JavaCompilerCore/test/unify/UnifyTest.java

1054 lines
34 KiB
Java

package unify;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.util.stream.Collectors;
import org.junit.Test;
import de.dhbwstuttgart.typeinference.unify.TypeUnify;
import de.dhbwstuttgart.typeinference.unify.interfaces.IFiniteClosure;
import de.dhbwstuttgart.typeinference.unify.model.UnifyPair;
import de.dhbwstuttgart.typeinference.unify.model.FunNType;
import de.dhbwstuttgart.typeinference.unify.model.PairOperator;
import de.dhbwstuttgart.typeinference.unify.model.PlaceholderType;
import de.dhbwstuttgart.typeinference.unify.model.UnifyType;
import de.dhbwstuttgart.typeinference.unify.model.TypeParams;
import junit.framework.Assert;
public class UnifyTest {
/**
* Testing the unification for cases with (n)one pair and without generics.
*/
@Test
public void unifyTestTrivial() {
/*
* INIT
*/
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType number = tf.getSimpleType("Number");
UnifyType object = tf.getSimpleType("Object");
UnifyType integer = tf.getSimpleType("Integer");
UnifyType doubl = tf.getSimpleType("Double");
fcb.add(number, object);
fcb.add(integer, number);
fcb.add(doubl, number);
IFiniteClosure fc = fcb.getCollectionExample();
/*
* Test 1:
*
* unify({ }) = { }
*/
Set<UnifyPair> eq = new HashSet<UnifyPair>();
Set<Set<UnifyPair>> expected = new HashSet<>();
expected.add(new HashSet<>());
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
/*
* Test 2:
*
* (a <. Number)
*/
UnifyType tphA = tf.getPlaceholderType("a");
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, number, PairOperator.SMALLERDOT));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, number, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, integer, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, doubl, PairOperator.EQUALSDOT));
actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
/*
* Test 3:
*
* (Integer <. a)
*/
eq = new HashSet<>();
eq.add(new UnifyPair(integer, tphA, PairOperator.SMALLERDOT));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, integer, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, number, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, object, PairOperator.EQUALSDOT));
actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
/*
* Test 4:
*
* (a <.? Number)
*/
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, number, PairOperator.SMALLERDOTWC));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, number, PairOperator.EQUALSDOT));
actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
/*
* Test 5:
*
* (a <.? ? super Integer)
*/
UnifyType supInteger = tf.getSuperType(integer);
UnifyType supNumber = tf.getSuperType(number);
UnifyType supObject = tf.getSuperType(object);
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, supInteger, PairOperator.SMALLERDOTWC));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, integer, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, number, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, object, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, supInteger, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, supNumber, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, supObject, PairOperator.EQUALSDOT));
actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("? super Integer");
System.out.println(actual);
actual = filterGeneratedTPHsMultiple(actual);
Assert.assertEquals(expected, actual);
/*
* Test 6:
*
* (Number <.? a)
*
*/
eq = new HashSet<>();
UnifyType extNumber = tf.getExtendsType(number);
UnifyType extObject = tf.getExtendsType(object);
UnifyType supDouble = tf.getSuperType(doubl);
eq.add(new UnifyPair(number, tphA, PairOperator.SMALLERDOTWC));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, number, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, extNumber, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, extObject, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, supInteger, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, supDouble, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, supNumber, PairOperator.EQUALSDOT));
actual = new TypeUnify().unifySequential(eq, fc);
actual = filterGeneratedTPHsMultiple(actual);
Assert.assertEquals(expected, actual);
/*
* Test 7:
*
* (? extends Number <.? a)
*/
eq = new HashSet<>();
eq.add(new UnifyPair(extNumber, tphA, PairOperator.SMALLERDOTWC));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, extNumber, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, extObject, PairOperator.EQUALSDOT));
actual = new TypeUnify().unifySequential(eq, fc);
actual = filterGeneratedTPHsMultiple(actual);
Assert.assertEquals(expected, actual);
/*
* Test 8:
*
* (a <.? ? extends Number)
*/
UnifyType extInteger = tf.getExtendsType(integer);
UnifyType extDouble = tf.getExtendsType(doubl);
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, extNumber, PairOperator.SMALLERDOTWC));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, extNumber, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, extInteger, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, extDouble, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, doubl, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, integer, PairOperator.EQUALSDOT));
addAsSet(expected, new UnifyPair(tphA, number, PairOperator.EQUALSDOT));
actual = new TypeUnify().unifySequential(eq, fc);
actual = filterGeneratedTPHsMultiple(actual);
Assert.assertEquals(expected, actual);
/*
* Test 8:
*
* (Integer <. Number)
*/
eq = new HashSet<>();
eq.add(new UnifyPair(integer, number, PairOperator.SMALLERDOT));
expected = new HashSet<>();
expected.add(new HashSet<>());
actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
/*
* Test 9:
*
* (Integer <.? Number)
*/
eq = new HashSet<>();
eq.add(new UnifyPair(integer, number, PairOperator.SMALLERDOTWC));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
/*
* Test 10:
*
* (a <. b)
*/
UnifyType tphB = tf.getPlaceholderType("b");
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, tphB, PairOperator.SMALLERDOT));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, tphB, PairOperator.SMALLERDOT));
actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
/*
* Test 11:
*
* (a <.? b)
*/
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, tphB, PairOperator.SMALLERDOTWC));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, tphB, PairOperator.SMALLERDOTWC));
actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
/*
* Test 12:
*
* (void <. void)
*/
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, tf.getSimpleType("void"), PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tf.getSimpleType("void"), tphA, PairOperator.SMALLERDOT));
expected = new HashSet<>();
addAsSet(expected, new UnifyPair(tphA, tf.getSimpleType("void"), PairOperator.EQUALSDOT));
//Test funktioniert momentan auch ohne ein "void" in der Finite Closure
//fcb.add(tf.getSimpleType("void"), tf.getSimpleType("Object"));
IFiniteClosure voidFC = fcb.getFiniteClosure();
actual = new TypeUnify().unifySequential(eq, fc);
Assert.assertEquals(expected, actual);
}
@Test
public void unifyTestSimple() {
/*
* INIT
*/
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType number = tf.getSimpleType("Number");
UnifyType object = tf.getSimpleType("Object");
UnifyType integer = tf.getSimpleType("Integer");
UnifyType doubl = tf.getSimpleType("Double");
//fcb.add(number, object);
fcb.add(integer, number);
//fcb.add(doubl, number);
IFiniteClosure fc = fcb.getCollectionExample();
/*
* Test 1:
*
* (Vector<a> <. Vector<? extends b>)
* (List<b> <. List<? extends Number>)
*
* Expected:
* {(b = Number), (a = Number)}, {(b = Number), (a = Integer)}, {(b = Number), (a = Integer)}
* (b = Integer),
*/
UnifyType tphA = tf.getPlaceholderType("a");
UnifyType tphB = tf.getPlaceholderType("b");
UnifyType extB = tf.getExtendsType(tphB);
UnifyType extNum = tf.getExtendsType(number);
Set<UnifyPair> eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tf.getSimpleType("Vector", tphA), tf.getSimpleType("Vector", extB), PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tf.getSimpleType("List", tphB), tf.getSimpleType("List", extNum), PairOperator.SMALLERDOT));
Set<Set<UnifyPair>> expected = new HashSet<>();
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
//System.out.println(actual);
//Assert.assertEquals(actual, expected);
/*
* Test 2:
*
* Vector<? extends a> <. List<? extends Number>
*
*/
UnifyType extA = tf.getExtendsType(tphA);
eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tf.getSimpleType("Vector", extA), tf.getSimpleType("Vector", extNum), PairOperator.SMALLERDOT));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
//System.out.println(actual);
//Assert.assertEquals(actual, expected);
/*
* Test 3:
*
* Vector<? extends Number> <. List<? extends a>
*
*/
eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tf.getSimpleType("Vector", extNum), tf.getSimpleType("Vector", extA), PairOperator.SMALLERDOT));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
System.out.println(actual);
//Assert.assertEquals(actual, expected);
/*
* Test 4:
*
* LinkedList <. Deque <. Queue <. Collection
*
* Vector<Number> <. List<a>
* List<a> <. AbstractList<b>
* ? extends Number <.? b
*/
eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tf.getSimpleType("LinkedList", number), tf.getSimpleType("Deque", tphA), PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tf.getSimpleType("Deque", tphA), tf.getSimpleType("Queue", tphB), PairOperator.SMALLERDOT));
eq.add(new UnifyPair(extNum, tphB, PairOperator.SMALLERDOTWC));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
//System.out.println(actual);
//Assert.assertEquals(actual, expected);
}
/**
* These are tests that specifically test cases where the old unify algorithm was incomplete.
*/
@Test
public void unifyTestExtension() {
/*
* INIT
*/
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType number = tf.getSimpleType("Number");
UnifyType object = tf.getSimpleType("Object");
UnifyType integer = tf.getSimpleType("Integer");
UnifyType doubl = tf.getSimpleType("Double");
UnifyType mygeneric = tf.getSimpleType("MyGeneric", "T");
fcb.add(mygeneric, object);
fcb.add(integer, number);
//fcb.add(doubl, number);
IFiniteClosure fc = fcb.getCollectionExample();
/*
* Test 1:
* This is a Test for the extension of case 1 in the cartesian product of step 4.
*
* (a <. Vector<b>)
* (List<Integer> <. List<b>)
*
* Expected:
* (b = Integer), (a = Vector<Integer>)
* (b = ? extends Integer), (a = Vector<Integer>),
* (b = ? extends Integer), (a = Vector<? extends Integer>),
* (b = ? super Integer), (a = Vector<Integer>)
* (b = ? super Integer), (a = Vector<Number>)
* (b = ? super Integer), (a = Vector<? super Integer>)
* (b = ? super Integer), (a = Vector<? super Number>)
* (b = ? extends Number), (a = Vector<Integer>)
* (b = ? extends Number), (a = Vector<Number>)
* (b = ? extends Number), (a = Vector<? extends Integer>)
* (b = ? extends Number), (a = Vector<? extends Number>)
*/
UnifyType tphA = tf.getPlaceholderType("a");
UnifyType tphB = tf.getPlaceholderType("b");
UnifyType extB = tf.getExtendsType(tphB);
UnifyType extNum = tf.getExtendsType(number);
Set<UnifyPair> eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tphA, tf.getSimpleType("Stack", tphB), PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tf.getSimpleType("List", integer), tf.getSimpleType("List", tphB), PairOperator.SMALLERDOT));
Set<Set<UnifyPair>> expected = new HashSet<>();
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
System.out.println(actual);
//Assert.assertEquals(actual, expected);
/*
* Test 2:
*
* This is a test for th extension of case 2 of the cartesian product of step 4.
*
* (a <.? ? ext b)
* (b =. Number)
*/
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, extB, PairOperator.SMALLERDOTWC));
eq.add(new UnifyPair(tphB, number, PairOperator.EQUALSDOT));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Case 2");
System.out.println(actual);
/*
* Test 3:
* This is a test for the extension of case 3 of the cartesian product of step 4.
*
* (a <.? ? sup b)
* (b = Number)
*/
UnifyType supB = tf.getSuperType(tphB);
eq = new HashSet<>();
eq.add(new UnifyPair(tphA, supB, PairOperator.SMALLERDOTWC));
eq.add(new UnifyPair(tphB, number, PairOperator.EQUALSDOT));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Case 3");
System.out.println(actual);
//Assert.assertEquals(expected, actual);
/*
* Case 4 has no extension
*/
/*
* Test 5:
* This is a test for the extension of case 5 of the cartesian product of step 4.
*
* Vector<b> <. a
* b =. Number
*/
eq = new HashSet<>();
eq.add(new UnifyPair(tf.getSimpleType("HashSet", tphB), tphA, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphB, number, PairOperator.EQUALSDOT));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
System.out.println(actual);
//Assert.assertEquals(expected, actual);
/*
* Test 6:
* This is a test for the extension of case 6 of the cartesian product of step 4.
*
* ? extends b <.? a
* b =. Integer
*/
eq = new HashSet<>();
eq.add(new UnifyPair(extB, tphA, PairOperator.SMALLERDOTWC));
eq.add(new UnifyPair(tphB, integer, PairOperator.EQUALSDOT));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
System.out.println(actual);
//Assert.assertEquals(expected, actual);
/*
* Test 7:
* This is a test for the extension of case 7 of the cartesian product of step 4.
*
* ? sup b <.? a
* b =. Number
*/
eq = new HashSet<>();
eq.add(new UnifyPair(supB, tphA, PairOperator.SMALLERDOTWC));
eq.add(new UnifyPair(tphB, number, PairOperator.EQUALSDOT));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Case 7");
System.out.println(actual);
//Assert.assertEquals(expected, actual);
/*
* Test 8:
* This is a test for the extension of case 8 of the cartesian product of step 4.
*
* MyGeneric<? extends b> <.? a
* b =. Integer
*/
eq = new HashSet<>();
eq.add(new UnifyPair(tf.getSimpleType("MyGeneric", extB), tphA, PairOperator.SMALLERDOTWC));
eq.add(new UnifyPair(tphB, number, PairOperator.EQUALSDOT));
expected = new HashSet<>();
actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Case 8:");
System.out.println(actual);
//Assert.assertEquals(expected, actual);
}
@Test
public void unifyTestComplex() {
/*
* INIT
*/
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType tphT = tf.getPlaceholderType("T");
UnifyType vector = tf.getSimpleType("Vector", tphT);
UnifyType number = tf.getSimpleType("Number");
UnifyType integer = tf.getSimpleType("Integer");
UnifyType object = tf.getSimpleType("Object");
UnifyType matrix = tf.getSimpleType("Matrix");
UnifyType vectorvectorint = tf.getSimpleType("Vector", tf.getSimpleType("Vector", integer));
fcb.add(integer, number);
fcb.add(matrix, vectorvectorint);
fcb.add(vector, object);
IFiniteClosure fc = fcb.getFiniteClosure();
Set<UnifyPair> eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tf.getSimpleType("Matrix"), tf.getSimpleType("Vector", tf.getPlaceholderType("a")), PairOperator.SMALLERDOT));
Set<Set<UnifyPair>> expected = new HashSet<>();
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Test Matrix:");
System.out.println(actual);
}
@Test
public void unifyTestVoid() {
/*
* Constraints Set mit "void" Typen
* T1 < Integer
* Integer < Integer
* T1 < T2
* T3 < Bool
* void < T4
* OL < Object
* void < void
* ol < T5
* T5 < ol
*/
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType tphT1 = tf.getPlaceholderType("T1");
UnifyType tphT2 = tf.getPlaceholderType("T2");
UnifyType tphT3 = tf.getPlaceholderType("T3");
UnifyType tphT4 = tf.getPlaceholderType("T4");
UnifyType tphT5 = tf.getPlaceholderType("T5");
UnifyType integer = tf.getSimpleType("java.lang.Integer");
UnifyType voidType = tf.getSimpleType("void");
UnifyType bool = tf.getSimpleType("java.lang.Boolean");
UnifyType object = tf.getSimpleType("Object");
UnifyType main = tf.getSimpleType("Main");
UnifyType ol = tf.getSimpleType("OL");
fcb.add(integer, object);
fcb.add(main, object);
fcb.add(bool, object);
fcb.add(voidType, voidType);
fcb.add(ol, object);
IFiniteClosure fc = fcb.getFiniteClosure();
Set<UnifyPair> eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tphT1, integer, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(integer, integer, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT1, tphT2, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT2, integer, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT3, bool, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(voidType, tphT4, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(ol, object, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(voidType, voidType, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(ol, tphT5, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT5, ol, PairOperator.SMALLERDOT));
Set<Set<UnifyPair>> expected = new HashSet<>();
Set<UnifyPair> solution = new HashSet<UnifyPair>();
solution.add(new UnifyPair(tphT3, bool, PairOperator.EQUALSDOT));
solution.add(new UnifyPair(tphT5, ol, PairOperator.EQUALSDOT));
solution.add(new UnifyPair(tphT2, integer, PairOperator.EQUALSDOT));
solution.add(new UnifyPair(tphT1, integer, PairOperator.EQUALSDOT));
solution.add(new UnifyPair(tphT4, voidType, PairOperator.EQUALSDOT));
expected.add(solution);
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Test Void:");
System.out.println(actual);
Assert.assertEquals(expected, actual);
}
// @Test
// public void unifyTestMatrixSimple() {
//// [(C <. C),
//// (D <. D),
//// (java.lang.Boolean <. PC),
//// (java.lang.Integer <. E1),
//// (java.util.Vector<java.lang.Integer> <. java.util.Vector<E1>),
//// (java.lang.Integer <. PD),
//// (java.util.Vector<java.lang.Integer> <. java.util.Vector<E3>),
//// (PE <. java.lang.Boolean),
//// (C <. java.lang.Integer),
//// (PD <. java.lang.Integer),
//// (PE <. java.lang.Boolean),
//// (E2 <. PF),
//// (C <. java.lang.Integer),
//// (java.util.Vector<java.lang.Integer> <. java.util.Vector<E2>),
//// (PG <. java.lang.Double),
//// (java.lang.Integer <. java.lang.Double),
//// (PF <. java.lang.Double),
//// (PG <. D),
//// (D <. PH),
//// (void <. B),
//// (void <. PI),
//// (Matrix <. java.util.Vector<E4>),
//// (void <. void)]
//
// TypeFactory tf = new TypeFactory();
// FiniteClosureBuilder fcb = new FiniteClosureBuilder();
//
// UnifyType tphC = tf.getPlaceholderType("C");
// UnifyType tphD = tf.getPlaceholderType("D");
// UnifyType tphPC = tf.getPlaceholderType("PC");
// UnifyType tphE1 = tf.getPlaceholderType("E1");
// UnifyType tphPD = tf.getPlaceholderType("PD");
// UnifyType tphE3 = tf.getPlaceholderType("E3");
// UnifyType tphPE = tf.getPlaceholderType("PE");
// UnifyType tphE2 = tf.getPlaceholderType("E2");
// UnifyType tphPG = tf.getPlaceholderType("PG");
// UnifyType tphPF = tf.getPlaceholderType("PF");
// UnifyType tphPH = tf.getPlaceholderType("PH");
// UnifyType tphPI = tf.getPlaceholderType("PI");
// UnifyType tphE4 = tf.getPlaceholderType("E4");
// UnifyType tphB = tf.getPlaceholderType("B");
//
// UnifyType integer = tf.getSimpleType("java.lang.Integer");
// UnifyType voidType = tf.getSimpleType("void");
// UnifyType bool = tf.getSimpleType("java.lang.Boolean");
// UnifyType object = tf.getSimpleType("java.lang.Object");
// UnifyType doubl = tf.getSimpleType("java.lang.Double");
// UnifyType number = tf.getSimpleType("java.lang.Number");
//
// fcb.add(integer, number);
// fcb.add(bool, object);
// fcb.add(doubl, number);
// fcb.add(number, object);
// fcb.add(voidType, voidType);
//
// IFiniteClosure fc = fcb.getFiniteClosure();
//
// Set<UnifyPair> eq = new HashSet<UnifyPair>();
// eq.add(new UnifyPair(tphC, tphC, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphD, tphD, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(bool, tphPC, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(integer, tphE1, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tf.getSimpleType("Vector", integer), tf.getSimpleType("Vector", tphE1), PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(integer, tphPD, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tf.getSimpleType("Vector", integer), tf.getSimpleType("Vector", tphE3), PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphPE, bool, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphC, integer, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphPD, integer, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphPE, bool, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphE2, tphPF, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphC, integer, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tf.getSimpleType("Vector", integer), tf.getSimpleType("Vector", tphE2), PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphPG, doubl, PairOperator.SMALLERDOT));
// //eq.add(new UnifyPair(integer, doubl, PairOperator.SMALLERDOT)); KEIN WUNDER INFERIERT DAS NICHT
// eq.add(new UnifyPair(tphPF, doubl, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphPG, tphD, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tphD, tphPH, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(voidType, tphB, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(voidType, tphPI, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(tf.getSimpleType("Matrix"), tphPI, PairOperator.SMALLERDOT));
// eq.add(new UnifyPair(voidType, tphPI, PairOperator.SMALLERDOT));
//
// Set<Set<UnifyPair>> expected = new HashSet<>();
//
// Set<Set<UnifyPair>> actual = unify(eq, fc);
//
// System.out.println("Test Void:");
// System.out.println(actual);
//
// //Assert.assertEquals(expected, actual);
// }
@Test
public void unifyTestLambda6() {
// [(D <. D),
// (R455538610 <. ND),
// (Matrix <. T1455538610),
// (C <. T2455538610),
// (B <. Fun2<R455538610,T1455538610,T2455538610>),
// (ND <. NE),
// (Fun1<? extends NE,? super B> <. NC),
// (NC <. NF),
// (Fun1<? extends NF,? super C> <. NB),
// (NB <. D),
// (void <. NG),
// (Matrix <. java.lang.Object),
// (void <. void)]
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType tphD = tf.getPlaceholderType("D");
UnifyType tphND = tf.getPlaceholderType("ND");
UnifyType tphR4 = tf.getPlaceholderType("R4");
UnifyType tphT1 = tf.getPlaceholderType("T1");
UnifyType tphT2 = tf.getPlaceholderType("T2");
UnifyType tphC = tf.getPlaceholderType("C");
UnifyType tphNE = tf.getPlaceholderType("NE");
UnifyType tphNC = tf.getPlaceholderType("NC");
UnifyType tphB = tf.getPlaceholderType("B");
UnifyType tphNF = tf.getPlaceholderType("NF");
UnifyType tphNB = tf.getPlaceholderType("NB");
UnifyType tphNG = tf.getPlaceholderType("NG");
UnifyType voidType = tf.getSimpleType("void");
UnifyType object = tf.getSimpleType("java.lang.Object");
UnifyType matrix = tf.getSimpleType("java.lang.Matrix");
UnifyType r = tf.getPlaceholderType("R");
UnifyType t1 = tf.getPlaceholderType("T1");
UnifyType t2 = tf.getPlaceholderType("T2");
UnifyType fun1 = FunNType.getFunNType(new TypeParams(r, t1));
UnifyType fun2 = FunNType.getFunNType(new TypeParams(r, t1, t2));
fcb.add(matrix, object);
fcb.add(voidType, voidType);
IFiniteClosure fc = fcb.getFiniteClosure();
Set<UnifyPair> eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tphD, tphD, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphR4, tphND, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(matrix, tphT1, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphC, tphT2, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphB, FunNType.getFunNType(new TypeParams(tphR4, tphT1, tphT2)), PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphND, tphNE, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(FunNType.getFunNType(new TypeParams(tphNE, tphB)), tphNC, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphNC, tphNF, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(FunNType.getFunNType(new TypeParams(tphNF, tphC)), tphNB, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphNB, tphD, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(voidType, tphNG, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(matrix, object, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(voidType, voidType, PairOperator.SMALLERDOT));
Set<Set<UnifyPair>> expected = new HashSet<>();
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Test Lambda6:");
System.out.println(actual);
//Assert.assertEquals(expected, actual);
}
@Test
public void unifyTestVector(){
/*
* Vector<T2> < T1
* T1 < Vector<String>
*/
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType tphT1 = tf.getPlaceholderType("T1");
UnifyType tphT2 = tf.getPlaceholderType("T2");
UnifyType gtv = tf.getSimpleType("gtv");
UnifyType vector = tf.getSimpleType("Vector", gtv);
UnifyType vectorE = tf.getSimpleType("Vector", tphT2);
UnifyType string = tf.getSimpleType("String");
UnifyType vectorString = tf.getSimpleType("Vector", string);
fcb.add(vector, vector);
IFiniteClosure fc = fcb.getFiniteClosure();
Set<UnifyPair> eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tphT1, vectorString, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(vectorE, tphT1, PairOperator.SMALLERDOT));
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Test OverloadingVector:");
System.out.println(actual);
}
@Test
public void unifyTestOverloading(){
/*
* Constraints Set mit "void" Typen
* OL < T1
* T1 < T1
* T1 < T2
* T1 < OL
*/
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType tphT1 = tf.getPlaceholderType("T1");
UnifyType tphT2 = tf.getPlaceholderType("T2");
UnifyType integer = tf.getSimpleType("java.lang.Integer");
UnifyType voidType = tf.getSimpleType("void");
UnifyType bool = tf.getSimpleType("java.lang.Boolean");
UnifyType object = tf.getSimpleType("Object");
UnifyType main = tf.getSimpleType("Main");
UnifyType ol = tf.getSimpleType("OL");
fcb.add(integer, object);
fcb.add(main, object);
fcb.add(bool, object);
fcb.add(voidType, voidType);
fcb.add(ol, object);
IFiniteClosure fc = fcb.getFiniteClosure();
Set<UnifyPair> eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(ol, tphT1, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT1, tphT1, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT1, tphT2, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT1, ol, PairOperator.SMALLERDOT));
Set<UnifyPair> expectedSolution = new HashSet<UnifyPair>();
expectedSolution.add(new UnifyPair(tphT1, ol, PairOperator.EQUALSDOT));
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Test Overloading:");
System.out.println(actual);
for(Set<UnifyPair> actualSolution : actual){
Assert.assertTrue(actualSolution.containsAll(expectedSolution));
}
}
@Test
public void unifyTestSubclasses() {
/*
* TPH1 < Integer
* Integer < Integer
* TPH1 < TPH2
* TPH2 < Integer
*
* Einzige korrekte Lösung:
* TPH1 = Integer, TPH2 = Integer
*/
TypeFactory tf = new TypeFactory();
FiniteClosureBuilder fcb = new FiniteClosureBuilder();
UnifyType tphT1 = tf.getPlaceholderType("T1");
UnifyType tphT2 = tf.getPlaceholderType("T2");
UnifyType tphT3 = tf.getPlaceholderType("T3");
UnifyType integer = tf.getSimpleType("java.lang.Integer");
UnifyType bool = tf.getSimpleType("java.lang.Boolean");
UnifyType object = tf.getSimpleType("java.lang.Object");
UnifyType main = tf.getSimpleType("Main");
fcb.add(integer, object);
fcb.add(main, object);
fcb.add(bool, object);
IFiniteClosure fc = fcb.getFiniteClosure();
Set<UnifyPair> eq = new HashSet<UnifyPair>();
eq.add(new UnifyPair(tphT1, integer, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(integer, integer, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT1, tphT2, PairOperator.SMALLERDOT));
eq.add(new UnifyPair(tphT2, integer, PairOperator.SMALLERDOT));
Set<Set<UnifyPair>> expected = new HashSet<>();
Set<UnifyPair> solution = new HashSet<UnifyPair>();
solution.add(new UnifyPair(tphT1, integer, PairOperator.EQUALSDOT));
solution.add(new UnifyPair(tphT2, integer, PairOperator.EQUALSDOT));
expected.add(solution);
Set<Set<UnifyPair>> actual = new TypeUnify().unifySequential(eq, fc);
System.out.println("Test Subclass:");
System.out.println(actual);
Assert.assertEquals(expected, actual);
}
@Test
public void applyTypeUnificationRulesTest() {
}
@Test
public void calculatePairSetsTest() {
}
// @Test
// public void permuteParamsTest() {
// TypeFactory tf = new TypeFactory();
// ArrayList<Set<UnifyType>> candidates = new ArrayList<>();
//
// UnifyType p11 = tf.getPlaceholderType("p11");
// UnifyType p12 = tf.getExtendsType(tf.getSimpleType("p12"));
// UnifyType p13 = tf.getSimpleType("p13");
// UnifyType p21 = tf.getPlaceholderType("p21");
// UnifyType p22 = tf.getPlaceholderType("p22");
// UnifyType p31 = tf.getSimpleType("p31", "T");
//
// Set<UnifyType> p1 = new HashSet<>();
// p1.add(p11);
// p1.add(p12);
// p1.add(p13);
//
// Set<UnifyType> p2 = new HashSet<>();
// p2.add(p21);
// p2.add(p22);
//
// Set<UnifyType> p3 = new HashSet<>();
// p3.add(p31);
//
// candidates.add(p1);
// candidates.add(p2);
// candidates.add(p3);
//
//
// /*
// * Expected Result:
// * {<x, y, z> | x in { p11, p12, p13}, y in { p21, p22 }, z in { p31 }}
// */
// Set<TypeParams> expected = Arrays.stream(new TypeParams[] {
// new TypeParams(p11, p21, p31),
// new TypeParams(p11, p22, p31),
// new TypeParams(p12, p21, p31),
// new TypeParams(p12, p22, p31),
// new TypeParams(p13, p21, p31),
// new TypeParams(p13, p22, p31)
// }).collect(Collectors.toSet());
//
// Set<TypeParams> actual = permuteParams(candidates);
//
// Assert.assertEquals(expected, actual);
// }
private Set<Set<UnifyPair>> filterGeneratedTPHsMultiple(Set<Set<UnifyPair>> set) {
return set.stream().map(x -> filterGeneratedTPHs(x)).collect(Collectors.toSet());
}
private Set<UnifyPair> filterGeneratedTPHs(Set<UnifyPair> set) {
return set.stream().filter(x -> !((x.getRhsType() instanceof PlaceholderType) && ((PlaceholderType) x.getRhsType()).isGenerated())).
filter(x -> !((x.getLhsType() instanceof PlaceholderType) && ((PlaceholderType) x.getLhsType()).isGenerated())).collect(Collectors.toSet());
}
private void addAsSet(Set<Set<UnifyPair>> addTo, UnifyPair... mPairs) {
addTo.add(new HashSet<>(Arrays.stream(mPairs).collect(Collectors.toSet())));
}
}