jdk-24/test/hotspot/gtest/gc/shared/test_oopStorage.cpp

1420 lines
42 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "gc/shared/oopStorage.inline.hpp"
#include "gc/shared/oopStorageParState.inline.hpp"
#include "gc/shared/workerThread.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "metaprogramming/enableIf.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/mutex.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/thread.hpp"
#include "runtime/vmOperations.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/align.hpp"
#include "utilities/ostream.hpp"
#include "utilities/quickSort.hpp"
#include "unittest.hpp"
// Access storage internals.
class OopStorage::TestAccess : public AllStatic {
public:
typedef OopStorage::Block Block;
typedef OopStorage::AllocationList AllocationList;
typedef OopStorage::ActiveArray ActiveArray;
static ActiveArray& active_array(const OopStorage& storage) {
return *storage._active_array;
}
static AllocationList& allocation_list(OopStorage& storage) {
return storage._allocation_list;
}
static const AllocationList& allocation_list(const OopStorage& storage) {
return storage._allocation_list;
}
static Mutex* allocation_mutex(const OopStorage& storage) {
return storage._allocation_mutex;
}
static bool reduce_deferred_updates(OopStorage& storage) {
return storage.reduce_deferred_updates();
}
static bool block_is_empty(const Block& block) {
return block.is_empty();
}
static bool block_is_full(const Block& block) {
return block.is_full();
}
static unsigned block_allocation_count(const Block& block) {
uintx bitmask = block.allocated_bitmask();
unsigned count = 0;
for ( ; bitmask != 0; bitmask >>= 1) {
if ((bitmask & 1) != 0) {
++count;
}
}
return count;
}
static size_t memory_per_block() {
return Block::allocation_size();
}
static void block_array_set_block_count(ActiveArray* blocks, size_t count) {
blocks->_block_count = count;
}
static const oop* get_block_pointer(const Block& block, unsigned index) {
return block.get_pointer(index);
}
static Block* new_block(const OopStorage& owner) {
return Block::new_block(&owner);
}
static void delete_block(const Block& block) {
Block::delete_block(block);
}
};
typedef OopStorage::TestAccess TestAccess;
// The "Oop" prefix is to avoid collision with similar opto names when
// building with precompiled headers, or for consistency with that
// workaround. There really should be an opto namespace.
typedef TestAccess::Block OopBlock;
typedef TestAccess::AllocationList AllocationList;
typedef TestAccess::ActiveArray ActiveArray;
// Using EXPECT_EQ can't use nullptr directly. Otherwise AIX build breaks.
const OopBlock* const NULL_BLOCK = nullptr;
static size_t list_length(const AllocationList& list) {
size_t result = 0;
for (const OopBlock* block = list.chead();
block != nullptr;
block = list.next(*block)) {
++result;
}
return result;
}
static void clear_list(AllocationList& list) {
OopBlock* next;
for (OopBlock* block = list.head(); block != nullptr; block = next) {
next = list.next(*block);
list.unlink(*block);
}
}
static bool is_list_empty(const AllocationList& list) {
return list.chead() == nullptr;
}
static bool process_deferred_updates(OopStorage& storage) {
MutexLocker ml(TestAccess::allocation_mutex(storage), Mutex::_no_safepoint_check_flag);
bool result = false;
while (TestAccess::reduce_deferred_updates(storage)) {
result = true;
}
return result;
}
static void release_entry(OopStorage& storage, oop* entry, bool process_deferred = true) {
*entry = nullptr;
storage.release(entry);
if (process_deferred) {
process_deferred_updates(storage);
}
}
static size_t empty_block_count(const OopStorage& storage) {
const AllocationList& list = TestAccess::allocation_list(storage);
size_t count = 0;
for (const OopBlock* block = list.ctail();
(block != nullptr) && block->is_empty();
++count, block = list.prev(*block))
{}
return count;
}
static size_t active_count(const OopStorage& storage) {
return TestAccess::active_array(storage).block_count();
}
static OopBlock* active_head(const OopStorage& storage) {
ActiveArray& ba = TestAccess::active_array(storage);
size_t count = ba.block_count();
if (count == 0) {
return nullptr;
} else {
return ba.at(count - 1);
}
}
class OopStorageTest : public ::testing::Test {
OopStorage* _storage;
public:
OopStorageTest();
~OopStorageTest();
OopStorage& storage() const { return *_storage; }
class CountingIterateClosure;
template<bool is_const> class VM_CountAtSafepoint;
};
OopStorageTest::OopStorageTest() :
_storage(OopStorage::create("Test Storage", mtGC))
{ }
OopStorageTest::~OopStorageTest() {
clear_list(TestAccess::allocation_list(storage()));
delete _storage;
}
class OopStorageTestWithAllocation : public OopStorageTest {
public:
OopStorageTestWithAllocation();
static const size_t _max_entries = 1000;
oop* _entries[_max_entries];
};
OopStorageTestWithAllocation::OopStorageTestWithAllocation() {
for (size_t i = 0; i < _max_entries; ++i) {
_entries[i] = storage().allocate();
EXPECT_TRUE(_entries[i] != nullptr);
EXPECT_EQ(i + 1, storage().allocation_count());
}
};
const size_t OopStorageTestWithAllocation::_max_entries;
static bool is_allocation_list_sorted(const OopStorage& storage) {
// The allocation_list isn't strictly sorted. Rather, all empty
// blocks are segregated to the end of the list.
const AllocationList& list = TestAccess::allocation_list(storage);
const OopBlock* block = list.ctail();
for ( ; (block != nullptr) && block->is_empty(); block = list.prev(*block)) {}
for ( ; block != nullptr; block = list.prev(*block)) {
if (block->is_empty()) {
return false;
}
}
return true;
}
static size_t total_allocation_count(const OopStorage& storage) {
size_t total_count = 0;
const ActiveArray& ba = TestAccess::active_array(storage);
size_t limit = active_count(storage);
for (size_t i = 0; i < limit; ++i) {
total_count += TestAccess::block_allocation_count(*ba.at(i));
}
return total_count;
}
TEST_VM_F(OopStorageTest, allocate_one) {
EXPECT_EQ(0u, active_count(storage()));
EXPECT_TRUE(is_list_empty(TestAccess::allocation_list(storage())));
oop* ptr = storage().allocate();
EXPECT_TRUE(ptr != nullptr);
EXPECT_EQ(1u, storage().allocation_count());
EXPECT_EQ(1u, active_count(storage()));
EXPECT_EQ(1u, storage().block_count());
EXPECT_EQ(1u, list_length(TestAccess::allocation_list(storage())));
EXPECT_EQ(0u, empty_block_count(storage()));
const OopBlock* block = TestAccess::allocation_list(storage()).chead();
EXPECT_NE(block, (OopBlock*)nullptr);
EXPECT_EQ(block, active_head(storage()));
EXPECT_FALSE(TestAccess::block_is_empty(*block));
EXPECT_FALSE(TestAccess::block_is_full(*block));
EXPECT_EQ(1u, TestAccess::block_allocation_count(*block));
release_entry(storage(), ptr);
EXPECT_EQ(0u, storage().allocation_count());
EXPECT_EQ(1u, active_count(storage()));
EXPECT_EQ(1u, storage().block_count());
EXPECT_EQ(1u, list_length(TestAccess::allocation_list(storage())));
EXPECT_EQ(1u, empty_block_count(storage()));
const OopBlock* new_block = TestAccess::allocation_list(storage()).chead();
EXPECT_EQ(block, new_block);
EXPECT_EQ(block, active_head(storage()));
EXPECT_TRUE(TestAccess::block_is_empty(*block));
EXPECT_FALSE(TestAccess::block_is_full(*block));
EXPECT_EQ(0u, TestAccess::block_allocation_count(*block));
}
TEST_VM_F(OopStorageTest, allocation_count) {
static const size_t max_entries = 1000;
oop* entries[max_entries];
AllocationList& allocation_list = TestAccess::allocation_list(storage());
EXPECT_EQ(0u, active_count(storage()));
EXPECT_EQ(0u, storage().block_count());
EXPECT_TRUE(is_list_empty(allocation_list));
size_t allocated = 0;
for ( ; allocated < max_entries; ++allocated) {
EXPECT_EQ(allocated, storage().allocation_count());
if (active_count(storage()) != 0) {
EXPECT_EQ(1u, active_count(storage()));
EXPECT_EQ(1u, storage().block_count());
const OopBlock& block = *TestAccess::active_array(storage()).at(0);
EXPECT_EQ(allocated, TestAccess::block_allocation_count(block));
if (TestAccess::block_is_full(block)) {
break;
} else {
EXPECT_FALSE(is_list_empty(allocation_list));
EXPECT_EQ(&block, allocation_list.chead());
}
}
entries[allocated] = storage().allocate();
}
EXPECT_EQ(allocated, storage().allocation_count());
EXPECT_EQ(1u, active_count(storage()));
EXPECT_EQ(1u, storage().block_count());
EXPECT_TRUE(is_list_empty(allocation_list));
const OopBlock& block = *TestAccess::active_array(storage()).at(0);
EXPECT_TRUE(TestAccess::block_is_full(block));
EXPECT_EQ(allocated, TestAccess::block_allocation_count(block));
for (size_t i = 0; i < allocated; ++i) {
release_entry(storage(), entries[i]);
size_t remaining = allocated - (i + 1);
EXPECT_EQ(remaining, TestAccess::block_allocation_count(block));
EXPECT_EQ(remaining, storage().allocation_count());
EXPECT_FALSE(is_list_empty(allocation_list));
}
}
TEST_VM_F(OopStorageTest, allocate_many) {
static const size_t max_entries = 1000;
oop* entries[max_entries];
AllocationList& allocation_list = TestAccess::allocation_list(storage());
EXPECT_EQ(0u, empty_block_count(storage()));
entries[0] = storage().allocate();
ASSERT_TRUE(entries[0] != nullptr);
EXPECT_EQ(1u, active_count(storage()));
EXPECT_EQ(1u, storage().block_count());
EXPECT_EQ(1u, list_length(allocation_list));
EXPECT_EQ(0u, empty_block_count(storage()));
const OopBlock* block = TestAccess::active_array(storage()).at(0);
EXPECT_EQ(1u, TestAccess::block_allocation_count(*block));
EXPECT_EQ(block, allocation_list.chead());
for (size_t i = 1; i < max_entries; ++i) {
entries[i] = storage().allocate();
EXPECT_EQ(i + 1, storage().allocation_count());
ASSERT_TRUE(entries[i] != nullptr);
EXPECT_EQ(0u, empty_block_count(storage()));
if (block == nullptr) {
ASSERT_FALSE(is_list_empty(allocation_list));
EXPECT_EQ(1u, list_length(allocation_list));
block = allocation_list.chead();
EXPECT_EQ(1u, TestAccess::block_allocation_count(*block));
EXPECT_EQ(block, active_head(storage()));
} else if (TestAccess::block_is_full(*block)) {
EXPECT_TRUE(is_list_empty(allocation_list));
block = nullptr;
} else {
EXPECT_FALSE(is_list_empty(allocation_list));
EXPECT_EQ(block, allocation_list.chead());
EXPECT_EQ(block, active_head(storage()));
}
}
if (block != nullptr) {
EXPECT_NE(0u, TestAccess::block_allocation_count(*block));
EXPECT_FALSE(is_list_empty(allocation_list));
EXPECT_EQ(block, allocation_list.chead());
EXPECT_EQ(block, active_head(storage()));
}
for (size_t i = 0; i < max_entries; ++i) {
release_entry(storage(), entries[i]);
EXPECT_TRUE(is_allocation_list_sorted(storage()));
EXPECT_EQ(max_entries - (i + 1), total_allocation_count(storage()));
}
EXPECT_EQ(active_count(storage()), list_length(allocation_list));
EXPECT_EQ(active_count(storage()), storage().block_count());
EXPECT_EQ(active_count(storage()), empty_block_count(storage()));
for (const OopBlock* block = allocation_list.chead();
block != nullptr;
block = allocation_list.next(*block)) {
EXPECT_TRUE(TestAccess::block_is_empty(*block));
}
}
TEST_VM_F(OopStorageTestWithAllocation, random_release) {
static const size_t step = 11;
ASSERT_NE(0u, _max_entries % step); // max_entries and step are mutually prime
EXPECT_EQ(0u, empty_block_count(storage()));
AllocationList& allocation_list = TestAccess::allocation_list(storage());
EXPECT_EQ(_max_entries, total_allocation_count(storage()));
EXPECT_GE(1u, list_length(allocation_list));
// Release all entries in "random" order.
size_t released = 0;
for (size_t i = 0; released < _max_entries; i = (i + step) % _max_entries) {
if (_entries[i] != nullptr) {
release_entry(storage(), _entries[i]);
_entries[i] = nullptr;
++released;
EXPECT_EQ(_max_entries - released, total_allocation_count(storage()));
EXPECT_TRUE(is_allocation_list_sorted(storage()));
}
}
EXPECT_EQ(active_count(storage()), list_length(allocation_list));
EXPECT_EQ(active_count(storage()), storage().block_count());
EXPECT_EQ(0u, total_allocation_count(storage()));
EXPECT_EQ(list_length(allocation_list), empty_block_count(storage()));
}
TEST_VM_F(OopStorageTestWithAllocation, random_allocate_release) {
static const size_t release_step = 11;
static const size_t allocate_step = 5;
ASSERT_NE(0u, _max_entries % release_step); // max_entries and step are mutually prime
EXPECT_EQ(0u, empty_block_count(storage()));
AllocationList& allocation_list = TestAccess::allocation_list(storage());
EXPECT_EQ(_max_entries, total_allocation_count(storage()));
EXPECT_GE(1u, list_length(allocation_list));
// Release all entries in "random" order, "randomly" interspersed
// with additional allocations.
size_t released = 0;
size_t total_released = 0;
for (size_t i = 0; released < _max_entries; i = (i + release_step) % _max_entries) {
if (_entries[i] != nullptr) {
release_entry(storage(), _entries[i]);
_entries[i] = nullptr;
++released;
++total_released;
EXPECT_EQ(_max_entries - released, total_allocation_count(storage()));
EXPECT_TRUE(is_allocation_list_sorted(storage()));
if (total_released % allocate_step == 0) {
_entries[i] = storage().allocate();
--released;
EXPECT_EQ(_max_entries - released, total_allocation_count(storage()));
EXPECT_TRUE(is_allocation_list_sorted(storage()));
}
}
}
EXPECT_EQ(active_count(storage()), list_length(allocation_list));
EXPECT_EQ(active_count(storage()), storage().block_count());
EXPECT_EQ(0u, total_allocation_count(storage()));
EXPECT_EQ(list_length(allocation_list), empty_block_count(storage()));
}
template<bool sorted>
class OopStorageTestBlockRelease : public OopStorageTestWithAllocation {
public:
void SetUp() {
size_t nrelease = _max_entries / 2;
oop** to_release = NEW_C_HEAP_ARRAY(oop*, nrelease, mtInternal);
for (size_t i = 0; i < nrelease; ++i) {
to_release[i] = _entries[2 * i];
*to_release[i] = nullptr;
}
if (sorted) {
QuickSort::sort(to_release, nrelease, PointerCompare());
}
storage().release(to_release, nrelease);
EXPECT_EQ(_max_entries - nrelease, storage().allocation_count());
for (size_t i = 0; i < nrelease; ++i) {
release_entry(storage(), _entries[2 * i + 1], false);
EXPECT_EQ(_max_entries - nrelease - (i + 1), storage().allocation_count());
}
EXPECT_TRUE(process_deferred_updates(storage()));
EXPECT_EQ(storage().block_count(), empty_block_count(storage()));
FREE_C_HEAP_ARRAY(oop*, to_release);
}
struct PointerCompare {
int operator()(const void* p, const void* q) const {
return (p < q) ? -1 : int(p != q);
}
};
};
typedef OopStorageTestBlockRelease<true> OopStorageTestBlockReleaseSorted;
typedef OopStorageTestBlockRelease<false> OopStorageTestBlockReleaseUnsorted;
TEST_VM_F(OopStorageTestBlockReleaseSorted, block_release) {}
TEST_VM_F(OopStorageTestBlockReleaseUnsorted, block_release) {}
TEST_VM_F(OopStorageTest, bulk_allocation) {
static const size_t max_entries = 1000;
static const size_t zero = 0;
oop* entries[max_entries] = {};
AllocationList& allocation_list = TestAccess::allocation_list(storage());
EXPECT_EQ(0u, empty_block_count(storage()));
size_t allocated = storage().allocate(entries, max_entries);
ASSERT_NE(allocated, zero);
// ASSERT_LE would ODR-use the OopStorage constant.
size_t bulk_allocate_limit = OopStorage::bulk_allocate_limit;
ASSERT_LE(allocated, bulk_allocate_limit);
ASSERT_LE(allocated, max_entries);
for (size_t i = 0; i < allocated; ++i) {
EXPECT_EQ(OopStorage::ALLOCATED_ENTRY, storage().allocation_status(entries[i]));
}
for (size_t i = allocated; i < max_entries; ++i) {
EXPECT_EQ(nullptr, entries[i]);
}
storage().release(entries, allocated);
EXPECT_EQ(0u, storage().allocation_count());
for (size_t i = 0; i < allocated; ++i) {
EXPECT_EQ(OopStorage::UNALLOCATED_ENTRY, storage().allocation_status(entries[i]));
}
}
TEST_VM_F(OopStorageTest, invalid_malloc_pointer) {
char* mem = NEW_C_HEAP_ARRAY(char, 1000, mtInternal);
oop* ptr = reinterpret_cast<oop*>(align_down(mem + 250, sizeof(oop)));
// Predicate returns false for some malloc'ed block.
EXPECT_EQ(OopStorage::INVALID_ENTRY, storage().allocation_status(ptr));
FREE_C_HEAP_ARRAY(char, mem);
}
TEST_VM_F(OopStorageTest, invalid_random_pointer) {
oop obj;
oop* ptr = &obj;
// Predicate returns false for some "random" location.
EXPECT_EQ(OopStorage::INVALID_ENTRY, storage().allocation_status(ptr));
}
TEST_VM_F(OopStorageTest, invalid_block_pointer) {
// Allocate a block for storage, but don't insert it into the storage. This
// also tests the false positive case of block_for_ptr where we have a
// reference to storage at just the "right" place.
const OopBlock* block = TestAccess::new_block(storage());
ASSERT_NE(block, NULL_BLOCK);
const oop* ptr = TestAccess::get_block_pointer(*block, 0);
EXPECT_EQ(OopStorage::INVALID_ENTRY, storage().allocation_status(ptr));
TestAccess::delete_block(*block);
}
TEST_VM_F(OopStorageTest, invalid_null_pointer) {
EXPECT_EQ(OopStorage::INVALID_ENTRY, storage().allocation_status(nullptr));
}
class OopStorageTest::CountingIterateClosure {
public:
size_t _const_count;
size_t _const_non_null;
size_t _non_const_count;
size_t _non_const_non_null;
void do_oop(const oop* ptr) {
++_const_count;
if (*ptr != nullptr) {
++_const_non_null;
}
}
void do_oop(oop* ptr) {
++_non_const_count;
if (*ptr != nullptr) {
++_non_const_non_null;
}
}
CountingIterateClosure() :
_const_count(0),
_const_non_null(0),
_non_const_count(0),
_non_const_non_null(0)
{}
};
template<bool is_const>
class OopStorageTest::VM_CountAtSafepoint : public VM_GTestExecuteAtSafepoint {
public:
using Storage = std::conditional_t<is_const, const OopStorage, OopStorage>;
VM_CountAtSafepoint(Storage* storage, CountingIterateClosure* cl) :
_storage(storage), _cl(cl)
{}
void doit() { _storage->oops_do(_cl); }
private:
Storage* _storage;
CountingIterateClosure* _cl;
};
TEST_VM_F(OopStorageTest, simple_iterate) {
// Dummy oop value.
intptr_t dummy_oop_value = 0xbadbeaf;
oop dummy_oop = reinterpret_cast<oopDesc*>(&dummy_oop_value);
const size_t max_entries = 1000;
oop* entries[max_entries];
size_t allocated = 0;
size_t entries_with_values = 0;
for (size_t i = 0; i < max_entries; i += 10) {
for ( ; allocated < i; ++allocated) {
entries[allocated] = storage().allocate();
ASSERT_TRUE(entries[allocated] != nullptr);
if ((allocated % 3) != 0) {
*entries[allocated] = dummy_oop;
++entries_with_values;
}
}
{
CountingIterateClosure cl;
VM_CountAtSafepoint<false> op(&storage(), &cl);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
EXPECT_EQ(allocated, cl._non_const_count);
EXPECT_EQ(entries_with_values, cl._non_const_non_null);
EXPECT_EQ(0u, cl._const_count);
EXPECT_EQ(0u, cl._const_non_null);
}
{
CountingIterateClosure cl;
VM_CountAtSafepoint<true> op(&storage(), &cl);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
EXPECT_EQ(allocated, cl._const_count);
EXPECT_EQ(entries_with_values, cl._const_non_null);
EXPECT_EQ(0u, cl._non_const_count);
EXPECT_EQ(0u, cl._non_const_non_null);
}
}
while (allocated > 0) {
release_entry(storage(), entries[--allocated], false);
}
process_deferred_updates(storage());
}
class OopStorageTestIteration : public OopStorageTestWithAllocation {
public:
static const size_t _max_workers = 2;
unsigned char _states[_max_workers][_max_entries];
static const unsigned char mark_released = 1u << 0;
static const unsigned char mark_invalid = 1u << 1;
static const unsigned char mark_const = 1u << 2;
static const unsigned char mark_non_const = 1u << 3;
virtual void SetUp() {
OopStorageTestWithAllocation::SetUp();
memset(_states, 0, sizeof(_states));
size_t initial_release = 0;
for ( ; empty_block_count(storage()) < 2; ++initial_release) {
ASSERT_GT(_max_entries, initial_release);
release_entry(storage(), _entries[initial_release]);
_states[0][initial_release] = mark_released;
}
for (size_t i = initial_release; i < _max_entries; i += 3) {
release_entry(storage(), _entries[i], false);
_states[0][i] = mark_released;
}
process_deferred_updates(storage());
}
class VerifyState;
class VerifyFn;
template<bool is_const> class VM_Verify;
class VerifyClosure;
class VM_VerifyUsingOopsDo;
};
const unsigned char OopStorageTestIteration::mark_released;
const unsigned char OopStorageTestIteration::mark_invalid;
const unsigned char OopStorageTestIteration::mark_const;
const unsigned char OopStorageTestIteration::mark_non_const;
class OopStorageTestIteration::VerifyState {
public:
unsigned char _expected_mark;
const oop* const* _entries;
unsigned char (&_states)[_max_workers][_max_entries];
VerifyState(unsigned char expected_mark,
const oop* const* entries,
unsigned char (&states)[_max_workers][_max_entries]) :
_expected_mark(expected_mark),
_entries(entries),
_states(states)
{ }
bool update(const oop* ptr, uint worker_id, unsigned char mark) const {
size_t index = 0;
bool found = find_entry(ptr, &index);
EXPECT_TRUE(found);
EXPECT_GT(_max_entries, index);
EXPECT_GT(_max_workers, worker_id);
if (!found) {
return false;
} else if (index >= _max_entries) {
return false;
} else if (worker_id >= _max_workers) {
return false;
} else {
EXPECT_EQ(0, _states[worker_id][index]);
if (_states[worker_id][index] != 0) {
_states[worker_id][index] |= mark_invalid;
return false;
} else {
_states[worker_id][index] |= mark;
return true;
}
}
}
void check() const {
for (size_t i = 0; i < _max_entries; ++i) {
unsigned char mark = 0;
for (size_t w = 0; w < _max_workers; ++w) {
if (mark == 0) {
mark = _states[w][i];
} else {
EXPECT_EQ(0u, _states[w][i]);
}
}
if (mark == 0) {
EXPECT_NE(0u, mark);
} else if ((mark & mark_released) != 0) {
EXPECT_EQ(mark_released, mark);
} else {
EXPECT_EQ(_expected_mark, mark);
}
}
}
private:
bool find_entry(const oop* ptr, size_t* index) const {
for (size_t i = 0; i < _max_entries; ++i) {
if (ptr == _entries[i]) {
*index = i;
return true;
}
}
return false;
}
};
class OopStorageTestIteration::VerifyFn {
public:
VerifyFn(VerifyState* state, uint worker_id = 0) :
_state(state),
_worker_id(worker_id)
{}
bool operator()( oop* ptr) const {
return _state->update(ptr, _worker_id, mark_non_const);
}
bool operator()(const oop* ptr) const {
return _state->update(ptr, _worker_id, mark_const);
}
private:
VerifyState* _state;
uint _worker_id;
};
class OopStorageTestIteration::VerifyClosure {
public:
VerifyClosure(VerifyState* state, uint worker_id = 0) :
_state(state),
_worker_id(worker_id)
{}
void do_oop(oop* ptr) {
_state->update(ptr, _worker_id, mark_non_const);
}
void do_oop(const oop* ptr) {
_state->update(ptr, _worker_id, mark_const);
}
private:
VerifyState* _state;
uint _worker_id;
};
const size_t OopStorageTestIteration::_max_workers;
template<bool is_const>
class OopStorageTestIteration::VM_Verify : public VM_GTestExecuteAtSafepoint {
public:
using Storage = std::conditional_t<is_const, const OopStorage, OopStorage>;
VM_Verify(Storage* storage, VerifyState* vstate) :
_storage(storage), _vstate(vstate), _result(false)
{}
void doit() {
VerifyFn verifier(_vstate);
_result = _storage->iterate_safepoint(verifier);
}
bool result() const { return _result; }
private:
Storage* _storage;
VerifyState* _vstate;
bool _result;
};
class OopStorageTestIteration::VM_VerifyUsingOopsDo : public VM_GTestExecuteAtSafepoint {
public:
VM_VerifyUsingOopsDo(OopStorage* storage, VerifyState* vstate) :
_storage(storage), _vstate(vstate)
{}
void doit() {
VerifyClosure verifier(_vstate);
_storage->oops_do(&verifier);
}
private:
OopStorage* _storage;
VerifyState* _vstate;
};
TEST_VM_F(OopStorageTestIteration, iterate_safepoint) {
VerifyState vstate(mark_non_const, _entries, _states);
VM_Verify<false> op(&storage(), &vstate);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
EXPECT_TRUE(op.result());
vstate.check();
}
TEST_VM_F(OopStorageTestIteration, const_iterate_safepoint) {
VerifyState vstate(mark_const, _entries, _states);
VM_Verify<true> op(&storage(), &vstate);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
EXPECT_TRUE(op.result());
vstate.check();
}
TEST_VM_F(OopStorageTestIteration, oops_do) {
VerifyState vstate(mark_non_const, _entries, _states);
VM_VerifyUsingOopsDo op(&storage(), &vstate);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
class OopStorageTestParIteration : public OopStorageTestIteration {
public:
WorkerThreads* workers();
class VM_ParStateVerify;
template<bool concurrent, bool is_const> class Task;
template<bool concurrent, bool is_const> class TaskUsingOopsDo;
private:
static WorkerThreads* _workers;
};
WorkerThreads* OopStorageTestParIteration::_workers = nullptr;
WorkerThreads* OopStorageTestParIteration::workers() {
if (_workers == nullptr) {
_workers = new WorkerThreads("OopStorageTestParIteration workers", _max_workers);
_workers->initialize_workers();
_workers->set_active_workers(_max_workers);
}
return _workers;
}
template<bool concurrent, bool is_const>
class OopStorageTestParIteration::Task : public WorkerTask {
typedef OopStorage::ParState<concurrent, is_const> StateType;
using Storage = std::conditional_t<is_const, const OopStorage, OopStorage>;
public:
Task(const char* name, Storage* storage, VerifyState* vstate) :
WorkerTask(name),
_state(storage),
_vstate(vstate)
{}
virtual void work(uint worker_id) {
VerifyFn verifier(_vstate, worker_id);
_state.iterate(verifier);
}
private:
StateType _state;
VerifyState* _vstate;
};
template<bool concurrent, bool is_const>
class OopStorageTestParIteration::TaskUsingOopsDo : public WorkerTask {
public:
TaskUsingOopsDo(const char* name, OopStorage* storage, VerifyState* vstate) :
WorkerTask(name),
_state(storage),
_vstate(vstate)
{}
virtual void work(uint worker_id) {
VerifyClosure verifier(_vstate, worker_id);
_state.oops_do(&verifier);
}
private:
OopStorage::ParState<concurrent, is_const> _state;
VerifyState* _vstate;
};
class OopStorageTestParIteration::VM_ParStateVerify : public VM_GTestExecuteAtSafepoint {
public:
VM_ParStateVerify(WorkerThreads* workers, WorkerTask* task) :
_workers(workers), _task(task)
{}
void doit() {
_workers->run_task(_task);
}
private:
WorkerThreads* _workers;
WorkerTask* _task;
};
TEST_VM_F(OopStorageTestParIteration, par_state_safepoint_iterate) {
VerifyState vstate(mark_non_const, _entries, _states);
Task<false, false> task("test", &storage(), &vstate);
VM_ParStateVerify op(workers(), &task);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_safepoint_const_iterate) {
VerifyState vstate(mark_const, _entries, _states);
Task<false, true> task("test", &storage(), &vstate);
VM_ParStateVerify op(workers(), &task);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_safepoint_oops_do) {
VerifyState vstate(mark_non_const, _entries, _states);
TaskUsingOopsDo<false, false> task("test", &storage(), &vstate);
VM_ParStateVerify op(workers(), &task);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_safepoint_const_oops_do) {
VerifyState vstate(mark_const, _entries, _states);
TaskUsingOopsDo<false, true> task("test", &storage(), &vstate);
VM_ParStateVerify op(workers(), &task);
{
ThreadInVMfromNative invm(JavaThread::current());
VMThread::execute(&op);
}
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_concurrent_iterate) {
VerifyState vstate(mark_non_const, _entries, _states);
Task<true, false> task("test", &storage(), &vstate);
workers()->run_task(&task);
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_concurrent_const_iterate) {
VerifyState vstate(mark_const, _entries, _states);
Task<true, true> task("test", &storage(), &vstate);
workers()->run_task(&task);
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_concurrent_oops_do) {
VerifyState vstate(mark_non_const, _entries, _states);
TaskUsingOopsDo<true, false> task("test", &storage(), &vstate);
workers()->run_task(&task);
vstate.check();
}
TEST_VM_F(OopStorageTestParIteration, par_state_concurrent_const_oops_do) {
VerifyState vstate(mark_const, _entries, _states);
TaskUsingOopsDo<true, true> task("test", &storage(), &vstate);
workers()->run_task(&task);
vstate.check();
}
TEST_VM_F(OopStorageTestWithAllocation, delete_empty_blocks) {
size_t initial_active_size = active_count(storage());
EXPECT_EQ(initial_active_size, storage().block_count());
ASSERT_LE(3u, initial_active_size); // Need at least 3 blocks for test
for (size_t i = 0; empty_block_count(storage()) < 3; ++i) {
ASSERT_GT(_max_entries, i);
release_entry(storage(), _entries[i]);
}
EXPECT_EQ(initial_active_size, active_count(storage()));
EXPECT_EQ(initial_active_size, storage().block_count());
EXPECT_EQ(3u, empty_block_count(storage()));
{
ThreadInVMfromNative invm(JavaThread::current());
while (storage().delete_empty_blocks()) {}
}
EXPECT_EQ(0u, empty_block_count(storage()));
EXPECT_EQ(initial_active_size - 3, active_count(storage()));
EXPECT_EQ(initial_active_size - 3, storage().block_count());
}
TEST_VM_F(OopStorageTestWithAllocation, allocation_status) {
oop* retained = _entries[200];
oop* released = _entries[300];
oop* garbage = reinterpret_cast<oop*>(1024 * 1024);
release_entry(storage(), released);
EXPECT_EQ(OopStorage::ALLOCATED_ENTRY, storage().allocation_status(retained));
EXPECT_EQ(OopStorage::UNALLOCATED_ENTRY, storage().allocation_status(released));
EXPECT_EQ(OopStorage::INVALID_ENTRY, storage().allocation_status(garbage));
for (size_t i = 0; i < _max_entries; ++i) {
if ((_entries[i] != retained) && (_entries[i] != released)) {
// Leave deferred release updates to block deletion.
release_entry(storage(), _entries[i], false);
}
}
{
ThreadInVMfromNative invm(JavaThread::current());
while (storage().delete_empty_blocks()) {}
}
EXPECT_EQ(OopStorage::ALLOCATED_ENTRY, storage().allocation_status(retained));
EXPECT_EQ(OopStorage::INVALID_ENTRY, storage().allocation_status(released));
EXPECT_EQ(OopStorage::INVALID_ENTRY, storage().allocation_status(garbage));
}
TEST_VM_F(OopStorageTest, usage_info) {
size_t goal_blocks = 5;
oop* entries[1000];
size_t allocated = 0;
EXPECT_EQ(0u, storage().block_count());
// There is non-block overhead, so always some usage.
EXPECT_LT(0u, storage().total_memory_usage());
while (storage().block_count() < goal_blocks) {
size_t this_count = storage().block_count();
while (storage().block_count() == this_count) {
ASSERT_GT(ARRAY_SIZE(entries), allocated);
entries[allocated] = storage().allocate();
ASSERT_TRUE(entries[allocated] != nullptr);
++allocated;
}
EXPECT_NE(0u, storage().block_count());
EXPECT_NE(0u, storage().total_memory_usage());
}
EXPECT_LT(TestAccess::memory_per_block() * storage().block_count(),
storage().total_memory_usage());
}
#ifndef PRODUCT
TEST_VM_F(OopStorageTestWithAllocation, print_storage) {
// Release the first 1/2
for (size_t i = 0; i < (_max_entries / 2); ++i) {
// Deferred updates don't affect print output.
release_entry(storage(), _entries[i], false);
_entries[i] = nullptr;
}
// Release every other remaining
for (size_t i = _max_entries / 2; i < _max_entries; i += 2) {
// Deferred updates don't affect print output.
release_entry(storage(), _entries[i], false);
_entries[i] = nullptr;
}
size_t expected_entries = _max_entries / 4;
EXPECT_EQ(expected_entries, storage().allocation_count());
size_t entries_per_block = BitsPerWord;
size_t expected_blocks = (_max_entries + entries_per_block - 1) / entries_per_block;
EXPECT_EQ(expected_blocks, storage().block_count());
double expected_usage = (100.0 * expected_entries) / (expected_blocks * entries_per_block);
{
ResourceMark rm;
stringStream expected_st;
expected_st.print("Test Storage: " SIZE_FORMAT
" entries in " SIZE_FORMAT
" blocks (%.F%%), " SIZE_FORMAT " bytes",
expected_entries,
expected_blocks,
expected_usage,
storage().total_memory_usage());
stringStream st;
storage().print_on(&st);
EXPECT_STREQ(expected_st.as_string(), st.as_string());
}
}
#endif // !PRODUCT
class OopStorageBlockCollectionTest : public ::testing::Test {
protected:
OopStorageBlockCollectionTest() {
for (size_t i = 0; i < nvalues; ++i) {
values[i] = OopBlock::new_block(pseudo_owner());
}
}
~OopStorageBlockCollectionTest() {
for (size_t i = 0; i < nvalues; ++i) {
OopBlock::delete_block(*values[i]);
}
}
public:
static const size_t nvalues = 10;
OopBlock* values[nvalues];
private:
// The only thing we actually care about is the address of the owner.
static const size_t pseudo_owner_size = sizeof(OopStorage) / sizeof(void*);
static const void* const _pseudo_owner[pseudo_owner_size];
static const OopStorage* pseudo_owner() {
return reinterpret_cast<const OopStorage*>(&_pseudo_owner);
}
};
const size_t OopStorageBlockCollectionTest::nvalues;
const void* const OopStorageBlockCollectionTest::_pseudo_owner[] = {};
class OopStorageAllocationListTest : public OopStorageBlockCollectionTest {};
TEST_F(OopStorageAllocationListTest, empty_list) {
AllocationList list;
EXPECT_TRUE(is_list_empty(list));
EXPECT_EQ(NULL_BLOCK, list.head());
EXPECT_EQ(NULL_BLOCK, list.chead());
EXPECT_EQ(NULL_BLOCK, list.ctail());
}
TEST_F(OopStorageAllocationListTest, push_back) {
AllocationList list;
for (size_t i = 0; i < nvalues; ++i) {
list.push_back(*values[i]);
EXPECT_FALSE(is_list_empty(list));
EXPECT_EQ(list.ctail(), values[i]);
}
EXPECT_EQ(list.chead(), list.head());
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[nvalues - 1]);
const OopBlock* block = list.chead();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
block = list.ctail();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(block, values[nvalues - i - 1]);
block = list.prev(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
clear_list(list);
}
TEST_F(OopStorageAllocationListTest, push_front) {
AllocationList list;
for (size_t i = 0; i < nvalues; ++i) {
list.push_front(*values[i]);
EXPECT_FALSE(is_list_empty(list));
EXPECT_EQ(list.head(), values[i]);
}
EXPECT_EQ(list.chead(), list.head());
EXPECT_EQ(list.chead(), values[nvalues - 1]);
EXPECT_EQ(list.ctail(), values[0]);
const OopBlock* block = list.chead();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(block, values[nvalues - i - 1]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
block = list.ctail();
for (size_t i = 0; i < nvalues; ++i) {
EXPECT_EQ(block, values[i]);
block = list.prev(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
clear_list(list);
}
class OopStorageAllocationListTestWithList : public OopStorageAllocationListTest {
public:
OopStorageAllocationListTestWithList() : list() {
for (size_t i = 0; i < nvalues; ++i) {
list.push_back(*values[i]);
}
}
~OopStorageAllocationListTestWithList() {
clear_list(list);
}
AllocationList list;
};
TEST_F(OopStorageAllocationListTestWithList, unlink_front) {
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[nvalues - 1]);
list.unlink(*values[0]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[0]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[0]));
EXPECT_EQ(list.chead(), values[1]);
EXPECT_EQ(list.ctail(), values[nvalues - 1]);
const OopBlock* block = list.chead();
for (size_t i = 1; i < nvalues; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
}
TEST_F(OopStorageAllocationListTestWithList, unlink_back) {
EXPECT_EQ(list.chead(), values[0]);
list.unlink(*values[nvalues - 1]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[nvalues - 1]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[nvalues - 1]));
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[nvalues - 2]);
const OopBlock* block = list.chead();
for (size_t i = 0; i < nvalues - 1; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
}
TEST_F(OopStorageAllocationListTestWithList, unlink_middle) {
EXPECT_EQ(list.chead(), values[0]);
size_t index = nvalues / 2;
list.unlink(*values[index]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[index]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[index]));
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[nvalues - 1]);
const OopBlock* block = list.chead();
for (size_t i = 0; i < index; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
for (size_t i = index + 1; i < nvalues; ++i) {
EXPECT_EQ(block, values[i]);
block = list.next(*block);
}
EXPECT_EQ(NULL_BLOCK, block);
}
TEST_F(OopStorageAllocationListTest, single) {
AllocationList list;
list.push_back(*values[0]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[0]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[0]));
EXPECT_EQ(list.chead(), values[0]);
EXPECT_EQ(list.ctail(), values[0]);
list.unlink(*values[0]);
EXPECT_EQ(NULL_BLOCK, list.next(*values[0]));
EXPECT_EQ(NULL_BLOCK, list.prev(*values[0]));
EXPECT_EQ(NULL_BLOCK, list.chead());
EXPECT_EQ(NULL_BLOCK, list.ctail());
}
class OopStorageActiveArrayTest : public OopStorageBlockCollectionTest {};
TEST_F(OopStorageActiveArrayTest, empty_array) {
ActiveArray* a = ActiveArray::create(nvalues);
EXPECT_EQ(nvalues, a->size());
EXPECT_EQ(0u, a->block_count_acquire());
TestAccess::block_array_set_block_count(a, 2);
EXPECT_EQ(2u, a->block_count_acquire());
TestAccess::block_array_set_block_count(a, 0);
a->increment_refcount();
a->increment_refcount();
EXPECT_FALSE(a->decrement_refcount());
EXPECT_TRUE(a->decrement_refcount());
ActiveArray::destroy(a);
}
TEST_F(OopStorageActiveArrayTest, push) {
ActiveArray* a = ActiveArray::create(nvalues - 1);
for (size_t i = 0; i < nvalues - 1; ++i) {
EXPECT_TRUE(a->push(values[i]));
EXPECT_EQ(i + 1, a->block_count_acquire());
EXPECT_EQ(values[i], a->at(i));
}
EXPECT_FALSE(a->push(values[nvalues - 1]));
TestAccess::block_array_set_block_count(a, 0);
ActiveArray::destroy(a);
}
class OopStorageActiveArrayTestWithArray : public OopStorageActiveArrayTest {
public:
OopStorageActiveArrayTestWithArray() : a(ActiveArray::create(nvalues)) {
for (size_t i = 0; i < nvalues; ++i) {
a->push(values[i]);
}
}
~OopStorageActiveArrayTestWithArray() {
TestAccess::block_array_set_block_count(a, 0);
ActiveArray::destroy(a);
}
ActiveArray* a;
};
TEST_F(OopStorageActiveArrayTestWithArray, remove0) {
a->remove(values[0]);
EXPECT_EQ(nvalues - 1, a->block_count_acquire());
EXPECT_EQ(values[nvalues - 1], a->at(0));
for (size_t i = 1; i < nvalues - 1; ++i) {
EXPECT_EQ(values[i], a->at(i));
}
}
TEST_F(OopStorageActiveArrayTestWithArray, remove3) {
a->remove(values[3]);
EXPECT_EQ(nvalues - 1, a->block_count_acquire());
for (size_t i = 0; i < 3; ++i) {
EXPECT_EQ(values[i], a->at(i));
}
EXPECT_EQ(values[nvalues - 1], a->at(3));
for (size_t i = 4; i < nvalues - 1; ++i) {
EXPECT_EQ(values[i], a->at(i));
}
}
TEST_F(OopStorageActiveArrayTestWithArray, remove_last) {
a->remove(values[nvalues - 1]);
EXPECT_EQ(nvalues - 1, a->block_count_acquire());
for (size_t i = 0; i < nvalues - 1; ++i) {
EXPECT_EQ(values[i], a->at(i));
}
}