2009-01-26 19:49:26 -08:00
|
|
|
/*
|
2014-02-03 09:52:36 -08:00
|
|
|
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
|
2009-01-26 19:49:26 -08:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
2010-05-25 15:58:33 -07:00
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
2009-01-26 19:49:26 -08:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @test
|
|
|
|
* @bug 4860891 4826732 4780454 4939441 4826652
|
|
|
|
* @summary Tests for IEEE 754[R] recommended functions and similar methods
|
|
|
|
* @author Joseph D. Darcy
|
|
|
|
*/
|
|
|
|
|
|
|
|
import sun.misc.DoubleConsts;
|
|
|
|
import sun.misc.FloatConsts;
|
|
|
|
|
|
|
|
public class IeeeRecommendedTests {
|
|
|
|
private IeeeRecommendedTests(){}
|
|
|
|
|
|
|
|
static final float NaNf = Float.NaN;
|
|
|
|
static final double NaNd = Double.NaN;
|
|
|
|
static final float infinityF = Float.POSITIVE_INFINITY;
|
|
|
|
static final double infinityD = Double.POSITIVE_INFINITY;
|
|
|
|
|
|
|
|
static final float Float_MAX_VALUEmm = 0x1.fffffcP+127f;
|
|
|
|
static final float Float_MAX_SUBNORMAL = 0x0.fffffeP-126f;
|
|
|
|
static final float Float_MAX_SUBNORMALmm = 0x0.fffffcP-126f;
|
|
|
|
|
|
|
|
static final double Double_MAX_VALUEmm = 0x1.ffffffffffffeP+1023;
|
|
|
|
static final double Double_MAX_SUBNORMAL = 0x0.fffffffffffffP-1022;
|
|
|
|
static final double Double_MAX_SUBNORMALmm = 0x0.ffffffffffffeP-1022;
|
|
|
|
|
|
|
|
// Initialize shared random number generator
|
|
|
|
static java.util.Random rand = new java.util.Random();
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a floating-point power of two in the normal range.
|
|
|
|
*/
|
|
|
|
static double powerOfTwoD(int n) {
|
|
|
|
return Double.longBitsToDouble((((long)n + (long)DoubleConsts.MAX_EXPONENT) <<
|
|
|
|
(DoubleConsts.SIGNIFICAND_WIDTH-1))
|
|
|
|
& DoubleConsts.EXP_BIT_MASK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a floating-point power of two in the normal range.
|
|
|
|
*/
|
|
|
|
static float powerOfTwoF(int n) {
|
|
|
|
return Float.intBitsToFloat(((n + FloatConsts.MAX_EXPONENT) <<
|
|
|
|
(FloatConsts.SIGNIFICAND_WIDTH-1))
|
|
|
|
& FloatConsts.EXP_BIT_MASK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ******************** getExponent tests ****************************** */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The tests for getExponent should test the special values (NaN, +/-
|
|
|
|
* infinity, etc.), test the endpoints of each binade (set of
|
|
|
|
* floating-point values with the same exponent), and for good
|
|
|
|
* measure, test some random values within each binade. Testing
|
|
|
|
* the endpoints of each binade includes testing both positive and
|
|
|
|
* negative numbers. Subnormal values with different normalized
|
|
|
|
* exponents should be tested too. Both Math and StrictMath
|
|
|
|
* methods should return the same results.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test Math.getExponent and StrictMath.getExponent with +d and -d.
|
|
|
|
*/
|
|
|
|
static int testGetExponentCase(float f, int expected) {
|
|
|
|
float minus_f = -f;
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.getExponent(float)", f,
|
|
|
|
Math.getExponent(f), expected);
|
|
|
|
failures+=Tests.test("Math.getExponent(float)", minus_f,
|
|
|
|
Math.getExponent(minus_f), expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.getExponent(float)", f,
|
|
|
|
StrictMath.getExponent(f), expected);
|
|
|
|
failures+=Tests.test("StrictMath.getExponent(float)", minus_f,
|
|
|
|
StrictMath.getExponent(minus_f), expected);
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test Math.getExponent and StrictMath.getExponent with +d and -d.
|
|
|
|
*/
|
|
|
|
static int testGetExponentCase(double d, int expected) {
|
|
|
|
double minus_d = -d;
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.getExponent(double)", d,
|
|
|
|
Math.getExponent(d), expected);
|
|
|
|
failures+=Tests.test("Math.getExponent(double)", minus_d,
|
|
|
|
Math.getExponent(minus_d), expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.getExponent(double)", d,
|
|
|
|
StrictMath.getExponent(d), expected);
|
|
|
|
failures+=Tests.test("StrictMath.getExponent(double)", minus_d,
|
|
|
|
StrictMath.getExponent(minus_d), expected);
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testFloatGetExponent() {
|
|
|
|
int failures = 0;
|
|
|
|
float [] specialValues = {NaNf,
|
|
|
|
Float.POSITIVE_INFINITY,
|
|
|
|
+0.0f,
|
|
|
|
+1.0f,
|
|
|
|
+2.0f,
|
|
|
|
+16.0f,
|
|
|
|
+Float.MIN_VALUE,
|
|
|
|
+Float_MAX_SUBNORMAL,
|
|
|
|
+FloatConsts.MIN_NORMAL,
|
|
|
|
+Float.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
int [] specialResults = {Float.MAX_EXPONENT + 1, // NaN results
|
|
|
|
Float.MAX_EXPONENT + 1, // Infinite results
|
|
|
|
Float.MIN_EXPONENT - 1, // Zero results
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
4,
|
|
|
|
FloatConsts.MIN_EXPONENT - 1,
|
|
|
|
-FloatConsts.MAX_EXPONENT,
|
|
|
|
FloatConsts.MIN_EXPONENT,
|
|
|
|
FloatConsts.MAX_EXPONENT
|
|
|
|
};
|
|
|
|
|
|
|
|
// Special value tests
|
|
|
|
for(int i = 0; i < specialValues.length; i++) {
|
|
|
|
failures += testGetExponentCase(specialValues[i], specialResults[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Normal exponent tests
|
|
|
|
for(int i = FloatConsts.MIN_EXPONENT; i <= FloatConsts.MAX_EXPONENT; i++) {
|
|
|
|
int result;
|
|
|
|
|
|
|
|
// Create power of two
|
|
|
|
float po2 = powerOfTwoF(i);
|
|
|
|
|
|
|
|
failures += testGetExponentCase(po2, i);
|
|
|
|
|
|
|
|
// Generate some random bit patterns for the significand
|
|
|
|
for(int j = 0; j < 10; j++) {
|
|
|
|
int randSignif = rand.nextInt();
|
|
|
|
float randFloat;
|
|
|
|
|
|
|
|
randFloat = Float.intBitsToFloat( // Exponent
|
|
|
|
(Float.floatToIntBits(po2)&
|
|
|
|
(~FloatConsts.SIGNIF_BIT_MASK)) |
|
|
|
|
// Significand
|
|
|
|
(randSignif &
|
|
|
|
FloatConsts.SIGNIF_BIT_MASK) );
|
|
|
|
|
|
|
|
failures += testGetExponentCase(randFloat, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i > FloatConsts.MIN_EXPONENT) {
|
2011-09-18 18:14:07 -07:00
|
|
|
float po2minus = Math.nextAfter(po2,
|
2009-01-26 19:49:26 -08:00
|
|
|
Float.NEGATIVE_INFINITY);
|
|
|
|
failures += testGetExponentCase(po2minus, i-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Subnormal exponent tests
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start with MIN_VALUE, left shift, test high value, low
|
|
|
|
* values, and random in between.
|
|
|
|
*
|
|
|
|
* Use nextAfter to calculate, high value of previous binade,
|
|
|
|
* loop count i will indicate how many random bits, if any are
|
|
|
|
* needed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
float top=Float.MIN_VALUE;
|
|
|
|
for( int i = 1;
|
|
|
|
i < FloatConsts.SIGNIFICAND_WIDTH;
|
|
|
|
i++, top *= 2.0f) {
|
|
|
|
|
|
|
|
failures += testGetExponentCase(top,
|
|
|
|
FloatConsts.MIN_EXPONENT - 1);
|
|
|
|
|
|
|
|
// Test largest value in next smaller binade
|
|
|
|
if (i >= 3) {// (i == 1) would test 0.0;
|
|
|
|
// (i == 2) would just retest MIN_VALUE
|
2011-09-18 18:14:07 -07:00
|
|
|
testGetExponentCase(Math.nextAfter(top, 0.0f),
|
2009-01-26 19:49:26 -08:00
|
|
|
FloatConsts.MIN_EXPONENT - 1);
|
|
|
|
|
|
|
|
if( i >= 10) {
|
|
|
|
// create a bit mask with (i-1) 1's in the low order
|
|
|
|
// bits
|
|
|
|
int mask = ~((~0)<<(i-1));
|
|
|
|
float randFloat = Float.intBitsToFloat( // Exponent
|
|
|
|
Float.floatToIntBits(top) |
|
|
|
|
// Significand
|
|
|
|
(rand.nextInt() & mask ) ) ;
|
|
|
|
|
|
|
|
failures += testGetExponentCase(randFloat,
|
|
|
|
FloatConsts.MIN_EXPONENT - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
public static int testDoubleGetExponent() {
|
|
|
|
int failures = 0;
|
|
|
|
double [] specialValues = {NaNd,
|
|
|
|
infinityD,
|
|
|
|
+0.0,
|
|
|
|
+1.0,
|
|
|
|
+2.0,
|
|
|
|
+16.0,
|
|
|
|
+Double.MIN_VALUE,
|
|
|
|
+Double_MAX_SUBNORMAL,
|
|
|
|
+DoubleConsts.MIN_NORMAL,
|
|
|
|
+Double.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
int [] specialResults = {Double.MAX_EXPONENT + 1, // NaN results
|
|
|
|
Double.MAX_EXPONENT + 1, // Infinite results
|
|
|
|
Double.MIN_EXPONENT - 1, // Zero results
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
4,
|
|
|
|
DoubleConsts.MIN_EXPONENT - 1,
|
|
|
|
-DoubleConsts.MAX_EXPONENT,
|
|
|
|
DoubleConsts.MIN_EXPONENT,
|
|
|
|
DoubleConsts.MAX_EXPONENT
|
|
|
|
};
|
|
|
|
|
|
|
|
// Special value tests
|
|
|
|
for(int i = 0; i < specialValues.length; i++) {
|
|
|
|
failures += testGetExponentCase(specialValues[i], specialResults[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Normal exponent tests
|
|
|
|
for(int i = DoubleConsts.MIN_EXPONENT; i <= DoubleConsts.MAX_EXPONENT; i++) {
|
|
|
|
int result;
|
|
|
|
|
|
|
|
// Create power of two
|
|
|
|
double po2 = powerOfTwoD(i);
|
|
|
|
|
|
|
|
failures += testGetExponentCase(po2, i);
|
|
|
|
|
|
|
|
// Generate some random bit patterns for the significand
|
|
|
|
for(int j = 0; j < 10; j++) {
|
|
|
|
long randSignif = rand.nextLong();
|
|
|
|
double randFloat;
|
|
|
|
|
|
|
|
randFloat = Double.longBitsToDouble( // Exponent
|
|
|
|
(Double.doubleToLongBits(po2)&
|
|
|
|
(~DoubleConsts.SIGNIF_BIT_MASK)) |
|
|
|
|
// Significand
|
|
|
|
(randSignif &
|
|
|
|
DoubleConsts.SIGNIF_BIT_MASK) );
|
|
|
|
|
|
|
|
failures += testGetExponentCase(randFloat, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i > DoubleConsts.MIN_EXPONENT) {
|
2011-09-18 18:14:07 -07:00
|
|
|
double po2minus = Math.nextAfter(po2,
|
2009-01-26 19:49:26 -08:00
|
|
|
Double.NEGATIVE_INFINITY);
|
|
|
|
failures += testGetExponentCase(po2minus, i-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Subnormal exponent tests
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start with MIN_VALUE, left shift, test high value, low
|
|
|
|
* values, and random in between.
|
|
|
|
*
|
|
|
|
* Use nextAfter to calculate, high value of previous binade;
|
|
|
|
* loop count i will indicate how many random bits, if any are
|
|
|
|
* needed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double top=Double.MIN_VALUE;
|
|
|
|
for( int i = 1;
|
|
|
|
i < DoubleConsts.SIGNIFICAND_WIDTH;
|
|
|
|
i++, top *= 2.0f) {
|
|
|
|
|
|
|
|
failures += testGetExponentCase(top,
|
|
|
|
DoubleConsts.MIN_EXPONENT - 1);
|
|
|
|
|
|
|
|
// Test largest value in next smaller binade
|
|
|
|
if (i >= 3) {// (i == 1) would test 0.0;
|
|
|
|
// (i == 2) would just retest MIN_VALUE
|
2011-09-18 18:14:07 -07:00
|
|
|
testGetExponentCase(Math.nextAfter(top, 0.0),
|
2009-01-26 19:49:26 -08:00
|
|
|
DoubleConsts.MIN_EXPONENT - 1);
|
|
|
|
|
|
|
|
if( i >= 10) {
|
|
|
|
// create a bit mask with (i-1) 1's in the low order
|
|
|
|
// bits
|
|
|
|
long mask = ~((~0L)<<(i-1));
|
|
|
|
double randFloat = Double.longBitsToDouble( // Exponent
|
|
|
|
Double.doubleToLongBits(top) |
|
|
|
|
// Significand
|
|
|
|
(rand.nextLong() & mask ) ) ;
|
|
|
|
|
|
|
|
failures += testGetExponentCase(randFloat,
|
|
|
|
DoubleConsts.MIN_EXPONENT - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* ******************** nextAfter tests ****************************** */
|
|
|
|
|
|
|
|
static int testNextAfterCase(float start, double direction, float expected) {
|
|
|
|
int failures=0;
|
|
|
|
float minus_start = -start;
|
|
|
|
double minus_direction = -direction;
|
|
|
|
float minus_expected = -expected;
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.nextAfter(float,double)", start, direction,
|
|
|
|
Math.nextAfter(start, direction), expected);
|
|
|
|
failures+=Tests.test("Math.nextAfter(float,double)", minus_start, minus_direction,
|
|
|
|
Math.nextAfter(minus_start, minus_direction), minus_expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.nextAfter(float,double)", start, direction,
|
|
|
|
StrictMath.nextAfter(start, direction), expected);
|
|
|
|
failures+=Tests.test("StrictMath.nextAfter(float,double)", minus_start, minus_direction,
|
|
|
|
StrictMath.nextAfter(minus_start, minus_direction), minus_expected);
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int testNextAfterCase(double start, double direction, double expected) {
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
double minus_start = -start;
|
|
|
|
double minus_direction = -direction;
|
|
|
|
double minus_expected = -expected;
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.nextAfter(double,double)", start, direction,
|
|
|
|
Math.nextAfter(start, direction), expected);
|
|
|
|
failures+=Tests.test("Math.nextAfter(double,double)", minus_start, minus_direction,
|
|
|
|
Math.nextAfter(minus_start, minus_direction), minus_expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.nextAfter(double,double)", start, direction,
|
|
|
|
StrictMath.nextAfter(start, direction), expected);
|
|
|
|
failures+=Tests.test("StrictMath.nextAfter(double,double)", minus_start, minus_direction,
|
|
|
|
StrictMath.nextAfter(minus_start, minus_direction), minus_expected);
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testFloatNextAfter() {
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each row of the testCases matrix represents one test case
|
|
|
|
* for nexAfter; given the input of the first two columns, the
|
|
|
|
* result in the last column is expected.
|
|
|
|
*/
|
|
|
|
float [][] testCases = {
|
|
|
|
{NaNf, NaNf, NaNf},
|
|
|
|
{NaNf, 0.0f, NaNf},
|
|
|
|
{0.0f, NaNf, NaNf},
|
|
|
|
{NaNf, infinityF, NaNf},
|
|
|
|
{infinityF, NaNf, NaNf},
|
|
|
|
|
|
|
|
{infinityF, infinityF, infinityF},
|
|
|
|
{infinityF, -infinityF, Float.MAX_VALUE},
|
|
|
|
{infinityF, 0.0f, Float.MAX_VALUE},
|
|
|
|
|
|
|
|
{Float.MAX_VALUE, infinityF, infinityF},
|
|
|
|
{Float.MAX_VALUE, -infinityF, Float_MAX_VALUEmm},
|
|
|
|
{Float.MAX_VALUE, Float.MAX_VALUE, Float.MAX_VALUE},
|
|
|
|
{Float.MAX_VALUE, 0.0f, Float_MAX_VALUEmm},
|
|
|
|
|
|
|
|
{Float_MAX_VALUEmm, Float.MAX_VALUE, Float.MAX_VALUE},
|
|
|
|
{Float_MAX_VALUEmm, infinityF, Float.MAX_VALUE},
|
|
|
|
{Float_MAX_VALUEmm, Float_MAX_VALUEmm, Float_MAX_VALUEmm},
|
|
|
|
|
|
|
|
{FloatConsts.MIN_NORMAL, infinityF, FloatConsts.MIN_NORMAL+
|
|
|
|
Float.MIN_VALUE},
|
|
|
|
{FloatConsts.MIN_NORMAL, -infinityF, Float_MAX_SUBNORMAL},
|
|
|
|
{FloatConsts.MIN_NORMAL, 1.0f, FloatConsts.MIN_NORMAL+
|
|
|
|
Float.MIN_VALUE},
|
|
|
|
{FloatConsts.MIN_NORMAL, -1.0f, Float_MAX_SUBNORMAL},
|
|
|
|
{FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL},
|
|
|
|
|
|
|
|
{Float_MAX_SUBNORMAL, FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL},
|
|
|
|
{Float_MAX_SUBNORMAL, Float_MAX_SUBNORMAL, Float_MAX_SUBNORMAL},
|
|
|
|
{Float_MAX_SUBNORMAL, 0.0f, Float_MAX_SUBNORMALmm},
|
|
|
|
|
|
|
|
{Float_MAX_SUBNORMALmm, Float_MAX_SUBNORMAL, Float_MAX_SUBNORMAL},
|
|
|
|
{Float_MAX_SUBNORMALmm, 0.0f, Float_MAX_SUBNORMALmm-Float.MIN_VALUE},
|
|
|
|
{Float_MAX_SUBNORMALmm, Float_MAX_SUBNORMALmm, Float_MAX_SUBNORMALmm},
|
|
|
|
|
|
|
|
{Float.MIN_VALUE, 0.0f, 0.0f},
|
|
|
|
{-Float.MIN_VALUE, 0.0f, -0.0f},
|
|
|
|
{Float.MIN_VALUE, Float.MIN_VALUE, Float.MIN_VALUE},
|
|
|
|
{Float.MIN_VALUE, 1.0f, 2*Float.MIN_VALUE},
|
|
|
|
|
|
|
|
// Make sure zero behavior is tested
|
|
|
|
{0.0f, 0.0f, 0.0f},
|
|
|
|
{0.0f, -0.0f, -0.0f},
|
|
|
|
{-0.0f, 0.0f, 0.0f},
|
|
|
|
{-0.0f, -0.0f, -0.0f},
|
|
|
|
{0.0f, infinityF, Float.MIN_VALUE},
|
|
|
|
{0.0f, -infinityF, -Float.MIN_VALUE},
|
|
|
|
{-0.0f, infinityF, Float.MIN_VALUE},
|
|
|
|
{-0.0f, -infinityF, -Float.MIN_VALUE},
|
|
|
|
{0.0f, Float.MIN_VALUE, Float.MIN_VALUE},
|
|
|
|
{0.0f, -Float.MIN_VALUE, -Float.MIN_VALUE},
|
|
|
|
{-0.0f, Float.MIN_VALUE, Float.MIN_VALUE},
|
|
|
|
{-0.0f, -Float.MIN_VALUE, -Float.MIN_VALUE}
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
failures += testNextAfterCase(testCases[i][0], testCases[i][1],
|
|
|
|
testCases[i][2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testDoubleNextAfter() {
|
|
|
|
int failures =0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each row of the testCases matrix represents one test case
|
|
|
|
* for nexAfter; given the input of the first two columns, the
|
|
|
|
* result in the last column is expected.
|
|
|
|
*/
|
|
|
|
double [][] testCases = {
|
|
|
|
{NaNd, NaNd, NaNd},
|
|
|
|
{NaNd, 0.0d, NaNd},
|
|
|
|
{0.0d, NaNd, NaNd},
|
|
|
|
{NaNd, infinityD, NaNd},
|
|
|
|
{infinityD, NaNd, NaNd},
|
|
|
|
|
|
|
|
{infinityD, infinityD, infinityD},
|
|
|
|
{infinityD, -infinityD, Double.MAX_VALUE},
|
|
|
|
{infinityD, 0.0d, Double.MAX_VALUE},
|
|
|
|
|
|
|
|
{Double.MAX_VALUE, infinityD, infinityD},
|
|
|
|
{Double.MAX_VALUE, -infinityD, Double_MAX_VALUEmm},
|
|
|
|
{Double.MAX_VALUE, Double.MAX_VALUE, Double.MAX_VALUE},
|
|
|
|
{Double.MAX_VALUE, 0.0d, Double_MAX_VALUEmm},
|
|
|
|
|
|
|
|
{Double_MAX_VALUEmm, Double.MAX_VALUE, Double.MAX_VALUE},
|
|
|
|
{Double_MAX_VALUEmm, infinityD, Double.MAX_VALUE},
|
|
|
|
{Double_MAX_VALUEmm, Double_MAX_VALUEmm, Double_MAX_VALUEmm},
|
|
|
|
|
|
|
|
{DoubleConsts.MIN_NORMAL, infinityD, DoubleConsts.MIN_NORMAL+
|
|
|
|
Double.MIN_VALUE},
|
|
|
|
{DoubleConsts.MIN_NORMAL, -infinityD, Double_MAX_SUBNORMAL},
|
|
|
|
{DoubleConsts.MIN_NORMAL, 1.0f, DoubleConsts.MIN_NORMAL+
|
|
|
|
Double.MIN_VALUE},
|
|
|
|
{DoubleConsts.MIN_NORMAL, -1.0f, Double_MAX_SUBNORMAL},
|
|
|
|
{DoubleConsts.MIN_NORMAL, DoubleConsts.MIN_NORMAL,DoubleConsts.MIN_NORMAL},
|
|
|
|
|
|
|
|
{Double_MAX_SUBNORMAL, DoubleConsts.MIN_NORMAL,DoubleConsts.MIN_NORMAL},
|
|
|
|
{Double_MAX_SUBNORMAL, Double_MAX_SUBNORMAL, Double_MAX_SUBNORMAL},
|
|
|
|
{Double_MAX_SUBNORMAL, 0.0d, Double_MAX_SUBNORMALmm},
|
|
|
|
|
|
|
|
{Double_MAX_SUBNORMALmm, Double_MAX_SUBNORMAL, Double_MAX_SUBNORMAL},
|
|
|
|
{Double_MAX_SUBNORMALmm, 0.0d, Double_MAX_SUBNORMALmm-Double.MIN_VALUE},
|
|
|
|
{Double_MAX_SUBNORMALmm, Double_MAX_SUBNORMALmm, Double_MAX_SUBNORMALmm},
|
|
|
|
|
|
|
|
{Double.MIN_VALUE, 0.0d, 0.0d},
|
|
|
|
{-Double.MIN_VALUE, 0.0d, -0.0d},
|
|
|
|
{Double.MIN_VALUE, Double.MIN_VALUE, Double.MIN_VALUE},
|
|
|
|
{Double.MIN_VALUE, 1.0f, 2*Double.MIN_VALUE},
|
|
|
|
|
|
|
|
// Make sure zero behavior is tested
|
|
|
|
{0.0d, 0.0d, 0.0d},
|
|
|
|
{0.0d, -0.0d, -0.0d},
|
|
|
|
{-0.0d, 0.0d, 0.0d},
|
|
|
|
{-0.0d, -0.0d, -0.0d},
|
|
|
|
{0.0d, infinityD, Double.MIN_VALUE},
|
|
|
|
{0.0d, -infinityD, -Double.MIN_VALUE},
|
|
|
|
{-0.0d, infinityD, Double.MIN_VALUE},
|
|
|
|
{-0.0d, -infinityD, -Double.MIN_VALUE},
|
|
|
|
{0.0d, Double.MIN_VALUE, Double.MIN_VALUE},
|
|
|
|
{0.0d, -Double.MIN_VALUE, -Double.MIN_VALUE},
|
|
|
|
{-0.0d, Double.MIN_VALUE, Double.MIN_VALUE},
|
|
|
|
{-0.0d, -Double.MIN_VALUE, -Double.MIN_VALUE}
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
failures += testNextAfterCase(testCases[i][0], testCases[i][1],
|
|
|
|
testCases[i][2]);
|
|
|
|
}
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ******************** nextUp tests ********************************* */
|
|
|
|
|
|
|
|
public static int testFloatNextUp() {
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each row of testCases represents one test case for nextUp;
|
|
|
|
* the first column is the input and the second column is the
|
|
|
|
* expected result.
|
|
|
|
*/
|
|
|
|
float testCases [][] = {
|
|
|
|
{NaNf, NaNf},
|
|
|
|
{-infinityF, -Float.MAX_VALUE},
|
|
|
|
{-Float.MAX_VALUE, -Float_MAX_VALUEmm},
|
|
|
|
{-FloatConsts.MIN_NORMAL, -Float_MAX_SUBNORMAL},
|
|
|
|
{-Float_MAX_SUBNORMAL, -Float_MAX_SUBNORMALmm},
|
|
|
|
{-Float.MIN_VALUE, -0.0f},
|
|
|
|
{-0.0f, Float.MIN_VALUE},
|
|
|
|
{+0.0f, Float.MIN_VALUE},
|
|
|
|
{Float.MIN_VALUE, Float.MIN_VALUE*2},
|
|
|
|
{Float_MAX_SUBNORMALmm, Float_MAX_SUBNORMAL},
|
|
|
|
{Float_MAX_SUBNORMAL, FloatConsts.MIN_NORMAL},
|
|
|
|
{FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL+Float.MIN_VALUE},
|
|
|
|
{Float_MAX_VALUEmm, Float.MAX_VALUE},
|
|
|
|
{Float.MAX_VALUE, infinityF},
|
|
|
|
{infinityF, infinityF}
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
failures+=Tests.test("Math.nextUp(float)",
|
|
|
|
testCases[i][0], Math.nextUp(testCases[i][0]), testCases[i][1]);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.nextUp(float)",
|
|
|
|
testCases[i][0], StrictMath.nextUp(testCases[i][0]), testCases[i][1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
public static int testDoubleNextUp() {
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each row of testCases represents one test case for nextUp;
|
|
|
|
* the first column is the input and the second column is the
|
|
|
|
* expected result.
|
|
|
|
*/
|
|
|
|
double testCases [][] = {
|
|
|
|
{NaNd, NaNd},
|
|
|
|
{-infinityD, -Double.MAX_VALUE},
|
|
|
|
{-Double.MAX_VALUE, -Double_MAX_VALUEmm},
|
|
|
|
{-DoubleConsts.MIN_NORMAL, -Double_MAX_SUBNORMAL},
|
|
|
|
{-Double_MAX_SUBNORMAL, -Double_MAX_SUBNORMALmm},
|
|
|
|
{-Double.MIN_VALUE, -0.0d},
|
|
|
|
{-0.0d, Double.MIN_VALUE},
|
|
|
|
{+0.0d, Double.MIN_VALUE},
|
|
|
|
{Double.MIN_VALUE, Double.MIN_VALUE*2},
|
|
|
|
{Double_MAX_SUBNORMALmm, Double_MAX_SUBNORMAL},
|
|
|
|
{Double_MAX_SUBNORMAL, DoubleConsts.MIN_NORMAL},
|
|
|
|
{DoubleConsts.MIN_NORMAL, DoubleConsts.MIN_NORMAL+Double.MIN_VALUE},
|
|
|
|
{Double_MAX_VALUEmm, Double.MAX_VALUE},
|
|
|
|
{Double.MAX_VALUE, infinityD},
|
|
|
|
{infinityD, infinityD}
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
failures+=Tests.test("Math.nextUp(double)",
|
|
|
|
testCases[i][0], Math.nextUp(testCases[i][0]), testCases[i][1]);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.nextUp(double)",
|
|
|
|
testCases[i][0], StrictMath.nextUp(testCases[i][0]), testCases[i][1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ******************** nextDown tests ********************************* */
|
|
|
|
|
|
|
|
public static int testFloatNextDown() {
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each row of testCases represents one test case for nextDown;
|
|
|
|
* the first column is the input and the second column is the
|
|
|
|
* expected result.
|
|
|
|
*/
|
|
|
|
float testCases [][] = {
|
|
|
|
{NaNf, NaNf},
|
|
|
|
{-infinityF, -infinityF},
|
|
|
|
{-Float.MAX_VALUE, -infinityF},
|
|
|
|
{-Float_MAX_VALUEmm, -Float.MAX_VALUE},
|
|
|
|
{-Float_MAX_SUBNORMAL, -FloatConsts.MIN_NORMAL},
|
|
|
|
{-Float_MAX_SUBNORMALmm, -Float_MAX_SUBNORMAL},
|
|
|
|
{-0.0f, -Float.MIN_VALUE},
|
|
|
|
{+0.0f, -Float.MIN_VALUE},
|
|
|
|
{Float.MIN_VALUE, 0.0f},
|
|
|
|
{Float.MIN_VALUE*2, Float.MIN_VALUE},
|
|
|
|
{Float_MAX_SUBNORMAL, Float_MAX_SUBNORMALmm},
|
|
|
|
{FloatConsts.MIN_NORMAL, Float_MAX_SUBNORMAL},
|
|
|
|
{FloatConsts.MIN_NORMAL+
|
|
|
|
Float.MIN_VALUE, FloatConsts.MIN_NORMAL},
|
|
|
|
{Float.MAX_VALUE, Float_MAX_VALUEmm},
|
|
|
|
{infinityF, Float.MAX_VALUE},
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
2011-09-21 23:22:11 -07:00
|
|
|
failures+=Tests.test("Math.nextDown(float)",
|
|
|
|
testCases[i][0], Math.nextDown(testCases[i][0]), testCases[i][1]);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.nextDown(float)",
|
|
|
|
testCases[i][0], StrictMath.nextDown(testCases[i][0]), testCases[i][1]);
|
2009-01-26 19:49:26 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
public static int testDoubleNextDown() {
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each row of testCases represents one test case for nextDown;
|
|
|
|
* the first column is the input and the second column is the
|
|
|
|
* expected result.
|
|
|
|
*/
|
|
|
|
double testCases [][] = {
|
|
|
|
{NaNd, NaNd},
|
|
|
|
{-infinityD, -infinityD},
|
|
|
|
{-Double.MAX_VALUE, -infinityD},
|
|
|
|
{-Double_MAX_VALUEmm, -Double.MAX_VALUE},
|
|
|
|
{-Double_MAX_SUBNORMAL, -DoubleConsts.MIN_NORMAL},
|
|
|
|
{-Double_MAX_SUBNORMALmm, -Double_MAX_SUBNORMAL},
|
|
|
|
{-0.0d, -Double.MIN_VALUE},
|
|
|
|
{+0.0d, -Double.MIN_VALUE},
|
|
|
|
{Double.MIN_VALUE, 0.0d},
|
|
|
|
{Double.MIN_VALUE*2, Double.MIN_VALUE},
|
|
|
|
{Double_MAX_SUBNORMAL, Double_MAX_SUBNORMALmm},
|
|
|
|
{DoubleConsts.MIN_NORMAL, Double_MAX_SUBNORMAL},
|
|
|
|
{DoubleConsts.MIN_NORMAL+
|
|
|
|
Double.MIN_VALUE, DoubleConsts.MIN_NORMAL},
|
|
|
|
{Double.MAX_VALUE, Double_MAX_VALUEmm},
|
|
|
|
{infinityD, Double.MAX_VALUE},
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
2011-09-21 23:22:11 -07:00
|
|
|
failures+=Tests.test("Math.nextDown(double)",
|
|
|
|
testCases[i][0], Math.nextDown(testCases[i][0]), testCases[i][1]);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.nextDown(double)",
|
|
|
|
testCases[i][0], StrictMath.nextDown(testCases[i][0]), testCases[i][1]);
|
2009-01-26 19:49:26 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* ********************** boolean tests ****************************** */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Combined tests for boolean functions, isFinite, isInfinite,
|
|
|
|
* isNaN, isUnordered.
|
|
|
|
*/
|
|
|
|
|
|
|
|
public static int testFloatBooleanMethods() {
|
|
|
|
int failures = 0;
|
|
|
|
|
|
|
|
float testCases [] = {
|
|
|
|
NaNf,
|
|
|
|
-infinityF,
|
|
|
|
infinityF,
|
|
|
|
-Float.MAX_VALUE,
|
|
|
|
-3.0f,
|
|
|
|
-1.0f,
|
|
|
|
-FloatConsts.MIN_NORMAL,
|
|
|
|
-Float_MAX_SUBNORMALmm,
|
|
|
|
-Float_MAX_SUBNORMAL,
|
|
|
|
-Float.MIN_VALUE,
|
|
|
|
-0.0f,
|
|
|
|
+0.0f,
|
|
|
|
Float.MIN_VALUE,
|
|
|
|
Float_MAX_SUBNORMALmm,
|
|
|
|
Float_MAX_SUBNORMAL,
|
|
|
|
FloatConsts.MIN_NORMAL,
|
|
|
|
1.0f,
|
|
|
|
3.0f,
|
|
|
|
Float_MAX_VALUEmm,
|
|
|
|
Float.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
// isNaN
|
2014-02-03 09:52:36 -08:00
|
|
|
failures+=Tests.test("Float.isNaN(float)", testCases[i],
|
|
|
|
Float.isNaN(testCases[i]), (i ==0));
|
2009-01-26 19:49:26 -08:00
|
|
|
|
|
|
|
// isFinite
|
2011-09-21 23:22:11 -07:00
|
|
|
failures+=Tests.test("Float.isFinite(float)", testCases[i],
|
|
|
|
Float.isFinite(testCases[i]), (i >= 3));
|
2009-01-26 19:49:26 -08:00
|
|
|
|
|
|
|
// isInfinite
|
2014-02-03 09:52:36 -08:00
|
|
|
failures+=Tests.test("Float.isInfinite(float)", testCases[i],
|
|
|
|
Float.isInfinite(testCases[i]), (i==1 || i==2));
|
2009-01-26 19:49:26 -08:00
|
|
|
|
|
|
|
// isUnorderd
|
|
|
|
for(int j = 0; j < testCases.length; j++) {
|
2014-02-03 09:52:36 -08:00
|
|
|
failures+=Tests.test("Tests.isUnordered(float, float)", testCases[i],testCases[j],
|
|
|
|
Tests.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
|
2009-01-26 19:49:26 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testDoubleBooleanMethods() {
|
|
|
|
int failures = 0;
|
|
|
|
boolean result = false;
|
|
|
|
|
|
|
|
double testCases [] = {
|
|
|
|
NaNd,
|
|
|
|
-infinityD,
|
|
|
|
infinityD,
|
|
|
|
-Double.MAX_VALUE,
|
|
|
|
-3.0d,
|
|
|
|
-1.0d,
|
|
|
|
-DoubleConsts.MIN_NORMAL,
|
|
|
|
-Double_MAX_SUBNORMALmm,
|
|
|
|
-Double_MAX_SUBNORMAL,
|
|
|
|
-Double.MIN_VALUE,
|
|
|
|
-0.0d,
|
|
|
|
+0.0d,
|
|
|
|
Double.MIN_VALUE,
|
|
|
|
Double_MAX_SUBNORMALmm,
|
|
|
|
Double_MAX_SUBNORMAL,
|
|
|
|
DoubleConsts.MIN_NORMAL,
|
|
|
|
1.0d,
|
|
|
|
3.0d,
|
|
|
|
Double_MAX_VALUEmm,
|
|
|
|
Double.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
// isNaN
|
2014-02-03 09:52:36 -08:00
|
|
|
failures+=Tests.test("Double.isNaN(double)", testCases[i],
|
|
|
|
Double.isNaN(testCases[i]), (i ==0));
|
2009-01-26 19:49:26 -08:00
|
|
|
|
|
|
|
// isFinite
|
2011-09-21 23:22:11 -07:00
|
|
|
failures+=Tests.test("Double.isFinite(double)", testCases[i],
|
|
|
|
Double.isFinite(testCases[i]), (i >= 3));
|
2009-01-26 19:49:26 -08:00
|
|
|
|
|
|
|
// isInfinite
|
2014-02-03 09:52:36 -08:00
|
|
|
failures+=Tests.test("Double.isInfinite(double)", testCases[i],
|
|
|
|
Double.isInfinite(testCases[i]), (i==1 || i==2));
|
2009-01-26 19:49:26 -08:00
|
|
|
|
|
|
|
// isUnorderd
|
|
|
|
for(int j = 0; j < testCases.length; j++) {
|
2014-02-03 09:52:36 -08:00
|
|
|
failures+=Tests.test("Tests.isUnordered(double, double)", testCases[i],testCases[j],
|
|
|
|
Tests.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
|
2009-01-26 19:49:26 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ******************** copySign tests******************************** */
|
|
|
|
|
|
|
|
public static int testFloatCopySign() {
|
|
|
|
int failures = 0;
|
|
|
|
|
|
|
|
// testCases[0] are logically positive numbers;
|
|
|
|
// testCases[1] are negative numbers.
|
|
|
|
float testCases [][] = {
|
|
|
|
{+0.0f,
|
|
|
|
Float.MIN_VALUE,
|
|
|
|
Float_MAX_SUBNORMALmm,
|
|
|
|
Float_MAX_SUBNORMAL,
|
|
|
|
FloatConsts.MIN_NORMAL,
|
|
|
|
1.0f,
|
|
|
|
3.0f,
|
|
|
|
Float_MAX_VALUEmm,
|
|
|
|
Float.MAX_VALUE,
|
|
|
|
infinityF,
|
|
|
|
},
|
|
|
|
{-infinityF,
|
|
|
|
-Float.MAX_VALUE,
|
|
|
|
-3.0f,
|
|
|
|
-1.0f,
|
|
|
|
-FloatConsts.MIN_NORMAL,
|
|
|
|
-Float_MAX_SUBNORMALmm,
|
|
|
|
-Float_MAX_SUBNORMAL,
|
|
|
|
-Float.MIN_VALUE,
|
|
|
|
-0.0f}
|
|
|
|
};
|
|
|
|
|
|
|
|
float NaNs[] = {Float.intBitsToFloat(0x7fc00000), // "positive" NaN
|
|
|
|
Float.intBitsToFloat(0xFfc00000)}; // "negative" NaN
|
|
|
|
|
|
|
|
// Tests shared between raw and non-raw versions
|
|
|
|
for(int i = 0; i < 2; i++) {
|
|
|
|
for(int j = 0; j < 2; j++) {
|
|
|
|
for(int m = 0; m < testCases[i].length; m++) {
|
|
|
|
for(int n = 0; n < testCases[j].length; n++) {
|
|
|
|
// copySign(magnitude, sign)
|
|
|
|
failures+=Tests.test("Math.copySign(float,float)",
|
|
|
|
testCases[i][m],testCases[j][n],
|
|
|
|
Math.copySign(testCases[i][m], testCases[j][n]),
|
|
|
|
(j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.copySign(float,float)",
|
|
|
|
testCases[i][m],testCases[j][n],
|
|
|
|
StrictMath.copySign(testCases[i][m], testCases[j][n]),
|
|
|
|
(j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// For rawCopySign, NaN may effectively have either sign bit
|
|
|
|
// while for copySign NaNs are treated as if they always have
|
|
|
|
// a zero sign bit (i.e. as positive numbers)
|
|
|
|
for(int i = 0; i < 2; i++) {
|
|
|
|
for(int j = 0; j < NaNs.length; j++) {
|
|
|
|
for(int m = 0; m < testCases[i].length; m++) {
|
|
|
|
// copySign(magnitude, sign)
|
|
|
|
|
|
|
|
failures += (Math.abs(Math.copySign(testCases[i][m], NaNs[j])) ==
|
|
|
|
Math.abs(testCases[i][m])) ? 0:1;
|
|
|
|
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.copySign(float,float)",
|
|
|
|
testCases[i][m], NaNs[j],
|
|
|
|
StrictMath.copySign(testCases[i][m], NaNs[j]),
|
|
|
|
Math.abs(testCases[i][m]) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testDoubleCopySign() {
|
|
|
|
int failures = 0;
|
|
|
|
|
|
|
|
// testCases[0] are logically positive numbers;
|
|
|
|
// testCases[1] are negative numbers.
|
|
|
|
double testCases [][] = {
|
|
|
|
{+0.0d,
|
|
|
|
Double.MIN_VALUE,
|
|
|
|
Double_MAX_SUBNORMALmm,
|
|
|
|
Double_MAX_SUBNORMAL,
|
|
|
|
DoubleConsts.MIN_NORMAL,
|
|
|
|
1.0d,
|
|
|
|
3.0d,
|
|
|
|
Double_MAX_VALUEmm,
|
|
|
|
Double.MAX_VALUE,
|
|
|
|
infinityD,
|
|
|
|
},
|
|
|
|
{-infinityD,
|
|
|
|
-Double.MAX_VALUE,
|
|
|
|
-3.0d,
|
|
|
|
-1.0d,
|
|
|
|
-DoubleConsts.MIN_NORMAL,
|
|
|
|
-Double_MAX_SUBNORMALmm,
|
|
|
|
-Double_MAX_SUBNORMAL,
|
|
|
|
-Double.MIN_VALUE,
|
|
|
|
-0.0d}
|
|
|
|
};
|
|
|
|
|
|
|
|
double NaNs[] = {Double.longBitsToDouble(0x7ff8000000000000L), // "positive" NaN
|
|
|
|
Double.longBitsToDouble(0xfff8000000000000L), // "negative" NaN
|
|
|
|
Double.longBitsToDouble(0x7FF0000000000001L),
|
|
|
|
Double.longBitsToDouble(0xFFF0000000000001L),
|
|
|
|
Double.longBitsToDouble(0x7FF8555555555555L),
|
|
|
|
Double.longBitsToDouble(0xFFF8555555555555L),
|
|
|
|
Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),
|
|
|
|
Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),
|
|
|
|
Double.longBitsToDouble(0x7FFDeadBeef00000L),
|
|
|
|
Double.longBitsToDouble(0xFFFDeadBeef00000L),
|
|
|
|
Double.longBitsToDouble(0x7FFCafeBabe00000L),
|
|
|
|
Double.longBitsToDouble(0xFFFCafeBabe00000L)};
|
|
|
|
|
|
|
|
// Tests shared between Math and StrictMath versions
|
|
|
|
for(int i = 0; i < 2; i++) {
|
|
|
|
for(int j = 0; j < 2; j++) {
|
|
|
|
for(int m = 0; m < testCases[i].length; m++) {
|
|
|
|
for(int n = 0; n < testCases[j].length; n++) {
|
|
|
|
// copySign(magnitude, sign)
|
|
|
|
failures+=Tests.test("MathcopySign(double,double)",
|
|
|
|
testCases[i][m],testCases[j][n],
|
|
|
|
Math.copySign(testCases[i][m], testCases[j][n]),
|
|
|
|
(j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.copySign(double,double)",
|
|
|
|
testCases[i][m],testCases[j][n],
|
|
|
|
StrictMath.copySign(testCases[i][m], testCases[j][n]),
|
|
|
|
(j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// For Math.copySign, NaN may effectively have either sign bit
|
|
|
|
// while for StrictMath.copySign NaNs are treated as if they
|
|
|
|
// always have a zero sign bit (i.e. as positive numbers)
|
|
|
|
for(int i = 0; i < 2; i++) {
|
|
|
|
for(int j = 0; j < NaNs.length; j++) {
|
|
|
|
for(int m = 0; m < testCases[i].length; m++) {
|
|
|
|
// copySign(magnitude, sign)
|
|
|
|
|
|
|
|
failures += (Math.abs(Math.copySign(testCases[i][m], NaNs[j])) ==
|
|
|
|
Math.abs(testCases[i][m])) ? 0:1;
|
|
|
|
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.copySign(double,double)",
|
|
|
|
testCases[i][m], NaNs[j],
|
|
|
|
StrictMath.copySign(testCases[i][m], NaNs[j]),
|
|
|
|
Math.abs(testCases[i][m]) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ************************ scalb tests ******************************* */
|
|
|
|
|
|
|
|
static int testScalbCase(float value, int scale_factor, float expected) {
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.scalb(float,int)",
|
|
|
|
value, scale_factor,
|
|
|
|
Math.scalb(value, scale_factor), expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.scalb(float,int)",
|
|
|
|
-value, scale_factor,
|
|
|
|
Math.scalb(-value, scale_factor), -expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.scalb(float,int)",
|
|
|
|
value, scale_factor,
|
|
|
|
StrictMath.scalb(value, scale_factor), expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.scalb(float,int)",
|
|
|
|
-value, scale_factor,
|
|
|
|
StrictMath.scalb(-value, scale_factor), -expected);
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testFloatScalb() {
|
|
|
|
int failures=0;
|
|
|
|
int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT +
|
|
|
|
FloatConsts.SIGNIFICAND_WIDTH + 1;
|
|
|
|
|
|
|
|
|
|
|
|
// Arguments x, where scalb(x,n) is x for any n.
|
|
|
|
float [] identityTestCases = {NaNf,
|
|
|
|
-0.0f,
|
|
|
|
+0.0f,
|
|
|
|
infinityF,
|
|
|
|
-infinityF
|
|
|
|
};
|
|
|
|
|
|
|
|
float [] subnormalTestCases = {
|
|
|
|
Float.MIN_VALUE,
|
|
|
|
3.0f*Float.MIN_VALUE,
|
|
|
|
Float_MAX_SUBNORMALmm,
|
|
|
|
Float_MAX_SUBNORMAL
|
|
|
|
};
|
|
|
|
|
|
|
|
float [] someTestCases = {
|
|
|
|
Float.MIN_VALUE,
|
|
|
|
3.0f*Float.MIN_VALUE,
|
|
|
|
Float_MAX_SUBNORMALmm,
|
|
|
|
Float_MAX_SUBNORMAL,
|
|
|
|
FloatConsts.MIN_NORMAL,
|
|
|
|
1.0f,
|
|
|
|
2.0f,
|
|
|
|
3.0f,
|
|
|
|
(float)Math.PI,
|
|
|
|
Float_MAX_VALUEmm,
|
|
|
|
Float.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
int [] oneMultiplyScalingFactors = {
|
|
|
|
FloatConsts.MIN_EXPONENT,
|
|
|
|
FloatConsts.MIN_EXPONENT+1,
|
|
|
|
-3,
|
|
|
|
-2,
|
|
|
|
-1,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
FloatConsts.MAX_EXPONENT-1,
|
|
|
|
FloatConsts.MAX_EXPONENT
|
|
|
|
};
|
|
|
|
|
|
|
|
int [] manyScalingFactors = {
|
|
|
|
Integer.MIN_VALUE,
|
|
|
|
Integer.MIN_VALUE+1,
|
|
|
|
-MAX_SCALE -1,
|
|
|
|
-MAX_SCALE,
|
|
|
|
-MAX_SCALE+1,
|
|
|
|
|
|
|
|
2*FloatConsts.MIN_EXPONENT-1, // -253
|
|
|
|
2*FloatConsts.MIN_EXPONENT, // -252
|
|
|
|
2*FloatConsts.MIN_EXPONENT+1, // -251
|
|
|
|
|
2014-02-03 09:52:36 -08:00
|
|
|
FloatConsts.MIN_EXPONENT - FloatConsts.SIGNIFICAND_WIDTH,
|
|
|
|
FloatConsts.MIN_SUB_EXPONENT,
|
2009-01-26 19:49:26 -08:00
|
|
|
-FloatConsts.MAX_EXPONENT, // -127
|
|
|
|
FloatConsts.MIN_EXPONENT, // -126
|
|
|
|
|
|
|
|
-2,
|
|
|
|
-1,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
|
|
|
|
FloatConsts.MAX_EXPONENT-1, // 126
|
|
|
|
FloatConsts.MAX_EXPONENT, // 127
|
|
|
|
FloatConsts.MAX_EXPONENT+1, // 128
|
|
|
|
|
|
|
|
2*FloatConsts.MAX_EXPONENT-1, // 253
|
|
|
|
2*FloatConsts.MAX_EXPONENT, // 254
|
|
|
|
2*FloatConsts.MAX_EXPONENT+1, // 255
|
|
|
|
|
|
|
|
MAX_SCALE-1,
|
|
|
|
MAX_SCALE,
|
|
|
|
MAX_SCALE+1,
|
|
|
|
Integer.MAX_VALUE-1,
|
|
|
|
Integer.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
// Test cases where scaling is always a no-op
|
|
|
|
for(int i=0; i < identityTestCases.length; i++) {
|
|
|
|
for(int j=0; j < manyScalingFactors.length; j++) {
|
|
|
|
failures += testScalbCase(identityTestCases[i],
|
|
|
|
manyScalingFactors[j],
|
|
|
|
identityTestCases[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test cases where result is 0.0 or infinity due to magnitude
|
|
|
|
// of the scaling factor
|
|
|
|
for(int i=0; i < someTestCases.length; i++) {
|
|
|
|
for(int j=0; j < manyScalingFactors.length; j++) {
|
|
|
|
int scaleFactor = manyScalingFactors[j];
|
|
|
|
if (Math.abs(scaleFactor) >= MAX_SCALE) {
|
|
|
|
float value = someTestCases[i];
|
|
|
|
failures+=testScalbCase(value,
|
|
|
|
scaleFactor,
|
2011-09-18 18:14:07 -07:00
|
|
|
Math.copySign( (scaleFactor>0?infinityF:0.0f), value) );
|
2009-01-26 19:49:26 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test cases that could be done with one floating-point
|
|
|
|
// multiply.
|
|
|
|
for(int i=0; i < someTestCases.length; i++) {
|
|
|
|
for(int j=0; j < oneMultiplyScalingFactors.length; j++) {
|
|
|
|
int scaleFactor = oneMultiplyScalingFactors[j];
|
|
|
|
float value = someTestCases[i];
|
|
|
|
|
|
|
|
failures+=testScalbCase(value,
|
|
|
|
scaleFactor,
|
|
|
|
value*powerOfTwoF(scaleFactor));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create 2^MAX_EXPONENT
|
|
|
|
float twoToTheMaxExp = 1.0f; // 2^0
|
|
|
|
for(int i = 0; i < FloatConsts.MAX_EXPONENT; i++)
|
|
|
|
twoToTheMaxExp *=2.0f;
|
|
|
|
|
|
|
|
// Scale-up subnormal values until they all overflow
|
|
|
|
for(int i=0; i < subnormalTestCases.length; i++) {
|
|
|
|
float scale = 1.0f; // 2^j
|
|
|
|
float value = subnormalTestCases[i];
|
|
|
|
|
|
|
|
for(int j=FloatConsts.MAX_EXPONENT*2; j < MAX_SCALE; j++) { // MAX_SCALE -1 should cause overflow
|
|
|
|
int scaleFactor = j;
|
|
|
|
|
|
|
|
failures+=testScalbCase(value,
|
|
|
|
scaleFactor,
|
2014-02-03 09:52:36 -08:00
|
|
|
(Tests.ilogb(value) +j > FloatConsts.MAX_EXPONENT ) ?
|
2011-09-18 18:14:07 -07:00
|
|
|
Math.copySign(infinityF, value) : // overflow
|
2009-01-26 19:49:26 -08:00
|
|
|
// calculate right answer
|
|
|
|
twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
|
|
|
|
scale*=2.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Scale down a large number until it underflows. By scaling
|
|
|
|
// down MAX_NORMALmm, the first subnormal result will be exact
|
|
|
|
// but the next one will round -- all those results can be
|
|
|
|
// checked by halving a separate value in the loop. Actually,
|
|
|
|
// we can keep halving and checking until the product is zero
|
|
|
|
// since:
|
|
|
|
//
|
|
|
|
// 1. If the scalb of MAX_VALUEmm is subnormal and *not* exact
|
|
|
|
// it will round *up*
|
|
|
|
//
|
|
|
|
// 2. When rounding first occurs in the expected product, it
|
|
|
|
// too rounds up, to 2^-MAX_EXPONENT.
|
|
|
|
//
|
|
|
|
// Halving expected after rounding happends to give the same
|
|
|
|
// result as the scalb operation.
|
|
|
|
float expected = Float_MAX_VALUEmm *0.5f;
|
|
|
|
for(int i = -1; i > -MAX_SCALE; i--) {
|
|
|
|
failures+=testScalbCase(Float_MAX_VALUEmm, i, expected);
|
|
|
|
|
|
|
|
expected *= 0.5f;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tricky rounding tests:
|
|
|
|
// Scale down a large number into subnormal range such that if
|
|
|
|
// scalb is being implemented with multiple floating-point
|
|
|
|
// multiplies, the value would round twice if the multiplies
|
|
|
|
// were done in the wrong order.
|
|
|
|
|
|
|
|
float value = 0x8.0000bP-5f;
|
|
|
|
expected = 0x1.00001p-129f;
|
|
|
|
|
|
|
|
for(int i = 0; i < 129; i++) {
|
|
|
|
failures+=testScalbCase(value,
|
|
|
|
-127-i,
|
|
|
|
expected);
|
|
|
|
value *=2.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int testScalbCase(double value, int scale_factor, double expected) {
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.scalb(double,int)",
|
|
|
|
value, scale_factor,
|
|
|
|
Math.scalb(value, scale_factor), expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.scalb(double,int)",
|
|
|
|
-value, scale_factor,
|
|
|
|
Math.scalb(-value, scale_factor), -expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.scalb(double,int)",
|
|
|
|
value, scale_factor,
|
|
|
|
StrictMath.scalb(value, scale_factor), expected);
|
|
|
|
|
|
|
|
failures+=Tests.test("StrictMath.scalb(double,int)",
|
|
|
|
-value, scale_factor,
|
|
|
|
StrictMath.scalb(-value, scale_factor), -expected);
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testDoubleScalb() {
|
|
|
|
int failures=0;
|
|
|
|
int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT +
|
|
|
|
DoubleConsts.SIGNIFICAND_WIDTH + 1;
|
|
|
|
|
|
|
|
|
|
|
|
// Arguments x, where scalb(x,n) is x for any n.
|
|
|
|
double [] identityTestCases = {NaNd,
|
|
|
|
-0.0,
|
|
|
|
+0.0,
|
|
|
|
infinityD,
|
|
|
|
};
|
|
|
|
|
|
|
|
double [] subnormalTestCases = {
|
|
|
|
Double.MIN_VALUE,
|
|
|
|
3.0d*Double.MIN_VALUE,
|
|
|
|
Double_MAX_SUBNORMALmm,
|
|
|
|
Double_MAX_SUBNORMAL
|
|
|
|
};
|
|
|
|
|
|
|
|
double [] someTestCases = {
|
|
|
|
Double.MIN_VALUE,
|
|
|
|
3.0d*Double.MIN_VALUE,
|
|
|
|
Double_MAX_SUBNORMALmm,
|
|
|
|
Double_MAX_SUBNORMAL,
|
|
|
|
DoubleConsts.MIN_NORMAL,
|
|
|
|
1.0d,
|
|
|
|
2.0d,
|
|
|
|
3.0d,
|
|
|
|
Math.PI,
|
|
|
|
Double_MAX_VALUEmm,
|
|
|
|
Double.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
int [] oneMultiplyScalingFactors = {
|
|
|
|
DoubleConsts.MIN_EXPONENT,
|
|
|
|
DoubleConsts.MIN_EXPONENT+1,
|
|
|
|
-3,
|
|
|
|
-2,
|
|
|
|
-1,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
3,
|
|
|
|
DoubleConsts.MAX_EXPONENT-1,
|
|
|
|
DoubleConsts.MAX_EXPONENT
|
|
|
|
};
|
|
|
|
|
|
|
|
int [] manyScalingFactors = {
|
|
|
|
Integer.MIN_VALUE,
|
|
|
|
Integer.MIN_VALUE+1,
|
|
|
|
-MAX_SCALE -1,
|
|
|
|
-MAX_SCALE,
|
|
|
|
-MAX_SCALE+1,
|
|
|
|
|
|
|
|
2*DoubleConsts.MIN_EXPONENT-1, // -2045
|
|
|
|
2*DoubleConsts.MIN_EXPONENT, // -2044
|
|
|
|
2*DoubleConsts.MIN_EXPONENT+1, // -2043
|
|
|
|
|
2014-02-03 09:52:36 -08:00
|
|
|
DoubleConsts.MIN_EXPONENT, // -1022
|
|
|
|
DoubleConsts.MIN_EXPONENT - DoubleConsts.SIGNIFICAND_WIDTH,
|
|
|
|
DoubleConsts.MIN_SUB_EXPONENT,
|
2009-01-26 19:49:26 -08:00
|
|
|
-DoubleConsts.MAX_EXPONENT, // -1023
|
|
|
|
DoubleConsts.MIN_EXPONENT, // -1022
|
|
|
|
|
|
|
|
-2,
|
|
|
|
-1,
|
|
|
|
0,
|
|
|
|
1,
|
|
|
|
2,
|
|
|
|
|
|
|
|
DoubleConsts.MAX_EXPONENT-1, // 1022
|
|
|
|
DoubleConsts.MAX_EXPONENT, // 1023
|
|
|
|
DoubleConsts.MAX_EXPONENT+1, // 1024
|
|
|
|
|
|
|
|
2*DoubleConsts.MAX_EXPONENT-1, // 2045
|
|
|
|
2*DoubleConsts.MAX_EXPONENT, // 2046
|
|
|
|
2*DoubleConsts.MAX_EXPONENT+1, // 2047
|
|
|
|
|
|
|
|
MAX_SCALE-1,
|
|
|
|
MAX_SCALE,
|
|
|
|
MAX_SCALE+1,
|
|
|
|
Integer.MAX_VALUE-1,
|
|
|
|
Integer.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
// Test cases where scaling is always a no-op
|
|
|
|
for(int i=0; i < identityTestCases.length; i++) {
|
|
|
|
for(int j=0; j < manyScalingFactors.length; j++) {
|
|
|
|
failures += testScalbCase(identityTestCases[i],
|
|
|
|
manyScalingFactors[j],
|
|
|
|
identityTestCases[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test cases where result is 0.0 or infinity due to magnitude
|
|
|
|
// of the scaling factor
|
|
|
|
for(int i=0; i < someTestCases.length; i++) {
|
|
|
|
for(int j=0; j < manyScalingFactors.length; j++) {
|
|
|
|
int scaleFactor = manyScalingFactors[j];
|
|
|
|
if (Math.abs(scaleFactor) >= MAX_SCALE) {
|
|
|
|
double value = someTestCases[i];
|
|
|
|
failures+=testScalbCase(value,
|
|
|
|
scaleFactor,
|
2011-09-18 18:14:07 -07:00
|
|
|
Math.copySign( (scaleFactor>0?infinityD:0.0), value) );
|
2009-01-26 19:49:26 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test cases that could be done with one floating-point
|
|
|
|
// multiply.
|
|
|
|
for(int i=0; i < someTestCases.length; i++) {
|
|
|
|
for(int j=0; j < oneMultiplyScalingFactors.length; j++) {
|
|
|
|
int scaleFactor = oneMultiplyScalingFactors[j];
|
|
|
|
double value = someTestCases[i];
|
|
|
|
|
|
|
|
failures+=testScalbCase(value,
|
|
|
|
scaleFactor,
|
|
|
|
value*powerOfTwoD(scaleFactor));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create 2^MAX_EXPONENT
|
|
|
|
double twoToTheMaxExp = 1.0; // 2^0
|
|
|
|
for(int i = 0; i < DoubleConsts.MAX_EXPONENT; i++)
|
|
|
|
twoToTheMaxExp *=2.0;
|
|
|
|
|
|
|
|
// Scale-up subnormal values until they all overflow
|
|
|
|
for(int i=0; i < subnormalTestCases.length; i++) {
|
|
|
|
double scale = 1.0; // 2^j
|
|
|
|
double value = subnormalTestCases[i];
|
|
|
|
|
|
|
|
for(int j=DoubleConsts.MAX_EXPONENT*2; j < MAX_SCALE; j++) { // MAX_SCALE -1 should cause overflow
|
|
|
|
int scaleFactor = j;
|
|
|
|
|
|
|
|
failures+=testScalbCase(value,
|
|
|
|
scaleFactor,
|
2014-02-03 09:52:36 -08:00
|
|
|
(Tests.ilogb(value) +j > DoubleConsts.MAX_EXPONENT ) ?
|
2011-09-18 18:14:07 -07:00
|
|
|
Math.copySign(infinityD, value) : // overflow
|
2009-01-26 19:49:26 -08:00
|
|
|
// calculate right answer
|
|
|
|
twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
|
|
|
|
scale*=2.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Scale down a large number until it underflows. By scaling
|
|
|
|
// down MAX_NORMALmm, the first subnormal result will be exact
|
|
|
|
// but the next one will round -- all those results can be
|
|
|
|
// checked by halving a separate value in the loop. Actually,
|
|
|
|
// we can keep halving and checking until the product is zero
|
|
|
|
// since:
|
|
|
|
//
|
|
|
|
// 1. If the scalb of MAX_VALUEmm is subnormal and *not* exact
|
|
|
|
// it will round *up*
|
|
|
|
//
|
|
|
|
// 2. When rounding first occurs in the expected product, it
|
|
|
|
// too rounds up, to 2^-MAX_EXPONENT.
|
|
|
|
//
|
|
|
|
// Halving expected after rounding happends to give the same
|
|
|
|
// result as the scalb operation.
|
|
|
|
double expected = Double_MAX_VALUEmm *0.5f;
|
|
|
|
for(int i = -1; i > -MAX_SCALE; i--) {
|
|
|
|
failures+=testScalbCase(Double_MAX_VALUEmm, i, expected);
|
|
|
|
|
|
|
|
expected *= 0.5;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tricky rounding tests:
|
|
|
|
// Scale down a large number into subnormal range such that if
|
|
|
|
// scalb is being implemented with multiple floating-point
|
|
|
|
// multiplies, the value would round twice if the multiplies
|
|
|
|
// were done in the wrong order.
|
|
|
|
|
|
|
|
double value = 0x1.000000000000bP-1;
|
|
|
|
expected = 0x0.2000000000001P-1022;
|
|
|
|
for(int i = 0; i < DoubleConsts.MAX_EXPONENT+2; i++) {
|
|
|
|
failures+=testScalbCase(value,
|
|
|
|
-1024-i,
|
|
|
|
expected);
|
|
|
|
value *=2.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ************************* ulp tests ******************************* */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test Math.ulp and StrictMath.ulp with +d and -d.
|
|
|
|
*/
|
|
|
|
static int testUlpCase(float f, float expected) {
|
|
|
|
float minus_f = -f;
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.ulp(float)", f,
|
|
|
|
Math.ulp(f), expected);
|
|
|
|
failures+=Tests.test("Math.ulp(float)", minus_f,
|
|
|
|
Math.ulp(minus_f), expected);
|
|
|
|
failures+=Tests.test("StrictMath.ulp(float)", f,
|
|
|
|
StrictMath.ulp(f), expected);
|
|
|
|
failures+=Tests.test("StrictMath.ulp(float)", minus_f,
|
|
|
|
StrictMath.ulp(minus_f), expected);
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int testUlpCase(double d, double expected) {
|
|
|
|
double minus_d = -d;
|
|
|
|
int failures=0;
|
|
|
|
|
|
|
|
failures+=Tests.test("Math.ulp(double)", d,
|
|
|
|
Math.ulp(d), expected);
|
|
|
|
failures+=Tests.test("Math.ulp(double)", minus_d,
|
|
|
|
Math.ulp(minus_d), expected);
|
|
|
|
failures+=Tests.test("StrictMath.ulp(double)", d,
|
|
|
|
StrictMath.ulp(d), expected);
|
|
|
|
failures+=Tests.test("StrictMath.ulp(double)", minus_d,
|
|
|
|
StrictMath.ulp(minus_d), expected);
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testFloatUlp() {
|
|
|
|
int failures = 0;
|
|
|
|
float [] specialValues = {NaNf,
|
|
|
|
Float.POSITIVE_INFINITY,
|
|
|
|
+0.0f,
|
|
|
|
+1.0f,
|
|
|
|
+2.0f,
|
|
|
|
+16.0f,
|
|
|
|
+Float.MIN_VALUE,
|
|
|
|
+Float_MAX_SUBNORMAL,
|
|
|
|
+FloatConsts.MIN_NORMAL,
|
|
|
|
+Float.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
float [] specialResults = {NaNf,
|
|
|
|
Float.POSITIVE_INFINITY,
|
|
|
|
Float.MIN_VALUE,
|
|
|
|
powerOfTwoF(-23),
|
|
|
|
powerOfTwoF(-22),
|
|
|
|
powerOfTwoF(-19),
|
|
|
|
Float.MIN_VALUE,
|
|
|
|
Float.MIN_VALUE,
|
|
|
|
Float.MIN_VALUE,
|
|
|
|
powerOfTwoF(104)
|
|
|
|
};
|
|
|
|
|
|
|
|
// Special value tests
|
|
|
|
for(int i = 0; i < specialValues.length; i++) {
|
|
|
|
failures += testUlpCase(specialValues[i], specialResults[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Normal exponent tests
|
|
|
|
for(int i = FloatConsts.MIN_EXPONENT; i <= FloatConsts.MAX_EXPONENT; i++) {
|
|
|
|
float expected;
|
|
|
|
|
|
|
|
// Create power of two
|
|
|
|
float po2 = powerOfTwoF(i);
|
2011-09-18 18:14:07 -07:00
|
|
|
expected = Math.scalb(1.0f, i - (FloatConsts.SIGNIFICAND_WIDTH-1));
|
2009-01-26 19:49:26 -08:00
|
|
|
|
|
|
|
failures += testUlpCase(po2, expected);
|
|
|
|
|
|
|
|
// Generate some random bit patterns for the significand
|
|
|
|
for(int j = 0; j < 10; j++) {
|
|
|
|
int randSignif = rand.nextInt();
|
|
|
|
float randFloat;
|
|
|
|
|
|
|
|
randFloat = Float.intBitsToFloat( // Exponent
|
|
|
|
(Float.floatToIntBits(po2)&
|
|
|
|
(~FloatConsts.SIGNIF_BIT_MASK)) |
|
|
|
|
// Significand
|
|
|
|
(randSignif &
|
|
|
|
FloatConsts.SIGNIF_BIT_MASK) );
|
|
|
|
|
|
|
|
failures += testUlpCase(randFloat, expected);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i > FloatConsts.MIN_EXPONENT) {
|
2011-09-18 18:14:07 -07:00
|
|
|
float po2minus = Math.nextAfter(po2,
|
2009-01-26 19:49:26 -08:00
|
|
|
Float.NEGATIVE_INFINITY);
|
|
|
|
failures += testUlpCase(po2minus, expected/2.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Subnormal tests
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start with MIN_VALUE, left shift, test high value, low
|
|
|
|
* values, and random in between.
|
|
|
|
*
|
|
|
|
* Use nextAfter to calculate, high value of previous binade,
|
|
|
|
* loop count i will indicate how many random bits, if any are
|
|
|
|
* needed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
float top=Float.MIN_VALUE;
|
|
|
|
for( int i = 1;
|
|
|
|
i < FloatConsts.SIGNIFICAND_WIDTH;
|
|
|
|
i++, top *= 2.0f) {
|
|
|
|
|
|
|
|
failures += testUlpCase(top, Float.MIN_VALUE);
|
|
|
|
|
|
|
|
// Test largest value in next smaller binade
|
|
|
|
if (i >= 3) {// (i == 1) would test 0.0;
|
|
|
|
// (i == 2) would just retest MIN_VALUE
|
2011-09-18 18:14:07 -07:00
|
|
|
testUlpCase(Math.nextAfter(top, 0.0f),
|
2009-01-26 19:49:26 -08:00
|
|
|
Float.MIN_VALUE);
|
|
|
|
|
|
|
|
if( i >= 10) {
|
|
|
|
// create a bit mask with (i-1) 1's in the low order
|
|
|
|
// bits
|
|
|
|
int mask = ~((~0)<<(i-1));
|
|
|
|
float randFloat = Float.intBitsToFloat( // Exponent
|
|
|
|
Float.floatToIntBits(top) |
|
|
|
|
// Significand
|
|
|
|
(rand.nextInt() & mask ) ) ;
|
|
|
|
|
|
|
|
failures += testUlpCase(randFloat, Float.MIN_VALUE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testDoubleUlp() {
|
|
|
|
int failures = 0;
|
|
|
|
double [] specialValues = {NaNd,
|
|
|
|
Double.POSITIVE_INFINITY,
|
|
|
|
+0.0d,
|
|
|
|
+1.0d,
|
|
|
|
+2.0d,
|
|
|
|
+16.0d,
|
|
|
|
+Double.MIN_VALUE,
|
|
|
|
+Double_MAX_SUBNORMAL,
|
|
|
|
+DoubleConsts.MIN_NORMAL,
|
|
|
|
+Double.MAX_VALUE
|
|
|
|
};
|
|
|
|
|
|
|
|
double [] specialResults = {NaNf,
|
|
|
|
Double.POSITIVE_INFINITY,
|
|
|
|
Double.MIN_VALUE,
|
|
|
|
powerOfTwoD(-52),
|
|
|
|
powerOfTwoD(-51),
|
|
|
|
powerOfTwoD(-48),
|
|
|
|
Double.MIN_VALUE,
|
|
|
|
Double.MIN_VALUE,
|
|
|
|
Double.MIN_VALUE,
|
|
|
|
powerOfTwoD(971)
|
|
|
|
};
|
|
|
|
|
|
|
|
// Special value tests
|
|
|
|
for(int i = 0; i < specialValues.length; i++) {
|
|
|
|
failures += testUlpCase(specialValues[i], specialResults[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Normal exponent tests
|
|
|
|
for(int i = DoubleConsts.MIN_EXPONENT; i <= DoubleConsts.MAX_EXPONENT; i++) {
|
|
|
|
double expected;
|
|
|
|
|
|
|
|
// Create power of two
|
|
|
|
double po2 = powerOfTwoD(i);
|
2011-09-18 18:14:07 -07:00
|
|
|
expected = Math.scalb(1.0, i - (DoubleConsts.SIGNIFICAND_WIDTH-1));
|
2009-01-26 19:49:26 -08:00
|
|
|
|
|
|
|
failures += testUlpCase(po2, expected);
|
|
|
|
|
|
|
|
// Generate some random bit patterns for the significand
|
|
|
|
for(int j = 0; j < 10; j++) {
|
|
|
|
long randSignif = rand.nextLong();
|
|
|
|
double randDouble;
|
|
|
|
|
|
|
|
randDouble = Double.longBitsToDouble( // Exponent
|
|
|
|
(Double.doubleToLongBits(po2)&
|
|
|
|
(~DoubleConsts.SIGNIF_BIT_MASK)) |
|
|
|
|
// Significand
|
|
|
|
(randSignif &
|
|
|
|
DoubleConsts.SIGNIF_BIT_MASK) );
|
|
|
|
|
|
|
|
failures += testUlpCase(randDouble, expected);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i > DoubleConsts.MIN_EXPONENT) {
|
2011-09-18 18:14:07 -07:00
|
|
|
double po2minus = Math.nextAfter(po2,
|
2009-01-26 19:49:26 -08:00
|
|
|
Double.NEGATIVE_INFINITY);
|
|
|
|
failures += testUlpCase(po2minus, expected/2.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Subnormal tests
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start with MIN_VALUE, left shift, test high value, low
|
|
|
|
* values, and random in between.
|
|
|
|
*
|
|
|
|
* Use nextAfter to calculate, high value of previous binade,
|
|
|
|
* loop count i will indicate how many random bits, if any are
|
|
|
|
* needed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double top=Double.MIN_VALUE;
|
|
|
|
for( int i = 1;
|
|
|
|
i < DoubleConsts.SIGNIFICAND_WIDTH;
|
|
|
|
i++, top *= 2.0f) {
|
|
|
|
|
|
|
|
failures += testUlpCase(top, Double.MIN_VALUE);
|
|
|
|
|
|
|
|
// Test largest value in next smaller binade
|
|
|
|
if (i >= 3) {// (i == 1) would test 0.0;
|
|
|
|
// (i == 2) would just retest MIN_VALUE
|
2011-09-18 18:14:07 -07:00
|
|
|
testUlpCase(Math.nextAfter(top, 0.0f),
|
2009-01-26 19:49:26 -08:00
|
|
|
Double.MIN_VALUE);
|
|
|
|
|
|
|
|
if( i >= 10) {
|
|
|
|
// create a bit mask with (i-1) 1's in the low order
|
|
|
|
// bits
|
|
|
|
int mask = ~((~0)<<(i-1));
|
|
|
|
double randDouble = Double.longBitsToDouble( // Exponent
|
|
|
|
Double.doubleToLongBits(top) |
|
|
|
|
// Significand
|
|
|
|
(rand.nextLong() & mask ) ) ;
|
|
|
|
|
|
|
|
failures += testUlpCase(randDouble, Double.MIN_VALUE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testFloatSignum() {
|
|
|
|
int failures = 0;
|
|
|
|
float testCases [][] = {
|
|
|
|
{NaNf, NaNf},
|
|
|
|
{-infinityF, -1.0f},
|
|
|
|
{-Float.MAX_VALUE, -1.0f},
|
|
|
|
{-FloatConsts.MIN_NORMAL, -1.0f},
|
|
|
|
{-1.0f, -1.0f},
|
|
|
|
{-2.0f, -1.0f},
|
|
|
|
{-Float_MAX_SUBNORMAL, -1.0f},
|
|
|
|
{-Float.MIN_VALUE, -1.0f},
|
|
|
|
{-0.0f, -0.0f},
|
|
|
|
{+0.0f, +0.0f},
|
|
|
|
{Float.MIN_VALUE, 1.0f},
|
|
|
|
{Float_MAX_SUBNORMALmm, 1.0f},
|
|
|
|
{Float_MAX_SUBNORMAL, 1.0f},
|
|
|
|
{FloatConsts.MIN_NORMAL, 1.0f},
|
|
|
|
{1.0f, 1.0f},
|
|
|
|
{2.0f, 1.0f},
|
|
|
|
{Float_MAX_VALUEmm, 1.0f},
|
|
|
|
{Float.MAX_VALUE, 1.0f},
|
|
|
|
{infinityF, 1.0f}
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
failures+=Tests.test("Math.signum(float)",
|
|
|
|
testCases[i][0], Math.signum(testCases[i][0]), testCases[i][1]);
|
|
|
|
failures+=Tests.test("StrictMath.signum(float)",
|
|
|
|
testCases[i][0], StrictMath.signum(testCases[i][0]), testCases[i][1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testDoubleSignum() {
|
|
|
|
int failures = 0;
|
|
|
|
double testCases [][] = {
|
|
|
|
{NaNd, NaNd},
|
|
|
|
{-infinityD, -1.0},
|
|
|
|
{-Double.MAX_VALUE, -1.0},
|
|
|
|
{-DoubleConsts.MIN_NORMAL, -1.0},
|
|
|
|
{-1.0, -1.0},
|
|
|
|
{-2.0, -1.0},
|
|
|
|
{-Double_MAX_SUBNORMAL, -1.0},
|
|
|
|
{-Double.MIN_VALUE, -1.0d},
|
|
|
|
{-0.0d, -0.0d},
|
|
|
|
{+0.0d, +0.0d},
|
|
|
|
{Double.MIN_VALUE, 1.0},
|
|
|
|
{Double_MAX_SUBNORMALmm, 1.0},
|
|
|
|
{Double_MAX_SUBNORMAL, 1.0},
|
|
|
|
{DoubleConsts.MIN_NORMAL, 1.0},
|
|
|
|
{1.0, 1.0},
|
|
|
|
{2.0, 1.0},
|
|
|
|
{Double_MAX_VALUEmm, 1.0},
|
|
|
|
{Double.MAX_VALUE, 1.0},
|
|
|
|
{infinityD, 1.0}
|
|
|
|
};
|
|
|
|
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
failures+=Tests.test("Math.signum(double)",
|
|
|
|
testCases[i][0], Math.signum(testCases[i][0]), testCases[i][1]);
|
|
|
|
failures+=Tests.test("StrictMath.signum(double)",
|
|
|
|
testCases[i][0], StrictMath.signum(testCases[i][0]), testCases[i][1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
public static void main(String argv[]) {
|
|
|
|
int failures = 0;
|
|
|
|
|
|
|
|
failures += testFloatGetExponent();
|
|
|
|
failures += testDoubleGetExponent();
|
|
|
|
|
|
|
|
failures += testFloatNextAfter();
|
|
|
|
failures += testDoubleNextAfter();
|
|
|
|
|
|
|
|
failures += testFloatNextUp();
|
|
|
|
failures += testDoubleNextUp();
|
|
|
|
|
|
|
|
failures += testFloatNextDown();
|
|
|
|
failures += testDoubleNextDown();
|
|
|
|
|
|
|
|
failures += testFloatBooleanMethods();
|
|
|
|
failures += testDoubleBooleanMethods();
|
|
|
|
|
|
|
|
failures += testFloatCopySign();
|
|
|
|
failures += testDoubleCopySign();
|
|
|
|
|
|
|
|
failures += testFloatScalb();
|
|
|
|
failures += testDoubleScalb();
|
|
|
|
|
|
|
|
failures += testFloatUlp();
|
|
|
|
failures += testDoubleUlp();
|
|
|
|
|
|
|
|
failures += testFloatSignum();
|
|
|
|
failures += testDoubleSignum();
|
|
|
|
|
|
|
|
if (failures > 0) {
|
|
|
|
System.err.println("Testing the recommended functions incurred "
|
|
|
|
+ failures + " failures.");
|
|
|
|
throw new RuntimeException();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|