jdk-24/hotspot/src/share/vm/memory/allocation.inline.hpp

272 lines
8.1 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
2007-12-01 00:00:00 +00:00
*
*/
#ifndef SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP
#define SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP
#include "runtime/atomic.hpp"
#include "runtime/os.hpp"
#include "services/memTracker.hpp"
#include "utilities/globalDefinitions.hpp"
2007-12-01 00:00:00 +00:00
// Explicit C-heap memory management
void trace_heap_malloc(size_t size, const char* name, void *p);
void trace_heap_free(void *p);
#ifndef PRODUCT
// Increments unsigned long value for statistics (not atomic on MP).
inline void inc_stat_counter(volatile julong* dest, julong add_value) {
#if defined(SPARC) || defined(X86)
// Sparc and X86 have atomic jlong (8 bytes) instructions
julong value = Atomic::load((volatile jlong*)dest);
value += add_value;
Atomic::store((jlong)value, (volatile jlong*)dest);
#else
// possible word-tearing during load/store
*dest += add_value;
#endif
}
#endif
2007-12-01 00:00:00 +00:00
// allocate using malloc; will fail if no memory available
inline char* AllocateHeap(size_t size, MEMFLAGS flags,
const NativeCallStack& stack,
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
char* p = (char*) os::malloc(size, flags, stack);
2007-12-01 00:00:00 +00:00
#ifdef ASSERT
if (PrintMallocFree) trace_heap_malloc(size, "AllocateHeap", p);
2007-12-01 00:00:00 +00:00
#endif
if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "AllocateHeap");
}
2007-12-01 00:00:00 +00:00
return p;
}
ALWAYSINLINE char* AllocateHeap(size_t size, MEMFLAGS flags,
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
return AllocateHeap(size, flags, CURRENT_PC, alloc_failmode);
}
2007-12-01 00:00:00 +00:00
ALWAYSINLINE char* ReallocateHeap(char *old, size_t size, MEMFLAGS flag,
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
char* p = (char*) os::realloc(old, size, flag, CURRENT_PC);
2007-12-01 00:00:00 +00:00
#ifdef ASSERT
if (PrintMallocFree) trace_heap_malloc(size, "ReallocateHeap", p);
2007-12-01 00:00:00 +00:00
#endif
if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "ReallocateHeap");
}
2007-12-01 00:00:00 +00:00
return p;
}
inline void FreeHeap(void* p) {
2007-12-01 00:00:00 +00:00
#ifdef ASSERT
if (PrintMallocFree) trace_heap_free(p);
#endif
os::free(p);
2007-12-01 00:00:00 +00:00
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new(size_t size,
const NativeCallStack& stack) throw() {
void* p = (void*)AllocateHeap(size, F, stack);
#ifdef ASSERT
if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
#endif
return p;
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new(size_t size) throw() {
return CHeapObj<F>::operator new(size, CALLER_PC);
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new (size_t size,
const std::nothrow_t& nothrow_constant, const NativeCallStack& stack) throw() {
void* p = (void*)AllocateHeap(size, F, stack,
AllocFailStrategy::RETURN_NULL);
#ifdef ASSERT
if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
#endif
return p;
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new (size_t size,
const std::nothrow_t& nothrow_constant) throw() {
return CHeapObj<F>::operator new(size, nothrow_constant, CALLER_PC);
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
const NativeCallStack& stack) throw() {
return CHeapObj<F>::operator new(size, stack);
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size)
throw() {
return CHeapObj<F>::operator new(size, CALLER_PC);
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
const std::nothrow_t& nothrow_constant, const NativeCallStack& stack) throw() {
return CHeapObj<F>::operator new(size, nothrow_constant, stack);
}
template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
const std::nothrow_t& nothrow_constant) throw() {
return CHeapObj<F>::operator new(size, nothrow_constant, CALLER_PC);
}
template <MEMFLAGS F> void CHeapObj<F>::operator delete(void* p){
FreeHeap(p);
}
template <MEMFLAGS F> void CHeapObj<F>::operator delete [](void* p){
FreeHeap(p);
}
template <class E, MEMFLAGS F>
size_t MmapArrayAllocator<E, F>::size_for(size_t length) {
size_t size = length * sizeof(E);
int alignment = os::vm_allocation_granularity();
return align_size_up(size, alignment);
}
template <class E, MEMFLAGS F>
E* MmapArrayAllocator<E, F>::allocate_or_null(size_t length) {
size_t size = size_for(length);
int alignment = os::vm_allocation_granularity();
char* addr = os::reserve_memory(size, NULL, alignment, F);
if (addr == NULL) {
return NULL;
}
if (os::commit_memory(addr, size, !ExecMem, "Allocator (commit)")) {
return (E*)addr;
} else {
os::release_memory(addr, size);
return NULL;
}
}
template <class E, MEMFLAGS F>
E* MmapArrayAllocator<E, F>::allocate(size_t length) {
size_t size = size_for(length);
int alignment = os::vm_allocation_granularity();
char* addr = os::reserve_memory(size, NULL, alignment, F);
if (addr == NULL) {
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "Allocator (reserve)");
}
os::commit_memory_or_exit(addr, size, !ExecMem, "Allocator (commit)");
return (E*)addr;
}
template <class E, MEMFLAGS F>
void MmapArrayAllocator<E, F>::free(E* addr, size_t length) {
bool result = os::release_memory((char*)addr, size_for(length));
assert(result, "Failed to release memory");
}
template <class E, MEMFLAGS F>
size_t MallocArrayAllocator<E, F>::size_for(size_t length) {
return length * sizeof(E);
}
template <class E, MEMFLAGS F>
E* MallocArrayAllocator<E, F>::allocate(size_t length) {
return (E*)AllocateHeap(size_for(length), F);
}
template<class E, MEMFLAGS F>
void MallocArrayAllocator<E, F>::free(E* addr, size_t /*length*/) {
FreeHeap(addr);
}
template <class E, MEMFLAGS F>
bool ArrayAllocator<E, F>::should_use_malloc(size_t length) {
return MallocArrayAllocator<E, F>::size_for(length) < ArrayAllocatorMallocLimit;
}
template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::allocate_malloc(size_t length) {
return MallocArrayAllocator<E, F>::allocate(length);
}
template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::allocate_mmap(size_t length) {
return MmapArrayAllocator<E, F>::allocate(length);
}
template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::allocate(size_t length) {
if (should_use_malloc(length)) {
return allocate_malloc(length);
}
return allocate_mmap(length);
}
template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::reallocate(E* old_addr, size_t old_length, size_t new_length) {
E* new_addr = (new_length > 0)
? allocate(new_length)
: NULL;
if (new_addr != NULL && old_addr != NULL) {
memcpy(new_addr, old_addr, MIN2(old_length, new_length) * sizeof(E));
}
if (old_addr != NULL) {
free(old_addr, old_length);
}
return new_addr;
}
template<class E, MEMFLAGS F>
void ArrayAllocator<E, F>::free_malloc(E* addr, size_t length) {
MallocArrayAllocator<E, F>::free(addr, length);
}
template<class E, MEMFLAGS F>
void ArrayAllocator<E, F>::free_mmap(E* addr, size_t length) {
MmapArrayAllocator<E, F>::free(addr, length);
}
template<class E, MEMFLAGS F>
void ArrayAllocator<E, F>::free(E* addr, size_t length) {
if (addr != NULL) {
if (should_use_malloc(length)) {
free_malloc(addr, length);
} else {
free_mmap(addr, length);
}
}
}
#endif // SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP