return a;}, (a,b) -> { a.addAll(b); return a;} ) )
.reduce(new HashSet<String>(), (a,b) -> { a.addAll(b); return a;} );
Set<String> returnTypeVarNames = allClasses.stream().map(x -> x.getMethods().stream().filter(y -> y.getReturnType() instanceof TypePlaceholder)
.map(z -> ((TypePlaceholder)z.getReturnType()).getName()).collect(Collectors.toCollection(HashSet::new))).reduce((a,b) -> { a.addAll(b); return a;} ).get();
Set<String> fieldTypeVarNames = allClasses.stream().map(x -> x.getFieldDecl().stream().filter(y -> y.getReturnType() instanceof TypePlaceholder)
.map(z -> ((TypePlaceholder)z.getReturnType()).getName()).collect(Collectors.toCollection(HashSet::new))).reduce((a,b) -> { a.addAll(b); return a;} ).get();
returnTypeVarNames.addAll(fieldTypeVarNames);
unifyCons = unifyCons.map(x -> {
//Hier muss ueberlegt werden, ob
//1. alle Argument- und Retuntyp-Variablen in allen UnifyPairs
// mit disableWildcardtable() werden.
//2. alle Typvariablen mit Argument- oder Retuntyp-Variablen
//in Beziehung auch auf disableWildcardtable() gesetzt werden muessen
//PL 2018-04-23
if ((x.getLhsType() instanceof PlaceholderType)) {
if (paraTypeVarNames.contains(x.getLhsType().getName())) {
((PlaceholderType)x.getLhsType()).setVariance((byte)1);
((PlaceholderType)x.getLhsType()).disableWildcardtable();
}
if (returnTypeVarNames.contains(x.getLhsType().getName())) {
((PlaceholderType)x.getLhsType()).setVariance((byte)-1);
((PlaceholderType)x.getLhsType()).disableWildcardtable();
}
}
if ((x.getRhsType() instanceof PlaceholderType)) {
if (paraTypeVarNames.contains(x.getRhsType().getName())) {
((PlaceholderType)x.getRhsType()).setVariance((byte)1);
((PlaceholderType)x.getRhsType()).disableWildcardtable();
}
if (returnTypeVarNames.contains(x.getRhsType().getName())) {
((PlaceholderType)x.getRhsType()).setVariance((byte)-1);
((PlaceholderType)x.getRhsType()).disableWildcardtable();
}
}
return x;//HIER DIE JEWEILS RECHT BZW. LINKE SEITE AUF GLEICHE VARIANZ SETZEN WIE DIE JEWEILS ANDERE SEITE
});
Set<PlaceholderType> varianceTPHold;
Set<PlaceholderType> varianceTPH = new HashSet<>();
varianceTPH = varianceInheritanceConstraintSet(unifyCons);
/* PL 2018-11-07 wird in varianceInheritanceConstraintSet erledigt
do { //PL 2018-11-05 Huellenbildung Variance auf alle TPHs der Terme auf der jeweiligen
//anderen Seite übertragen
varianceTPHold = new HashSet<>(varianceTPH);
varianceTPH = varianceInheritanceConstraintSet(unifyCons);
unifyCons.map( y -> {
if ((y.getLhsType() instanceof PlaceholderType) && (y.getRhsType() instanceof PlaceholderType)) {
if (((PlaceholderType)y.getLhsType()).getVariance() != 0 && ((PlaceholderType)y.getRhsType()).getVariance() == 0) {
((PlaceholderType)y.getRhsType()).setVariance(((PlaceholderType)y.getLhsType()).getVariance());
}
if (((PlaceholderType)y.getLhsType()).getVariance() == 0 && ((PlaceholderType)y.getRhsType()).getVariance() != 0) {
((PlaceholderType)y.getLhsType()).setVariance(((PlaceholderType)y.getRhsType()).getVariance());
}
}
return y; } ); }
while (!varianceTPHold.equals(varianceTPH));
*/
//Set<Set<UnifyPair>> result = unify.unifySequential(xConsSet, finiteClosure, logFile, log);
//Set<Set<UnifyPair>> result = unify.unify(xConsSet, finiteClosure);
Set<Set<UnifyPair>> result = unify.unifyOderConstraints(unifyCons.getUndConstraints(), unifyCons.getOderConstraints(), finiteClosure, logFile, log);
System.out.println("RESULT: " + result);
logFile.write("RES: " + result.toString()+"\n");
logFile.flush();
results.addAll(result);
results = results.stream().map(x -> {
Optional<Set<UnifyPair>> res = new RuleSet().subst(x.stream().map(y -> {
if (y.getPairOp() == PairOperator.SMALLERDOTWC) y.setPairOp(PairOperator.EQUALSDOT);
return y; //alle Paare a <.? b erden durch a =. b ersetzt
}).collect(Collectors.toCollection(HashSet::new)));
if (res.isPresent()) {//wenn subst ein Erg liefert wurde was veraendert
return new TypeUnifyTask().applyTypeUnificationRules(res.get(), finiteClosure);
}
else return x; //wenn nichts veraendert wurde wird x zurueckgegeben
}).collect(Collectors.toCollection(HashSet::new));
System.out.println("RESULT Final: " + results);
logFile.write("RES_FINAL: " + results.toString()+"\n");
logFile.flush();
}
catch (IOException e) { }
return results.stream().map((unifyPairs ->
new ResultSet(UnifyTypeFactory.convert(unifyPairs, generateTPHMap(cons))))).collect(Collectors.toList());
}
/**
* Vererbt alle Variancen bei Paaren (a <. theta) oder (Theta <. a)
* wenn a eine Variance !=0 hat auf alle Typvariablen in Theta.
* @param eq The set of constraints
*/
private Set<PlaceholderType> varianceInheritanceConstraintSet(ConstraintSet<UnifyPair> cons) {
Set<UnifyPair> eq = cons.getAll();
Set<PlaceholderType> usedTPH = new HashSet<>();
Set<PlaceholderType> phSet = eq.stream().map(x -> {
Set<PlaceholderType> pair = new HashSet<>();
if (x.getLhsType() instanceof PlaceholderType) pair.add((PlaceholderType)x.getLhsType());
if (x.getRhsType() instanceof PlaceholderType) pair.add((PlaceholderType)x.getRhsType());
return pair;
}).reduce(new HashSet<>(), (a,b) -> { a.addAll(b); return a;} , (c,d) -> { c.addAll(d); return c;});
ArrayList<PlaceholderType> phSetVariance = new ArrayList<>(phSet);
phSetVariance.removeIf(x -> (x.getVariance() == 0));
while(!phSetVariance.isEmpty()) {
PlaceholderType a = phSetVariance.remove(0);
usedTPH.add(a);
//HashMap<PlaceholderType,Integer> ht = new HashMap<>();
//ht.put(a, a.getVariance());
//ConstraintSet<UnifyPair> eq1 = cons;
//eq1.removeIf(x -> !(x.getLhsType() instanceof PlaceholderType && ((PlaceholderType)x.getLhsType()).equals(a)));
//durch if-Abfrage im foreach geloest
cons.forEach(x -> {
if (x.getLhsType() instanceof PlaceholderType && ((PlaceholderType)x.getLhsType()).equals(a)) {
x.getRhsType().accept(new distributeVariance(), a.getVariance());
}
});
//` eq1 = new HashSet<>(eq);
//eq1.removeIf(x -> !(x.getRhsType() instanceof PlaceholderType && ((PlaceholderType)x.getRhsType()).equals(a)));
//durch if-Abfrage im foreach geloest
cons.forEach(x -> {
if (x.getRhsType() instanceof PlaceholderType && ((PlaceholderType)x.getRhsType()).equals(a)) {
x.getLhsType().accept(new distributeVariance(), a.getVariance());
}
});
phSetVariance = new ArrayList<>(phSet); //macht vermutlich keinen Sinn PL 2018-10-18, doch, es koennen neue TPHs mit Variancen dazugekommen sein PL 2018-11-07
phSetVariance.removeIf(x -> (x.getVariance() == 0 || usedTPH.contains(x)));
}
return usedTPH;
}
private Map<String, TypePlaceholder> generateTPHMap(ConstraintSet<Pair> constraints) { private Map<String, TypePlaceholder> generateTPHMap(ConstraintSet<Pair> constraints) {
HashMap<String, TypePlaceholder> ret = new HashMap<>(); HashMap<String, TypePlaceholder> ret = new HashMap<>();
constraints.map((Pair p) -> { constraints.map((Pair p) -> {

View File

@ -5,6 +5,7 @@ import de.dhbwstuttgart.typeinference.unify.GuavaSetOperations;
import de.dhbwstuttgart.typeinference.unify.model.UnifyPair; import de.dhbwstuttgart.typeinference.unify.model.UnifyPair;
import java.util.*; import java.util.*;
import java.util.function.Consumer;
import java.util.function.Function; import java.util.function.Function;
import java.util.stream.Collectors; import java.util.stream.Collectors;
@ -52,4 +53,29 @@ public class ConstraintSet<A> {
ret.oderConstraints = newOder; ret.oderConstraints = newOder;
return ret; return ret;
} }
public void forEach (Consumer<? super A> c) {
undConstraints.stream().forEach(c);
for(Set<Constraint<A>> oderConstraint : oderConstraints){
oderConstraint.parallelStream().forEach((Constraint<A> as) ->
as.stream().forEach(c));
}
}
public Set<A> getAll () {
Set<A> ret = new HashSet<>();
ret.addAll(undConstraints);
for(Set<Constraint<A>> oderConstraint : oderConstraints){
oderConstraint.parallelStream().forEach((Constraint<A> as) -> ret.addAll(as));
}
return ret;
}
public List<Set<Constraint<A>>> getOderConstraints() {
return oderConstraints;
}
public Set<A> getUndConstraints() {
return undConstraints;
}
} }

View File

@ -229,6 +229,13 @@ public class TYPEStmt implements StatementVisitor{
binary.operation.equals(BinaryExpr.Operator.SUB)){ binary.operation.equals(BinaryExpr.Operator.SUB)){
Set<Constraint<Pair>> numericAdditionOrStringConcatenation = new HashSet<>(); Set<Constraint<Pair>> numericAdditionOrStringConcatenation = new HashSet<>();
// TODO PL 2018-11-06
// Auf importierte Typen einschraenken
// pruefen, ob Typen richtig bestimmt werden.
//Zuerst der Fall für Numerische AusdrücPairOpnumericeratorke, das sind Mul, Mod und Div immer: //Zuerst der Fall für Numerische AusdrücPairOpnumericeratorke, das sind Mul, Mod und Div immer:
//see: https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17 //see: https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17
//Expression muss zu Numeric Convertierbar sein. also von Numeric erben //Expression muss zu Numeric Convertierbar sein. also von Numeric erben

View File

@ -1,9 +1,11 @@
package de.dhbwstuttgart.typeinference.unify; package de.dhbwstuttgart.typeinference.unify;
import java.io.FileWriter; import java.io.FileWriter;
import java.util.List;
import java.util.Set; import java.util.Set;
import java.util.concurrent.ForkJoinPool; import java.util.concurrent.ForkJoinPool;
import de.dhbwstuttgart.typeinference.constraints.Constraint;
import de.dhbwstuttgart.typeinference.unify.interfaces.IFiniteClosure; import de.dhbwstuttgart.typeinference.unify.interfaces.IFiniteClosure;
import de.dhbwstuttgart.typeinference.unify.model.UnifyPair; import de.dhbwstuttgart.typeinference.unify.model.UnifyPair;
@ -22,4 +24,10 @@ public class TypeUnify {
return res; return res;
} }
public Set<Set<UnifyPair>> unifyOderConstraints(Set<UnifyPair> undConstrains, List<Set<Constraint<UnifyPair>>> oderConstraints, IFiniteClosure fc, FileWriter logFile, Boolean log) {
TypeUnifyTask unifyTask = new TypeUnifyTask(undConstrains, oderConstraints, fc, false, logFile, log);
Set<Set<UnifyPair>> res = unifyTask.compute();
return res;
}
} }

View File

@ -18,6 +18,7 @@ import java.util.function.BinaryOperator;
import java.util.stream.Collectors; import java.util.stream.Collectors;
import java.util.stream.Stream; import java.util.stream.Stream;
import de.dhbwstuttgart.typeinference.constraints.Constraint;
import de.dhbwstuttgart.typeinference.unify.interfaces.IFiniteClosure; import de.dhbwstuttgart.typeinference.unify.interfaces.IFiniteClosure;
import de.dhbwstuttgart.typeinference.unify.interfaces.IRuleSet; import de.dhbwstuttgart.typeinference.unify.interfaces.IRuleSet;
import de.dhbwstuttgart.typeinference.unify.interfaces.ISetOperations; import de.dhbwstuttgart.typeinference.unify.interfaces.ISetOperations;
@ -71,7 +72,9 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
*/ */
protected IRuleSet rules; protected IRuleSet rules;
protected Set<UnifyPair> eq; protected Set<UnifyPair> eq; //und-constraints
protected List<Set<Set<UnifyPair>>> oderConstraintsField;
protected IFiniteClosure fc; protected IFiniteClosure fc;
@ -85,6 +88,8 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
Integer noAllErasedElements = 0; Integer noAllErasedElements = 0;
static Integer noou = 0;
static int noBacktracking; static int noBacktracking;
public TypeUnifyTask() { public TypeUnifyTask() {
@ -101,6 +106,25 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
rules = new RuleSet(logFile); rules = new RuleSet(logFile);
} }
public TypeUnifyTask(Set<UnifyPair> eq, List<Set<Constraint<UnifyPair>>> oderConstraints, IFiniteClosure fc, boolean parallel, FileWriter logFile, Boolean log) {
this.eq = eq;
//this.oderConstraints = oderConstraints.stream().map(x -> x.stream().map(y -> new HashSet<>(y)).collect(Collectors.toSet(HashSet::new))).collect(Collectors.toList(ArrayList::new));
this.oderConstraintsField = oderConstraints.stream().map(x -> {
Set<Set<UnifyPair>> ret = new HashSet<>();
for (Constraint<UnifyPair> y : x) {
ret.add(new HashSet<>(y));
}
return ret;
}).collect(Collectors.toCollection(ArrayList::new));
//x.stream().map(y -> new HashSet<>(y)).collect(Collectors.toSet(HashSet::new))).collect(Collectors.toList(ArrayList::new));
this.fc = fc;
this.oup = new OrderingUnifyPair(fc);
this.parallel = parallel;
this.logFile = logFile;
this.log = log;
rules = new RuleSet(logFile);
}
/** /**
* Vererbt alle Variancen * Vererbt alle Variancen
@ -134,260 +158,33 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
} }
} }
*/ */
@Override
protected Set<Set<UnifyPair>> compute() { protected Set<Set<UnifyPair>> compute() {
Set<Set<UnifyPair>> res = unify(eq, fc, parallel); Set<UnifyPair> neweq = new HashSet<>(eq);
/* 1-elementige Oder-Constraints werden in und-Constraints umgewandelt */
oderConstraintsField.stream()
.filter(x -> x.size()==1)
.map(y -> y.stream().findFirst().get()).forEach(x -> neweq.addAll(x));
ArrayList<Set<Set<UnifyPair>>> remainingOderconstraints = oderConstraintsField.stream()
.filter(x -> x.size()>1)
.collect(Collectors.toCollection(ArrayList::new));
Set<Set<UnifyPair>> res = unify(neweq, remainingOderconstraints, fc, parallel, 0);
if (isUndefinedPairSetSet(res)) { return new HashSet<>(); } if (isUndefinedPairSetSet(res)) { return new HashSet<>(); }
else return res; else return res;
} }
/**
* Computes all principal type unifiers for a set of constraints.
* @param eq The set of constraints
* @param fc The finite closure
* @return The set of all principal type unifiers
*/
protected Set<Set<UnifyPair>> unify(Set<UnifyPair> eq, IFiniteClosure fc, boolean parallel) {
//Set<UnifyPair> aas = eq.stream().filter(x -> x.getLhsType().getName().equals("AA") //&& x.getPairOp().equals(PairOperator.SMALLERDOT)
// ).collect(Collectors.toCollection(HashSet::new));
//writeLog(nOfUnify.toString() + " AA: " + aas.toString());
//if (aas.isEmpty()) {
// System.out.println("");
//}
/* /*
* Step 1: Repeated application of reduce, adapt, erase, swap @Override
*/ protected Set<Set<UnifyPair>> compute() {
nOfUnify++; Set<Set<UnifyPair>> fstElems = new HashSet<>();
writeLog(nOfUnify.toString() + " Unifikation: " + eq.toString()); fstElems.add(eq);
//eq = eq.stream().map(x -> {x.setVariance((byte)-1); return x;}).collect(Collectors.toCollection(HashSet::new)); Set<Set<UnifyPair>> res = computeCartesianRecursiveOderConstraints(fstElems, oderConstraints, fc, parallel);
if (isUndefinedPairSetSet(res)) { return new HashSet<>(); }
/* else return res;
* Variancen auf alle Gleichungen vererben
*/
//PL 2018-05-17 nach JavaTXCompiler verschoben
//varianceInheritance(eq);
/*
* ? extends ? extends Theta rausfiltern
*/
Set<UnifyPair> doubleExt = eq.stream().filter(x -> (x.wrongWildcard())).map(x -> { x.setUndefinedPair(); return x;})
.collect(Collectors.toCollection(HashSet::new));
if (doubleExt.size() > 0) {
Set<Set<UnifyPair>> ret = new HashSet<>();
ret.add(doubleExt);
return ret;
}
Set<UnifyPair> eq0 = applyTypeUnificationRules(eq, fc);
/*
* Step 2 and 3: Create a subset eq1s of pairs where both sides are TPH and eq2s of the other pairs
*/
Set<UnifyPair> eq1s = new HashSet<>();
Set<UnifyPair> eq2s = new HashSet<>();
splitEq(eq0, eq1s, eq2s);
/*
* Step 4: Create possible typings
*
* "Manche Autoren identifizieren die Paare (a, (b,c)) und ((a,b),c)
* mit dem geordneten Tripel (a,b,c), wodurch das kartesische Produkt auch assoziativ wird." - Wikipedia
*/
// There are up to 10 toplevel set. 8 of 10 are the result of the
// cartesian product of the sets created by pattern matching.
List<Set<Set<UnifyPair>>> topLevelSets = new ArrayList<>();
//System.out.println(eq2s);
if(eq1s.size() != 0) { // Do not add empty sets or the cartesian product will always be empty.
Set<Set<UnifyPair>> wrap = new HashSet<>();
wrap.add(eq1s);
topLevelSets.add(wrap); // Add Eq1'
}
// Add the set of [a =. Theta | (a=. Theta) in Eq2']
Set<UnifyPair> bufferSet = eq2s.stream()
.filter(x -> x.getPairOp() == PairOperator.EQUALSDOT && x.getLhsType() instanceof PlaceholderType)
.collect(Collectors.toSet());
if(bufferSet.size() != 0) { // Do not add empty sets or the cartesian product will always be empty.
Set<Set<UnifyPair>> wrap = new HashSet<>();
wrap.add(bufferSet);
topLevelSets.add(wrap);
eq2s.removeAll(bufferSet);
}
// Sets that originate from pair pattern matching
// Sets of the "second level"
Set<UnifyPair> undefinedPairs = new HashSet<>();
if (printtag) System.out.println("eq2s " + eq2s);
//writeLog("BufferSet: " + bufferSet.toString()+"\n");
Set<Set<Set<Set<UnifyPair>>>> secondLevelSets = calculatePairSets(eq2s, fc, undefinedPairs);
//PL 2017-09-20: Im calculatePairSets wird möglicherweise O .< java.lang.Integer
//nicht ausgewertet Faculty Beispiel im 1. Schritt
//PL 2017-10-03 geloest, muesste noch mit FCs mit kleineren
//Typen getestet werden.
if (printtag) System.out.println("secondLevelSets:" +secondLevelSets);
// If pairs occured that did not match one of the cartesian product cases,
// those pairs are contradictory and the unification is impossible.
if(!undefinedPairs.isEmpty()) {
noUndefPair++;
for (UnifyPair up : undefinedPairs) {
writeLog(noUndefPair.toString() + " UndefinedPairs; " + up);
writeLog("BasePair; " + up.getBasePair());
}
Set<Set<UnifyPair>> error = new HashSet<>();
undefinedPairs = undefinedPairs.stream().map(x -> { x.setUndefinedPair(); return x;}).collect(Collectors.toCollection(HashSet::new));
error.add(undefinedPairs);
return error;
}
/* Up to here, no cartesian products are calculated.
* filters for pairs and sets can be applied here */
// Alternative: Sub cartesian products of the second level (pattern matched) sets
// "the big (x)"
/* for(Set<Set<Set<UnifyPair>>> secondLevelSet : secondLevelSets) {
//System.out.println("secondLevelSet "+secondLevelSet.size());
List<Set<Set<UnifyPair>>> secondLevelSetList = new ArrayList<>(secondLevelSet);
Set<List<Set<UnifyPair>>> cartResult = setOps.cartesianProduct(secondLevelSetList);
//System.out.println("CardResult: "+cartResult.size());
// Flatten and add to top level sets
Set<Set<UnifyPair>> flat = new HashSet<>();
int j = 0;
for(List<Set<UnifyPair>> s : cartResult) {
j++;
//System.out.println("s from CardResult: "+cartResult.size() + " " + j);
Set<UnifyPair> flat1 = new HashSet<>();
for(Set<UnifyPair> s1 : s)
flat1.addAll(s1);
flat.add(flat1);
}
//topLevelSets.add(flat);
} }
*/ */
//Alternative KEIN KARTESISCHES PRODUKT der secondlevel Ebene bilden
for(Set<Set<Set<UnifyPair>>> secondLevelSet : secondLevelSets) {
for (Set<Set<UnifyPair>> secondlevelelem : secondLevelSet) {
topLevelSets.add(secondlevelelem);
}
}
//System.out.println(topLevelSets);
//System.out.println();
public Set<Set<UnifyPair>> computeCartesianRecursiveOderConstraints(Set<Set<UnifyPair>> fstElems, List<Set<Set<UnifyPair>>> topLevelSets, IFiniteClosure fc, boolean parallel, int rekTiefe) {
//Aufruf von computeCartesianRecursive ANFANG
return computeCartesianRecursive(new HashSet<>(), new ArrayList<>(topLevelSets), eq, fc, parallel);
}
Set<Set<UnifyPair>> unify2(Set<Set<UnifyPair>> setToFlatten, Set<UnifyPair> eq, IFiniteClosure fc, boolean parallel) {
//Aufruf von computeCartesianRecursive ENDE
//keine Ahnung woher das kommt
//Set<Set<UnifyPair>> setToFlatten = topLevelSets.stream().map(x -> x.iterator().next()).collect(Collectors.toCollection(HashSet::new));
//Muss auskommentiert werden, wenn computeCartesianRecursive ANFANG
// Cartesian product over all (up to 10) top level sets
//Set<Set<Set<UnifyPair>>> eqPrimeSet = setOps.cartesianProduct(topLevelSets)
// .stream().map(x -> new HashSet<>(x))
// .collect(Collectors.toCollection(HashSet::new));
//Muss auskommentiert werden, wenn computeCartesianRecursive ENDE
Set<Set<UnifyPair>> eqPrimePrimeSet = new HashSet<>();
Set<TypeUnifyTask> forks = new HashSet<>();
//Muss auskommentiert werden, wenn computeCartesianRecursive ANFANG
//for(Set<Set<UnifyPair>> setToFlatten : eqPrimeSet) {
// Flatten the cartesian product
//Muss auskommentiert werden, wenn computeCartesianRecursive ENDE
Set<UnifyPair> eqPrime = new HashSet<>();
setToFlatten.stream().forEach(x -> eqPrime.addAll(x));
/*
* Step 5: Substitution
*/
//System.out.println("vor Subst: " + eqPrime);
Optional<Set<UnifyPair>> eqPrimePrime = rules.subst(eqPrime);
/*
* Step 6 a) Restart (fork) for pairs where subst was applied
*/
if(parallel) {
if (eqPrime.equals(eq) && !eqPrimePrime.isPresent()) //PL 2017-09-29 //(!eqPrimePrime.isPresent()) auskommentiert und durch
//PL 2017-09-29 dies ersetzt //(!eqPrimePrime.isPresent())
//PL 2018-05-18 beide Bedingungen muessen gelten, da eqPrime Veränderungen in allem ausser subst
//eqPrimePrime Veraenderungen in subst repraesentieren.
eqPrimePrimeSet.add(eqPrime);
else if(eqPrimePrime.isPresent()) {
//System.out.println("nextStep: " + eqPrimePrime.get());
TypeUnifyTask fork = new TypeUnifyTask(eqPrimePrime.get(), fc, true, logFile, log);
forks.add(fork);
fork.fork();
}
else {
//System.out.println("nextStep: " + eqPrime);
TypeUnifyTask fork = new TypeUnifyTask(eqPrime, fc, true, logFile, log);
forks.add(fork);
fork.fork();
}
}
else { // sequentiell (Step 6b is included)
if (printtag) System.out.println("nextStep: " + eqPrimePrime);
if (eqPrime.equals(eq) && !eqPrimePrime.isPresent()) { //PL 2017-09-29 //(!eqPrimePrime.isPresent()) auskommentiert und durch
//PL 2017-09-29 dies ersetzt //(!eqPrimePrime.isPresent())
//PL 2018-05-18 beide Bedingungen muessen gelten, da eqPrime Veränderungen in allem ausser subst
//eqPrimePrime Veraenderungen in subst repraesentieren.
try {
if (isSolvedForm(eqPrime)) {
logFile.write(eqPrime.toString()+"\n");
logFile.flush();
}
}
catch (IOException e) { }
eqPrimePrimeSet.add(eqPrime);
}
else if(eqPrimePrime.isPresent()) {
Set<Set<UnifyPair>> unifyres = unify(eqPrimePrime.get(), fc, false);
eqPrimePrimeSet.addAll(unifyres);
}
else {
Set<Set<UnifyPair>> unifyres = unify(eqPrime, fc, false);
eqPrimePrimeSet.addAll(unifyres);
}
}
//Muss auskommentiert werden, wenn computeCartesianRecursive ANFANG
//}
//Muss auskommentiert werden, wenn computeCartesianRecursive ENDE
/*
* Step 6 b) Build the union over everything.
*/
if(parallel)
for(TypeUnifyTask fork : forks)
eqPrimePrimeSet.addAll(fork.join());
/*
* Step 7: Filter empty sets;
*/
eqPrimePrimeSet = eqPrimePrimeSet.stream().filter(x -> isSolvedForm(x) || this.isUndefinedPairSet(x)).collect(Collectors.toCollection(HashSet::new));
if (!eqPrimePrimeSet.isEmpty() && !isUndefinedPairSetSet(eqPrimePrimeSet))
writeLog("Result1 " + eqPrimePrimeSet.toString());
return eqPrimePrimeSet;
}
Set<Set<UnifyPair>> computeCartesianRecursive(Set<Set<UnifyPair>> fstElems, ArrayList<Set<Set<UnifyPair>>> topLevelSets, Set<UnifyPair> eq, IFiniteClosure fc, boolean parallel) {
//ArrayList<Set<Set<UnifyPair>>> remainingSets = new ArrayList<>(topLevelSets); //ArrayList<Set<Set<UnifyPair>>> remainingSets = new ArrayList<>(topLevelSets);
fstElems.addAll(topLevelSets.stream() fstElems.addAll(topLevelSets.stream()
.filter(x -> x.size()==1) .filter(x -> x.size()==1)
@ -397,7 +194,9 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
.filter(x -> x.size()>1) .filter(x -> x.size()>1)
.collect(Collectors.toCollection(ArrayList::new)); .collect(Collectors.toCollection(ArrayList::new));
if (remainingSets.isEmpty()) {//Alle Elemente sind 1-elementig if (remainingSets.isEmpty()) {//Alle Elemente sind 1-elementig
Set<Set<UnifyPair>> result = unify2(fstElems, eq, fc, parallel); Set<UnifyPair> eq = new HashSet<>();
fstElems.stream().forEach(x -> eq.addAll(x));
Set<Set<UnifyPair>> result = unify(eq, new ArrayList<>(), fc, parallel, rekTiefe);
return result; return result;
} }
Set<Set<UnifyPair>> nextSet = remainingSets.remove(0); Set<Set<UnifyPair>> nextSet = remainingSets.remove(0);
@ -492,9 +291,507 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
i++; i++;
Set<Set<UnifyPair>> elems = new HashSet<Set<UnifyPair>>(fstElems); Set<Set<UnifyPair>> elems = new HashSet<Set<UnifyPair>>(fstElems);
elems.add(a); elems.add(a);
Set<Set<UnifyPair>> res = new HashSet<>();
if (remainingSets.isEmpty()) {
noou++;
writeLog("Vor unify Aufruf: " + eq.toString());
writeLog("No of Unify " + noou);
System.out.println(noou);
Set<UnifyPair> eq = new HashSet<>();
elems.stream().forEach(x -> eq.addAll(x));
res = unify(eq, new ArrayList<>(), fc, parallel, rekTiefe);
}
else {//duerfte gar nicht mehr vorkommen PL 2018-04-03
res = computeCartesianRecursiveOderConstraints(elems, remainingSets, fc, parallel, rekTiefe);
}
if (!isUndefinedPairSetSet(res) && isUndefinedPairSetSet(result)) {
//wenn korrektes Ergebnis gefunden alle Fehlerfaelle loeschen
result = res;
}
else {
if ((isUndefinedPairSetSet(res) && isUndefinedPairSetSet(result))
|| (!isUndefinedPairSetSet(res) && !isUndefinedPairSetSet(result))
|| result.isEmpty()) {
//alle Fehlerfaelle und alle korrekten Ergebnis jeweils adden
result.addAll(res);
}
//else {
//wenn Korrekte Ergebnisse da und Feherfälle dazukommen Fehlerfälle ignorieren
// if (isUndefinedPairSetSet(res) && !isUndefinedPairSetSet(result)) {
// result = result;
// }
//}
}
/* auskommentiert um alle Max und min Betrachtung auszuschalten ANFANG */
if (!result.isEmpty() && !isUndefinedPairSetSet(res)) {
if (nextSetasList.iterator().hasNext() && nextSetasList.iterator().next().stream().filter(x -> x.getLhsType().getName().equals("B")).findFirst().isPresent() && nextSetasList.size()>1)
System.out.print("");
Iterator<Set<UnifyPair>> nextSetasListIt = new ArrayList<Set<UnifyPair>>(nextSetasList).iterator();
if (variance == 1) {
System.out.println("");
while (nextSetasListIt.hasNext()) {
Set<UnifyPair> a_next = nextSetasListIt.next();
if (a.equals(a_next) ||
(oup.compare(a, a_next) == 1)) {
nextSetasList.remove(a_next);
}
else {
System.out.println("");
}
}
}
else { if (variance == -1) {
System.out.println("");
while (nextSetasListIt.hasNext()) {
Set<UnifyPair> a_next = nextSetasListIt.next();
if (a.equals(a_next) ||
(oup.compare(a, a_next) == -1)) {
nextSetasList.remove(0);
}
else {
System.out.println("");
}
}
}
else if (variance == 0) {
//break;
}}
}
/* auskommentiert um alle Max und min Betrachtung auszuschalten ENDE */
/* PL 2018-11-05 wird falsch weil es auf der obersten Ebene ist.
if (isUndefinedPairSetSet(res)) {
int nofstred= 0;
Set<UnifyPair> abhSubst = res.stream()
.map(b ->
b.stream()
.map(x -> x.getAllSubstitutions())
.reduce((y,z) -> { y.addAll(z); return y;}).get())
.reduce((y,z) -> { y.addAll(z); return y;}).get();
Set<UnifyPair> b = a;//effective final a
Set<UnifyPair> durchschnitt = abhSubst.stream()
.filter(x -> b.contains(x))
//.filter(y -> abhSubst.contains(y))
.collect(Collectors.toCollection(HashSet::new));
//Set<PlaceholderType> vars = durchschnitt.stream().map(x -> (PlaceholderType)x.getLhsType()).collect(Collectors.toCollection(HashSet::new));
int len = nextSetasList.size();
Set<UnifyPair> undefRes = res.stream().reduce((y,z) -> { y.addAll(z); return y;}).get(); //flatten aller undef results
Set<Pair<Set<UnifyPair>, UnifyPair>> reducedUndefResSubstGroundedBasePair = undefRes.stream()
.map(x -> { Set<UnifyPair> su = x.getAllSubstitutions(); //alle benutzten Substitutionen
su.add(x.getGroundBasePair()); // urspruengliches Paar
su.removeAll(durchschnitt); //alle aktuell genänderten Paare entfernen
return new Pair<>(su, x.getGroundBasePair());})
.collect(Collectors.toCollection(HashSet::new));
if (res.size() > 1) {
System.out.println();
}
nextSetasList = nextSetasList.stream().filter(x -> {
//Boolean ret = false;
//for (PlaceholderType var : vars) {
// ret = ret || x.stream().map(b -> b.getLhsType().equals(var)).reduce((c,d) -> c || d).get();
//}
return (!x.containsAll(durchschnitt));//Was passiert wenn durchschnitt leer ist??
})//.filter(y -> couldBecorrect(reducedUndefResSubstGroundedBasePair, y)) //fuer testzwecke auskommentiert um nofstred zu bestimmen PL 2018-10-10
.collect(Collectors.toCollection(ArrayList::new));
nofstred = nextSetasList.size();
//NOCH NICHT korrekt PL 2018-10-12
//nextSetasList = nextSetasList.stream().filter(y -> couldBecorrect(reducedUndefResSubstGroundedBasePair, y))
// .collect(Collectors.toCollection(ArrayList::new));
writeLog("res (undef): " + res.toString());
writeLog("abhSubst: " + abhSubst.toString());
writeLog("a: " + a.toString());
writeLog("Durchschnitt: " + durchschnitt.toString());
writeLog("nextSet: " + nextSet.toString());
writeLog("nextSetasList: " + nextSetasList.toString());
writeLog("Number first erased Elements (undef): " + (len - nofstred));
writeLog("Number second erased Elements (undef): " + (nofstred- nextSetasList.size()));
writeLog("Number erased Elements (undef): " + (len - nextSetasList.size()));
noAllErasedElements = noAllErasedElements + (len - nextSetasList.size());
writeLog("Number of all erased Elements (undef): " + noAllErasedElements.toString());
noBacktracking++;
writeLog("Number of Backtracking: " + noBacktracking);
System.out.println("");
}
*/
//if (nextSetasList.size() == 0 && isUndefinedPairSetSet(result) && nextSet.size() > 1) {
// return result;
//}
//else {
// result.removeIf(y -> isUndefinedPairSet(y));
//}
//else result.stream().filter(y -> !isUndefinedPairSet(y));
} // End of while (nextSetasList.size() > 0)
return result;
}
/**
* Computes all principal type unifiers for a set of constraints.
* @param eq The set of constraints
* @param fc The finite closure
* @return The set of all principal type unifiers
*/
protected Set<Set<UnifyPair>> unify(Set<UnifyPair> eq, List<Set<Set<UnifyPair>>> oderConstraints, IFiniteClosure fc, boolean parallel, int rekTiefe) {
//Set<UnifyPair> aas = eq.stream().filter(x -> x.getLhsType().getName().equals("AA") //&& x.getPairOp().equals(PairOperator.SMALLERDOT)
// ).collect(Collectors.toCollection(HashSet::new));
//writeLog(nOfUnify.toString() + " AA: " + aas.toString());
//if (aas.isEmpty()) {
// System.out.println("");
//}
//.collect(Collectors.toCollection(HashSet::new)));
/*
* Step 1: Repeated application of reduce, adapt, erase, swap
*/
rekTiefe++;
nOfUnify++;
writeLog(nOfUnify.toString() + " Unifikation: " + eq.toString());
writeLog(nOfUnify.toString() + " Oderconstraints: " + oderConstraints.toString());
//eq = eq.stream().map(x -> {x.setVariance((byte)-1); return x;}).collect(Collectors.toCollection(HashSet::new));
/*
* Variancen auf alle Gleichungen vererben
*/
//PL 2018-05-17 nach JavaTXCompiler verschoben
//varianceInheritance(eq);
/*
* ? extends ? extends Theta rausfiltern
*/
Set<UnifyPair> doubleExt = eq.stream().filter(x -> (x.wrongWildcard())).map(x -> { x.setUndefinedPair(); return x;})
.collect(Collectors.toCollection(HashSet::new));
if (doubleExt.size() > 0) {
Set<Set<UnifyPair>> ret = new HashSet<>();
ret.add(doubleExt);
return ret;
}
Set<UnifyPair> eq0 = applyTypeUnificationRules(eq, fc);
/*
* Step 2 and 3: Create a subset eq1s of pairs where both sides are TPH and eq2s of the other pairs
*/
Set<UnifyPair> eq1s = new HashSet<>();
Set<UnifyPair> eq2s = new HashSet<>();
splitEq(eq0, eq1s, eq2s);
/*
* Step 4: Create possible typings
*
* "Manche Autoren identifizieren die Paare (a, (b,c)) und ((a,b),c)
* mit dem geordneten Tripel (a,b,c), wodurch das kartesische Produkt auch assoziativ wird." - Wikipedia
*/
// There are up to 10 toplevel set. 8 of 10 are the result of the
// cartesian product of the sets created by pattern matching.
List<Set<Set<UnifyPair>>> topLevelSets = new ArrayList<>();
//System.out.println(eq2s);
if(eq1s.size() != 0) { // Do not add empty sets or the cartesian product will always be empty.
Set<Set<UnifyPair>> wrap = new HashSet<>();
wrap.add(eq1s);
topLevelSets.add(wrap); // Add Eq1'
}
// Add the set of [a =. Theta | (a=. Theta) in Eq2']
Set<UnifyPair> bufferSet = eq2s.stream()
.filter(x -> x.getPairOp() == PairOperator.EQUALSDOT && x.getLhsType() instanceof PlaceholderType)
.collect(Collectors.toSet());
if(bufferSet.size() != 0) { // Do not add empty sets or the cartesian product will always be empty.
Set<Set<UnifyPair>> wrap = new HashSet<>();
wrap.add(bufferSet);
topLevelSets.add(wrap);
eq2s.removeAll(bufferSet);
}
// Sets that originate from pair pattern matching
// Sets of the "second level"
Set<UnifyPair> undefinedPairs = new HashSet<>();
if (printtag) System.out.println("eq2s " + eq2s);
//writeLog("BufferSet: " + bufferSet.toString()+"\n");
List<Set<Set<UnifyPair>>> oderConstraintsOutput = new ArrayList<>(oderConstraints);
Set<Set<Set<Set<UnifyPair>>>> secondLevelSets = calculatePairSets(eq2s, oderConstraints, fc, undefinedPairs, oderConstraintsOutput);
//PL 2017-09-20: Im calculatePairSets wird möglicherweise O .< java.lang.Integer
//nicht ausgewertet Faculty Beispiel im 1. Schritt
//PL 2017-10-03 geloest, muesste noch mit FCs mit kleineren
//Typen getestet werden.
if (printtag) System.out.println("secondLevelSets:" +secondLevelSets);
// If pairs occured that did not match one of the cartesian product cases,
// those pairs are contradictory and the unification is impossible.
if(!undefinedPairs.isEmpty()) {
noUndefPair++;
for (UnifyPair up : undefinedPairs) {
writeLog(noUndefPair.toString() + " UndefinedPairs; " + up);
writeLog("BasePair; " + up.getBasePair());
}
Set<Set<UnifyPair>> error = new HashSet<>();
undefinedPairs = undefinedPairs.stream().map(x -> { x.setUndefinedPair(); return x;}).collect(Collectors.toCollection(HashSet::new));
error.add(undefinedPairs);
return error;
}
/* Up to here, no cartesian products are calculated.
* filters for pairs and sets can be applied here */
// Alternative: Sub cartesian products of the second level (pattern matched) sets
// "the big (x)"
/* for(Set<Set<Set<UnifyPair>>> secondLevelSet : secondLevelSets) {
//System.out.println("secondLevelSet "+secondLevelSet.size());
List<Set<Set<UnifyPair>>> secondLevelSetList = new ArrayList<>(secondLevelSet);
Set<List<Set<UnifyPair>>> cartResult = setOps.cartesianProduct(secondLevelSetList);
//System.out.println("CardResult: "+cartResult.size());
// Flatten and add to top level sets
Set<Set<UnifyPair>> flat = new HashSet<>();
int j = 0;
for(List<Set<UnifyPair>> s : cartResult) {
j++;
//System.out.println("s from CardResult: "+cartResult.size() + " " + j);
Set<UnifyPair> flat1 = new HashSet<>();
for(Set<UnifyPair> s1 : s)
flat1.addAll(s1);
flat.add(flat1);
}
//topLevelSets.add(flat);
}
*/
//Alternative KEIN KARTESISCHES PRODUKT der secondlevel Ebene bilden
for(Set<Set<Set<UnifyPair>>> secondLevelSet : secondLevelSets) {
for (Set<Set<UnifyPair>> secondlevelelem : secondLevelSet) {
topLevelSets.add(secondlevelelem);
}
}
//System.out.println(topLevelSets);
//System.out.println();
//Aufruf von computeCartesianRecursive ANFANG
return computeCartesianRecursive(new HashSet<>(), new ArrayList<>(topLevelSets), eq, oderConstraintsOutput, fc, parallel, rekTiefe);
}
Set<Set<UnifyPair>> unify2(Set<Set<UnifyPair>> setToFlatten, Set<UnifyPair> eq, List<Set<Set<UnifyPair>>> oderConstraints, IFiniteClosure fc, boolean parallel, int rekTiefe) {
//Aufruf von computeCartesianRecursive ENDE
//keine Ahnung woher das kommt
//Set<Set<UnifyPair>> setToFlatten = topLevelSets.stream().map(x -> x.iterator().next()).collect(Collectors.toCollection(HashSet::new));
//Muss auskommentiert werden, wenn computeCartesianRecursive ANFANG
// Cartesian product over all (up to 10) top level sets
//Set<Set<Set<UnifyPair>>> eqPrimeSet = setOps.cartesianProduct(topLevelSets)
// .stream().map(x -> new HashSet<>(x))
// .collect(Collectors.toCollection(HashSet::new));
//Muss auskommentiert werden, wenn computeCartesianRecursive ENDE
Set<Set<UnifyPair>> eqPrimePrimeSet = new HashSet<>();
Set<TypeUnifyTask> forks = new HashSet<>();
//Muss auskommentiert werden, wenn computeCartesianRecursive ANFANG
//for(Set<Set<UnifyPair>> setToFlatten : eqPrimeSet) {
// Flatten the cartesian product
//Muss auskommentiert werden, wenn computeCartesianRecursive ENDE
Set<UnifyPair> eqPrime = new HashSet<>();
setToFlatten.stream().forEach(x -> eqPrime.addAll(x));
/*
* Step 5: Substitution
*/
//System.out.println("vor Subst: " + eqPrime);
Optional<Set<UnifyPair>> eqPrimePrime = rules.subst(eqPrime);
/*
* Step 6 a) Restart (fork) for pairs where subst was applied
*/
if(parallel) {
if (eqPrime.equals(eq) && !eqPrimePrime.isPresent()) //PL 2017-09-29 //(!eqPrimePrime.isPresent()) auskommentiert und durch
//PL 2017-09-29 dies ersetzt //(!eqPrimePrime.isPresent())
//PL 2018-05-18 beide Bedingungen muessen gelten, da eqPrime Veränderungen in allem ausser subst
//eqPrimePrime Veraenderungen in subst repraesentieren.
eqPrimePrimeSet.add(eqPrime);
else if(eqPrimePrime.isPresent()) {
//System.out.println("nextStep: " + eqPrimePrime.get());
TypeUnifyTask fork = new TypeUnifyTask(eqPrimePrime.get(), fc, true, logFile, log);
forks.add(fork);
fork.fork();
}
else {
//System.out.println("nextStep: " + eqPrime);
TypeUnifyTask fork = new TypeUnifyTask(eqPrime, fc, true, logFile, log);
forks.add(fork);
fork.fork();
}
}
else { // sequentiell (Step 6b is included)
if (printtag) System.out.println("nextStep: " + eqPrimePrime);
if (eqPrime.equals(eq) && !eqPrimePrime.isPresent()) { //PL 2017-09-29 //(!eqPrimePrime.isPresent()) auskommentiert und durch
//PL 2017-09-29 dies ersetzt //(!eqPrimePrime.isPresent())
//PL 2018-05-18 beide Bedingungen muessen gelten, da eqPrime Veränderungen in allem ausser subst
//eqPrimePrime Veraenderungen in subst repraesentieren.
try {
if (isSolvedForm(eqPrime)) {
logFile.write(eqPrime.toString()+"\n");
logFile.flush();
}
}
catch (IOException e) { }
eqPrimePrimeSet.add(eqPrime);
}
else if(eqPrimePrime.isPresent()) {
Set<Set<UnifyPair>> unifyres = unify(eqPrimePrime.get(), oderConstraints, fc, false, rekTiefe);
eqPrimePrimeSet.addAll(unifyres);
}
else {
Set<Set<UnifyPair>> unifyres = unify(eqPrime, oderConstraints, fc, false, rekTiefe);
eqPrimePrimeSet.addAll(unifyres);
}
}
//Muss auskommentiert werden, wenn computeCartesianRecursive ANFANG
//}
//Muss auskommentiert werden, wenn computeCartesianRecursive ENDE
/*
* Step 6 b) Build the union over everything.
*/
if(parallel)
for(TypeUnifyTask fork : forks)
eqPrimePrimeSet.addAll(fork.join());
/*
* Step 7: Filter empty sets;
*/
eqPrimePrimeSet = eqPrimePrimeSet.stream().filter(x -> isSolvedForm(x) || this.isUndefinedPairSet(x)).collect(Collectors.toCollection(HashSet::new));
if (!eqPrimePrimeSet.isEmpty() && !isUndefinedPairSetSet(eqPrimePrimeSet))
writeLog("Result1 " + eqPrimePrimeSet.toString());
return eqPrimePrimeSet;
}
Set<Set<UnifyPair>> computeCartesianRecursive(Set<Set<UnifyPair>> fstElems, ArrayList<Set<Set<UnifyPair>>> topLevelSets, Set<UnifyPair> eq, List<Set<Set<UnifyPair>>> oderConstraints, IFiniteClosure fc, boolean parallel, int rekTiefe) {
//ArrayList<Set<Set<UnifyPair>>> remainingSets = new ArrayList<>(topLevelSets);
fstElems.addAll(topLevelSets.stream()
.filter(x -> x.size()==1)
.map(y -> y.stream().findFirst().get())
.collect(Collectors.toCollection(HashSet::new)));
ArrayList<Set<Set<UnifyPair>>> remainingSets = topLevelSets.stream()
.filter(x -> x.size()>1)
.collect(Collectors.toCollection(ArrayList::new));
if (remainingSets.isEmpty()) {//Alle Elemente sind 1-elementig
Set<Set<UnifyPair>> result = unify2(fstElems, eq, oderConstraints, fc, parallel, rekTiefe);
return result;
}
Set<Set<UnifyPair>> nextSet = remainingSets.remove(0);
writeLog("nextSet: " + nextSet.toString());
List<Set<UnifyPair>> nextSetasList =new ArrayList<>(nextSet);
try {
//List<Set<UnifyPair>>
//nextSetasList = oup.sortedCopy(nextSet);//new ArrayList<>(nextSet);
}
catch (java.lang.IllegalArgumentException e) {
System.out.print("");
}
Set<Set<UnifyPair>> result = new HashSet<>();
int variance = 0;
Optional<Integer> xi = nextSetasList.stream().map(x -> x.stream().filter(y -> y.getLhsType() instanceof PlaceholderType)
.filter(z -> ((PlaceholderType)z.getLhsType()).getVariance() != 0)
.map(c -> ((PlaceholderType)c.getLhsType()).getVariance())
.reduce((a,b)-> {if (a==b) return a; else return 2; })) //2 kommt insbesondere bei Oder-Constraints vor
.filter(d -> d.isPresent())
.map(e -> e.get())
.findAny();
if (xi.isPresent()) {
variance = xi.get();
}
//if (variance == 1 && nextSetasList.size() > 1) {
// List<Set<UnifyPair>> al = new ArrayList<>(nextSetasList.size());
// for (int ii = 0; ii < nextSetasList.size();ii++) {
// al.add(0,nextSetasList.get(ii));
// }
// nextSetasList = al;
//}
//Set<UnifyPair> a = nextSetasListIt.next();
/*if (nextSetasList.size()>1) {zu loeschen
if (nextSetasList.iterator().next().iterator().next().getLhsType().getName().equals("D"))
System.out.print("");
if (variance == 1) {
a_next = oup.max(nextSetasList.iterator());
}
else if (variance == -1) {
a_next = oup.min(nextSetasList.iterator());
}
else if (variance == 0) {
a_next = nextSetasList.iterator().next();
}
}
else {
a_next = nextSetasList.iterator().next();
}
*/
if (!nextSetasList.iterator().hasNext())
System.out.print("");
if (nextSetasList.iterator().next().stream().filter(x -> x.getLhsType().getName().equals("D")).findFirst().isPresent() && nextSetasList.size()>1)
System.out.print("");
writeLog("nextSetasList: " + nextSetasList.toString());
while (nextSetasList.size() > 0) { //(nextSetasList.size() != 0) {
Set<UnifyPair> a = null;
if (variance == 1) {
a = oup.max(nextSetasList.iterator());
nextSetasList.remove(a);
}
else if (variance == -1) {
a = oup.min(nextSetasList.iterator());
nextSetasList.remove(a);
}
else if (variance == 0 || variance == 2) {
a = nextSetasList.remove(0);
}
//writeLog("nextSet: " + nextSetasList.toString()+ "\n");
//nextSetasList.remove(a);
/* zu loeschen
if (nextSetasList.size() > 0) {
if (nextSetasList.size()>1) {
if (variance == 1) {
a_next = oup.max(nextSetasList.iterator());
}
else if (variance == -1) {
a_next = oup.min(nextSetasList.iterator());
}
else {
a_next = nextSetasList.iterator().next();
}
}
else {
a_next = nextSetasList.iterator().next();
}
}
*/
//PL 2018-03-01
//TODO: 1. Maximum und Minimum unterscheiden
//TODO: 2. compare noch für alle Elmemente die nicht X =. ty sind erweitern
//for(Set<UnifyPair> a : newSet) {
i++;
Set<Set<UnifyPair>> elems = new HashSet<Set<UnifyPair>>(fstElems);
writeLog("a1: " + rekTiefe + " "+ a.toString()+ "\n");
elems.add(a);
//if (remainingSets.isEmpty()) {//muss immer gegeben sein, weil nur 1 Element der topLevelSets mehr als ein Elemet enthaelt //if (remainingSets.isEmpty()) {//muss immer gegeben sein, weil nur 1 Element der topLevelSets mehr als ein Elemet enthaelt
//writeLog("Vor unify2 Aufruf: " + eq.toString()); //writeLog("Vor unify2 Aufruf: " + eq.toString());
Set<Set<UnifyPair>> res = unify2(elems, eq, fc, parallel); Set<Set<UnifyPair>> res = unify2(elems, eq, oderConstraints, fc, parallel, rekTiefe);
if (!isUndefinedPairSetSet(res) && isUndefinedPairSetSet(result)) { if (!isUndefinedPairSetSet(res) && isUndefinedPairSetSet(result)) {
//wenn korrektes Ergebnis gefunden alle Fehlerfaelle loeschen //wenn korrektes Ergebnis gefunden alle Fehlerfaelle loeschen
result = res; result = res;
@ -565,6 +862,14 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
.map(x -> x.getAllSubstitutions()) .map(x -> x.getAllSubstitutions())
.reduce((y,z) -> { y.addAll(z); return y;}).get()) .reduce((y,z) -> { y.addAll(z); return y;}).get())
.reduce((y,z) -> { y.addAll(z); return y;}).get(); .reduce((y,z) -> { y.addAll(z); return y;}).get();
abhSubst.addAll(
res.stream()
.map(b ->
b.stream()
.map(x -> x.getAllBases())
.reduce((y,z) -> { y.addAll(z); return y;}).get())
.reduce((y,z) -> { y.addAll(z); return y;}).get()
);
Set<UnifyPair> b = a;//effective final a Set<UnifyPair> b = a;//effective final a
Set<UnifyPair> durchschnitt = abhSubst.stream() Set<UnifyPair> durchschnitt = abhSubst.stream()
.filter(x -> b.contains(x)) .filter(x -> b.contains(x))
@ -596,7 +901,7 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
// .collect(Collectors.toCollection(ArrayList::new)); // .collect(Collectors.toCollection(ArrayList::new));
writeLog("res (undef): " + res.toString()); writeLog("res (undef): " + res.toString());
writeLog("abhSubst: " + abhSubst.toString()); writeLog("abhSubst: " + abhSubst.toString());
writeLog("a: " + a.toString()); writeLog("a2: " + rekTiefe + " " + a.toString());
writeLog("Durchschnitt: " + durchschnitt.toString()); writeLog("Durchschnitt: " + durchschnitt.toString());
writeLog("nextSet: " + nextSet.toString()); writeLog("nextSet: " + nextSet.toString());
writeLog("nextSetasList: " + nextSetasList.toString()); writeLog("nextSetasList: " + nextSetasList.toString());
@ -616,7 +921,10 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
// result.removeIf(y -> isUndefinedPairSet(y)); // result.removeIf(y -> isUndefinedPairSet(y));
//} //}
//else result.stream().filter(y -> !isUndefinedPairSet(y)); //else result.stream().filter(y -> !isUndefinedPairSet(y));
writeLog("res: " + res.toString());
} }
writeLog("Return computeCR: " + result.toString());
return result; return result;
} }
@ -893,15 +1201,17 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
* from the pairs that matched the case. Each generated set contains singleton sets or sets with few elements * from the pairs that matched the case. Each generated set contains singleton sets or sets with few elements
* (as in case 1 where sigma is added to the innermost set). * (as in case 1 where sigma is added to the innermost set).
*/ */
protected Set<Set<Set<Set<UnifyPair>>>> calculatePairSets(Set<UnifyPair> eq2s, IFiniteClosure fc, Set<UnifyPair> undefined) { protected Set<Set<Set<Set<UnifyPair>>>> calculatePairSets(Set<UnifyPair> eq2s, List<Set<Set<UnifyPair>>> oderConstraintsInput, IFiniteClosure fc, Set<UnifyPair> undefined, List<Set<Set<UnifyPair>>> oderConstraintsOutput) {
List<Set<Set<Set<UnifyPair>>>> result = new ArrayList<>(8); List<Set<Set<Set<UnifyPair>>>> result = new ArrayList<>(9);
// Init all 8 cases // Init all 8 cases + 9. Case: oderConstraints
for(int i = 0; i < 8; i++) for(int i = 0; i < 9; i++)
result.add(new HashSet<>()); result.add(new HashSet<>());
ArrayList<UnifyPair> eq2sprime = new ArrayList<>(eq2s); ArrayList<UnifyPair> eq2sprime = new ArrayList<>(eq2s);
Iterator<UnifyPair> eq2sprimeit = eq2sprime.iterator(); Iterator<UnifyPair> eq2sprimeit = eq2sprime.iterator();
ArrayList<UnifyPair> eq2sAsList = new ArrayList<>(); ArrayList<UnifyPair> eq2sAsList = new ArrayList<>();
Boolean first = true;
while(eq2sprimeit.hasNext()) {// alle mit Variance != 0 nach vorne schieben while(eq2sprimeit.hasNext()) {// alle mit Variance != 0 nach vorne schieben
UnifyPair up = eq2sprimeit.next(); UnifyPair up = eq2sprimeit.next();
if ((up.getLhsType() instanceof PlaceholderType && ((PlaceholderType)up.getLhsType()).getVariance() != 0) if ((up.getLhsType() instanceof PlaceholderType && ((PlaceholderType)up.getLhsType()).getVariance() != 0)
@ -910,8 +1220,43 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
eq2s.remove(up); eq2s.remove(up);
} }
} }
if (eq2sAsList.isEmpty()) {
List<Set<Set<UnifyPair>>> oderConstraintsVariance = oderConstraintsOutput.stream() //Alle Elemente rauswerfen, die Variance 0 haben oder keine TPH in LHS oder RHS sind
.filter(x -> x.stream()
.filter(y ->
y.stream().filter(z -> ((z.getLhsType() instanceof PlaceholderType)
&& (((PlaceholderType)(z.getLhsType())).getVariance() != 0))
|| ((z.getRhsType() instanceof PlaceholderType)
&& (((PlaceholderType)(z.getRhsType())).getVariance() != 0))
).findFirst().isPresent()
).findFirst().isPresent()).collect(Collectors.toList());
if (!oderConstraintsVariance.isEmpty()) {
Set<Set<UnifyPair>> ret = oderConstraintsVariance.get(0);
oderConstraintsOutput.remove(ret);
//Set<UnifyPair> retFlat = new HashSet<>();
//ret.stream().forEach(x -> retFlat.addAll(x));
ret.stream().forEach(x -> x.stream().forEach(y -> y.addSubstitutions(x)));
result.get(8).add(ret);
first = false;
}
}
eq2sAsList.addAll(eq2s); eq2sAsList.addAll(eq2s);
Boolean first = true;
if (eq2sAsList.isEmpty() && first) {//Alle eq2s sind empty und alle oderConstraints mit Variance != 0 sind bearbeitet
if (!oderConstraintsOutput.isEmpty()) {
Set<Set<UnifyPair>> ret = oderConstraintsOutput.remove(0);
//Set<UnifyPair> retFlat = new HashSet<>();
//ret.stream().forEach(x -> retFlat.addAll(x));
ret.stream().forEach(x -> x.stream().forEach(y -> y.addSubstitutions(x)));
result.get(8).add(ret);
first = false;
}
}
/*
Bei allen die Abhaengigkeit der Elemente aus eq2sAsList als evtl. als Substitution
hinzufuegen
*/
for(UnifyPair pair : eq2sAsList) { for(UnifyPair pair : eq2sAsList) {
PairOperator pairOp = pair.getPairOp(); PairOperator pairOp = pair.getPairOp();
UnifyType lhsType = pair.getLhsType(); UnifyType lhsType = pair.getLhsType();
@ -921,6 +1266,9 @@ public class TypeUnifyTask extends RecursiveTask<Set<Set<UnifyPair>>> {
if (((pairOp == PairOperator.SMALLERDOT) || (pairOp == PairOperator.SMALLERNEQDOT)) && lhsType instanceof PlaceholderType) { if (((pairOp == PairOperator.SMALLERDOT) || (pairOp == PairOperator.SMALLERNEQDOT)) && lhsType instanceof PlaceholderType) {
//System.out.println(pair); //System.out.println(pair);
if (first) { //writeLog(pair.toString()+"\n"); if (first) { //writeLog(pair.toString()+"\n");
if (((PlaceholderType)(pair.getLhsType())).getName().equals("AR")) {
System.out.println("AR");
}
Set<Set<UnifyPair>> x1 = unifyCase1(pair, fc); Set<Set<UnifyPair>> x1 = unifyCase1(pair, fc);
if (pairOp == PairOperator.SMALLERNEQDOT) { if (pairOp == PairOperator.SMALLERNEQDOT) {
Set<UnifyPair> remElem = new HashSet<>(); Set<UnifyPair> remElem = new HashSet<>();

View File

@ -121,6 +121,10 @@ public class UnifyPair {
pairOp = po; pairOp = po;
} }
public void addSubstitutions(Set<UnifyPair> sup) {
substitution.addAll(sup);
}
public byte getVariance() { public byte getVariance() {
return variance; return variance;
} }
@ -152,6 +156,15 @@ public class UnifyPair {
return ret; return ret;
} }
public Set<UnifyPair> getAllBases () {
Set<UnifyPair> ret = new HashSet<>();
if (basePair != null) {
ret.add(getBasePair());
ret.addAll(basePair.getAllBases());
}
return ret;
}
public UnifyPair getGroundBasePair () { public UnifyPair getGroundBasePair () {
if (basePair == null) { if (basePair == null) {
return this; return this;

View File

@ -32,9 +32,9 @@ public class MatrixOpTest {
fileToTest = new File(path); fileToTest = new File(path);
compiler = new JavaTXCompiler(fileToTest); compiler = new JavaTXCompiler(fileToTest);
pathToClassFile = System.getProperty("user.dir")+"/testBytecode/generatedBC/"; pathToClassFile = System.getProperty("user.dir")+"/testBytecode/generatedBC/";
// compiler.generateBytecode(pathToClassFile); compiler.generateBytecode(pathToClassFile);
// loader = new URLClassLoader(new URL[] {new URL("file://"+pathToClassFile)}); loader = new URLClassLoader(new URL[] {new URL("file://"+pathToClassFile)});
// classToTest = loader.loadClass("MatrixOP"); classToTest = loader.loadClass("MatrixOP");
/* /*
Vector<Vector<Integer>> vv = new Vector<Vector<Integer>>(); Vector<Vector<Integer>> vv = new Vector<Vector<Integer>>();
Vector<Integer> v1 = new Vector<Integer> (); Vector<Integer> v1 = new Vector<Integer> ();

View File

@ -1,8 +1,8 @@
import java.util.Vector; import java.util.Vector;
import java.lang.Integer; import java.lang.Integer;
//import java.lang.Float; import java.lang.Float;
//import java.lang.Byte; //import java.lang.Byte;
import java.lang.Boolean; //import java.lang.Boolean;
public class Matrix extends Vector<Vector<Integer>> { public class Matrix extends Vector<Vector<Integer>> {