Cleanup
This commit is contained in:
parent
cbd0a48ca6
commit
5074c21943
@ -235,15 +235,10 @@ If there is a solution for a constraint set $C$, then there is also a solution f
|
||||
\item[If] $(\sigma, \Delta) = \unify{}( C \cup C')$
|
||||
\item[then] $ (\sigma', \Delta') = \unify{}( C')$
|
||||
\end{description}
|
||||
\textit{Proof:}
|
||||
%TODO
|
||||
|
||||
\end{lemma}
|
||||
\textit{Proof:}
|
||||
%TODO: is it true even?
|
||||
The input set does not contain free variables, only free variable placeholders.
|
||||
The only time \unify{} add a wildcard to the $\wildcardEnv$ is the \rulename{Capture} rule.
|
||||
This rule is only applied for the outer wildcard environments for each type.
|
||||
%TODO
|
||||
|
||||
\begin{lemma}\label{lemma:unifySoundness}
|
||||
The \unify{} algorithm only produces correct output.
|
||||
|
Loading…
Reference in New Issue
Block a user