jdk-24/hotspot/src/share/vm/gc/g1/g1ParScanThreadState.hpp

215 lines
7.5 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_G1PARSCANTHREADSTATE_HPP
#define SHARE_VM_GC_G1_G1PARSCANTHREADSTATE_HPP
#include "gc/g1/dirtyCardQueue.hpp"
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/g1CollectorPolicy.hpp"
#include "gc/g1/g1OopClosures.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#include "gc/shared/ageTable.hpp"
#include "memory/allocation.hpp"
#include "oops/oop.hpp"
class HeapRegion;
class outputStream;
class G1ParScanThreadState : public StackObj {
private:
G1CollectedHeap* _g1h;
RefToScanQueue* _refs;
DirtyCardQueue _dcq;
G1SATBCardTableModRefBS* _ct_bs;
G1RemSet* _g1_rem;
G1PLABAllocator* _plab_allocator;
ageTable _age_table;
InCSetState _dest[InCSetState::Num];
// Local tenuring threshold.
uint _tenuring_threshold;
G1ParScanClosure _scanner;
int _hash_seed;
uint _queue_num;
size_t _term_attempts;
double _start;
double _start_strong_roots;
double _strong_roots_time;
double _start_term;
double _term_time;
// Map from young-age-index (0 == not young, 1 is youngest) to
// surviving words. base is what we get back from the malloc call
size_t* _surviving_young_words_base;
// this points into the array, as we use the first few entries for padding
size_t* _surviving_young_words;
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
DirtyCardQueue& dirty_card_queue() { return _dcq; }
G1SATBCardTableModRefBS* ctbs() { return _ct_bs; }
InCSetState dest(InCSetState original) const {
assert(original.is_valid(),
err_msg("Original state invalid: " CSETSTATE_FORMAT, original.value()));
assert(_dest[original.value()].is_valid_gen(),
err_msg("Dest state is invalid: " CSETSTATE_FORMAT, _dest[original.value()].value()));
return _dest[original.value()];
}
public:
G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
~G1ParScanThreadState();
ageTable* age_table() { return &_age_table; }
#ifdef ASSERT
bool queue_is_empty() const { return _refs->is_empty(); }
bool verify_ref(narrowOop* ref) const;
bool verify_ref(oop* ref) const;
bool verify_task(StarTask ref) const;
#endif // ASSERT
template <class T> void push_on_queue(T* ref);
template <class T> void update_rs(HeapRegion* from, T* p, uint tid) {
// If the new value of the field points to the same region or
// is the to-space, we don't need to include it in the Rset updates.
if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
size_t card_index = ctbs()->index_for(p);
// If the card hasn't been added to the buffer, do it.
if (ctbs()->mark_card_deferred(card_index)) {
dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
}
}
}
int* hash_seed() { return &_hash_seed; }
uint queue_num() { return _queue_num; }
size_t term_attempts() const { return _term_attempts; }
void note_term_attempt() { _term_attempts++; }
void start_strong_roots() {
_start_strong_roots = os::elapsedTime();
}
void end_strong_roots() {
_strong_roots_time += (os::elapsedTime() - _start_strong_roots);
}
double strong_roots_time() const { return _strong_roots_time; }
void start_term_time() {
note_term_attempt();
_start_term = os::elapsedTime();
}
void end_term_time() {
_term_time += (os::elapsedTime() - _start_term);
}
double term_time() const { return _term_time; }
double elapsed_time() const {
return os::elapsedTime() - _start;
}
// Print the header for the per-thread termination statistics.
static void print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
// Print actual per-thread termination statistics.
void print_termination_stats(outputStream* const st = gclog_or_tty) const;
size_t* surviving_young_words() {
// We add on to hide entry 0 which accumulates surviving words for
// age -1 regions (i.e. non-young ones)
return _surviving_young_words;
}
private:
#define G1_PARTIAL_ARRAY_MASK 0x2
inline bool has_partial_array_mask(oop* ref) const {
return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
}
// We never encode partial array oops as narrowOop*, so return false immediately.
// This allows the compiler to create optimized code when popping references from
// the work queue.
inline bool has_partial_array_mask(narrowOop* ref) const {
assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
return false;
}
// Only implement set_partial_array_mask() for regular oops, not for narrowOops.
// We always encode partial arrays as regular oop, to allow the
// specialization for has_partial_array_mask() for narrowOops above.
// This means that unintentional use of this method with narrowOops are caught
// by the compiler.
inline oop* set_partial_array_mask(oop obj) const {
assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
}
inline oop clear_partial_array_mask(oop* ref) const {
return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
}
inline void do_oop_partial_array(oop* p);
// This method is applied to the fields of the objects that have just been copied.
template <class T> inline void do_oop_evac(T* p, HeapRegion* from);
template <class T> inline void deal_with_reference(T* ref_to_scan);
inline void dispatch_reference(StarTask ref);
// Tries to allocate word_sz in the PLAB of the next "generation" after trying to
// allocate into dest. State is the original (source) cset state for the object
// that is allocated for.
// Returns a non-NULL pointer if successful, and updates dest if required.
HeapWord* allocate_in_next_plab(InCSetState const state,
InCSetState* dest,
size_t word_sz,
AllocationContext_t const context);
inline InCSetState next_state(InCSetState const state, markOop const m, uint& age);
public:
oop copy_to_survivor_space(InCSetState const state, oop const obj, markOop const old_mark);
void trim_queue();
inline void steal_and_trim_queue(RefToScanQueueSet *task_queues);
// An attempt to evacuate "obj" has failed; take necessary steps.
oop handle_evacuation_failure_par(oop obj, markOop m);
};
#endif // SHARE_VM_GC_G1_G1PARSCANTHREADSTATE_HPP