Soundness Prepare
This commit is contained in:
parent
b546da831d
commit
521dee7fa2
@ -272,24 +272,29 @@ $\Delta \vdash \sigma(C') \implies \Delta \vdash \sigma(C)$
|
|||||||
\item[Prepare]
|
\item[Prepare]
|
||||||
To show
|
To show
|
||||||
$\Delta \vdash \wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}} <: \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}$ by S-Exists we have to proof:
|
$\Delta \vdash \wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}} <: \wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}$ by S-Exists we have to proof:
|
||||||
We know
|
|
||||||
\begin{gather}
|
|
||||||
\ol{S} = \ol{T}\\
|
|
||||||
\text{fv}(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) = \emptyset\\
|
|
||||||
\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
|
|
||||||
%TODO
|
|
||||||
\end{gather}
|
|
||||||
|
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\
|
\Delta', \Delta \vdash [\ol{T}/\ol{\type{A}}]\ol{L} <: \ol{T} \\
|
||||||
\Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\
|
\Delta', \Delta \vdash \ol{T} <: [\ol{T}/\ol{\type{X}}]\ol{U} \\
|
||||||
\label{rp:3}
|
\label{rp:3}
|
||||||
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\
|
\text{fv}(\ol{T}) \subseteq \text{dom}(\Delta, \overline{\wildcard{B}{U}{L}}) \\
|
||||||
\label{rp:4}
|
\label{rp:4}
|
||||||
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset
|
\text{dom}(\overline{\wildcard{B}{U}{L}}) \cap \text{fv}(\wctype{\ol{\wildcard{A}{U}{L}}}{C}{\ol{T}}) = \emptyset\\
|
||||||
|
[\ol{A}/\ol{T}] = \ol{T} %TODO: rename T
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\ref{rp:4} is always true.
|
|
||||||
Due to $\text{fv}(\sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}})) = \emptyset$ implies \ref{rp:3}.
|
We know
|
||||||
|
\begin{gather}
|
||||||
|
\ol{S} = [\ol{\wtv{a}}/\ol{A}]\ol{T}\\
|
||||||
|
\text{fv}(\wctype{\overline{\wildcard{B}{\type{U'}}{\type{L'}}}}{C}{\ol{S}}) = \emptyset\\
|
||||||
|
\label{rp:fv2}
|
||||||
|
\text{fv}(\wctype{\overline{\wildcard{A}{\type{U}}{\type{L}}}}{C}{\ol{T}}) = \emptyset
|
||||||
|
%TODO
|
||||||
|
\end{gather}
|
||||||
|
|
||||||
|
\ref{rp:fv2} implies \ref{rp:4}.
|
||||||
|
Due to $\text{fv}(\sigma(\wctype{\overline{\wildcard{B}{\type{U}}{\type{L}}}}{C}{\ol{S}})) = \emptyset$ implies
|
||||||
|
$\text{fv}(\type{T}) \subseteq \text{dom}(\overline{\wildcard{B}{\type{U}}{\type{L}}})$
|
||||||
|
and therefore \ref{rp:3}.
|
||||||
|
|
||||||
\item[Capture]
|
\item[Capture]
|
||||||
If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) = \emptyset$ the preposition holds by Assumption and S-Exists.
|
If $\text{fv}(\wctype{\Delta}{C}{\ol{T}}) = \emptyset$ the preposition holds by Assumption and S-Exists.
|
||||||
|
Loading…
Reference in New Issue
Block a user