jdk-24/src/hotspot/share/gc/g1/g1GCPhaseTimes.cpp

659 lines
28 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1GCPhaseTimes.hpp"
#include "gc/g1/g1HotCardCache.hpp"
#include "gc/g1/g1ParScanThreadState.inline.hpp"
#include "gc/g1/g1StringDedup.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/workerDataArray.inline.hpp"
#include "memory/resourceArea.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "runtime/timer.hpp"
#include "runtime/os.hpp"
#include "utilities/macros.hpp"
static const char* Indents[5] = {"", " ", " ", " ", " "};
G1GCPhaseTimes::G1GCPhaseTimes(STWGCTimer* gc_timer, uint max_gc_threads) :
_max_gc_threads(max_gc_threads),
_gc_start_counter(0),
_gc_pause_time_ms(0.0),
_ref_phase_times(gc_timer, max_gc_threads),
_weak_phase_times(max_gc_threads)
{
assert(max_gc_threads > 0, "Must have some GC threads");
_gc_par_phases[GCWorkerStart] = new WorkerDataArray<double>(max_gc_threads, "GC Worker Start (ms):");
_gc_par_phases[ExtRootScan] = new WorkerDataArray<double>(max_gc_threads, "Ext Root Scanning (ms):");
// Root scanning phases
_gc_par_phases[ThreadRoots] = new WorkerDataArray<double>(max_gc_threads, "Thread Roots (ms):");
_gc_par_phases[UniverseRoots] = new WorkerDataArray<double>(max_gc_threads, "Universe Roots (ms):");
_gc_par_phases[JNIRoots] = new WorkerDataArray<double>(max_gc_threads, "JNI Handles Roots (ms):");
_gc_par_phases[ObjectSynchronizerRoots] = new WorkerDataArray<double>(max_gc_threads, "ObjectSynchronizer Roots (ms):");
_gc_par_phases[ManagementRoots] = new WorkerDataArray<double>(max_gc_threads, "Management Roots (ms):");
_gc_par_phases[SystemDictionaryRoots] = new WorkerDataArray<double>(max_gc_threads, "SystemDictionary Roots (ms):");
_gc_par_phases[CLDGRoots] = new WorkerDataArray<double>(max_gc_threads, "CLDG Roots (ms):");
_gc_par_phases[JVMTIRoots] = new WorkerDataArray<double>(max_gc_threads, "JVMTI Roots (ms):");
AOT_ONLY(_gc_par_phases[AOTCodeRoots] = new WorkerDataArray<double>(max_gc_threads, "AOT Root Scan (ms):");)
_gc_par_phases[CMRefRoots] = new WorkerDataArray<double>(max_gc_threads, "CM RefProcessor Roots (ms):");
_gc_par_phases[MergeER] = new WorkerDataArray<double>(max_gc_threads, "Eager Reclaim (ms):");
_gc_par_phases[MergeRS] = new WorkerDataArray<double>(max_gc_threads, "Remembered Sets (ms):");
_merge_rs_merged_sparse = new WorkerDataArray<size_t>(max_gc_threads, "Merged Sparse:");
_gc_par_phases[MergeRS]->link_thread_work_items(_merge_rs_merged_sparse, MergeRSMergedSparse);
_merge_rs_merged_fine = new WorkerDataArray<size_t>(max_gc_threads, "Merged Fine:");
_gc_par_phases[MergeRS]->link_thread_work_items(_merge_rs_merged_fine, MergeRSMergedFine);
_merge_rs_merged_coarse = new WorkerDataArray<size_t>(max_gc_threads, "Merged Coarse:");
_gc_par_phases[MergeRS]->link_thread_work_items(_merge_rs_merged_coarse, MergeRSMergedCoarse);
_gc_par_phases[OptMergeRS] = new WorkerDataArray<double>(max_gc_threads, "Optional Remembered Sets (ms):");
_opt_merge_rs_merged_sparse = new WorkerDataArray<size_t>(max_gc_threads, "Merged Sparse:");
_gc_par_phases[OptMergeRS]->link_thread_work_items(_opt_merge_rs_merged_sparse, MergeRSMergedSparse);
_opt_merge_rs_merged_fine = new WorkerDataArray<size_t>(max_gc_threads, "Merged Fine:");
_gc_par_phases[OptMergeRS]->link_thread_work_items(_opt_merge_rs_merged_fine, MergeRSMergedFine);
_opt_merge_rs_merged_coarse = new WorkerDataArray<size_t>(max_gc_threads, "Merged Coarse:");
_gc_par_phases[OptMergeRS]->link_thread_work_items(_opt_merge_rs_merged_coarse, MergeRSMergedCoarse);
_gc_par_phases[MergeLB] = new WorkerDataArray<double>(max_gc_threads, "Log Buffers (ms):");
if (G1HotCardCache::default_use_cache()) {
_gc_par_phases[MergeHCC] = new WorkerDataArray<double>(max_gc_threads, "Hot Card Cache (ms):");
_merge_hcc_dirty_cards = new WorkerDataArray<size_t>(max_gc_threads, "Dirty Cards:");
_gc_par_phases[MergeHCC]->link_thread_work_items(_merge_hcc_dirty_cards, MergeHCCDirtyCards);
_merge_hcc_skipped_cards = new WorkerDataArray<size_t>(max_gc_threads, "Skipped Cards:");
_gc_par_phases[MergeHCC]->link_thread_work_items(_merge_hcc_skipped_cards, MergeHCCSkippedCards);
} else {
_gc_par_phases[MergeHCC] = NULL;
_merge_hcc_dirty_cards = NULL;
_merge_hcc_skipped_cards = NULL;
}
_gc_par_phases[ScanHR] = new WorkerDataArray<double>(max_gc_threads, "Scan Heap Roots (ms):");
_gc_par_phases[OptScanHR] = new WorkerDataArray<double>(max_gc_threads, "Optional Scan Heap Roots (ms):");
_gc_par_phases[CodeRoots] = new WorkerDataArray<double>(max_gc_threads, "Code Root Scan (ms):");
_gc_par_phases[OptCodeRoots] = new WorkerDataArray<double>(max_gc_threads, "Optional Code Root Scan (ms):");
_gc_par_phases[ObjCopy] = new WorkerDataArray<double>(max_gc_threads, "Object Copy (ms):");
_gc_par_phases[OptObjCopy] = new WorkerDataArray<double>(max_gc_threads, "Optional Object Copy (ms):");
_gc_par_phases[Termination] = new WorkerDataArray<double>(max_gc_threads, "Termination (ms):");
_gc_par_phases[OptTermination] = new WorkerDataArray<double>(max_gc_threads, "Optional Termination (ms):");
_gc_par_phases[GCWorkerTotal] = new WorkerDataArray<double>(max_gc_threads, "GC Worker Total (ms):");
_gc_par_phases[GCWorkerEnd] = new WorkerDataArray<double>(max_gc_threads, "GC Worker End (ms):");
_gc_par_phases[Other] = new WorkerDataArray<double>(max_gc_threads, "GC Worker Other (ms):");
_scan_hr_scanned_cards = new WorkerDataArray<size_t>(max_gc_threads, "Scanned Cards:");
_gc_par_phases[ScanHR]->link_thread_work_items(_scan_hr_scanned_cards, ScanHRScannedCards);
_scan_hr_scanned_blocks = new WorkerDataArray<size_t>(max_gc_threads, "Scanned Blocks:");
_gc_par_phases[ScanHR]->link_thread_work_items(_scan_hr_scanned_blocks, ScanHRScannedBlocks);
_scan_hr_claimed_chunks = new WorkerDataArray<size_t>(max_gc_threads, "Claimed Chunks:");
_gc_par_phases[ScanHR]->link_thread_work_items(_scan_hr_claimed_chunks, ScanHRClaimedChunks);
_opt_scan_hr_scanned_cards = new WorkerDataArray<size_t>(max_gc_threads, "Scanned Cards:");
_gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_scanned_cards, ScanHRScannedCards);
_opt_scan_hr_scanned_blocks = new WorkerDataArray<size_t>(max_gc_threads, "Scanned Blocks:");
_gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_scanned_blocks, ScanHRScannedBlocks);
_opt_scan_hr_claimed_chunks = new WorkerDataArray<size_t>(max_gc_threads, "Claimed Chunks:");
_gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_claimed_chunks, ScanHRClaimedChunks);
_opt_scan_hr_scanned_opt_refs = new WorkerDataArray<size_t>(max_gc_threads, "Scanned Refs:");
_gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_scanned_opt_refs, ScanHRScannedOptRefs);
_opt_scan_hr_used_memory = new WorkerDataArray<size_t>(max_gc_threads, "Used Memory:");
_gc_par_phases[OptScanHR]->link_thread_work_items(_opt_scan_hr_used_memory, ScanHRUsedMemory);
_merge_lb_dirty_cards = new WorkerDataArray<size_t>(max_gc_threads, "Dirty Cards:");
_gc_par_phases[MergeLB]->link_thread_work_items(_merge_lb_dirty_cards, MergeLBDirtyCards);
_merge_lb_skipped_cards = new WorkerDataArray<size_t>(max_gc_threads, "Skipped Cards:");
_gc_par_phases[MergeLB]->link_thread_work_items(_merge_lb_skipped_cards, MergeLBSkippedCards);
_obj_copy_lab_waste = new WorkerDataArray<size_t>(max_gc_threads, "LAB Waste");
_gc_par_phases[ObjCopy]->link_thread_work_items(_obj_copy_lab_waste, ObjCopyLABWaste);
_obj_copy_lab_undo_waste = new WorkerDataArray<size_t>(max_gc_threads, "LAB Undo Waste");
_gc_par_phases[ObjCopy]->link_thread_work_items(_obj_copy_lab_undo_waste, ObjCopyLABUndoWaste);
_opt_obj_copy_lab_waste = new WorkerDataArray<size_t>(max_gc_threads, "LAB Waste");
_gc_par_phases[OptObjCopy]->link_thread_work_items(_obj_copy_lab_waste, ObjCopyLABWaste);
_opt_obj_copy_lab_undo_waste = new WorkerDataArray<size_t>(max_gc_threads, "LAB Undo Waste");
_gc_par_phases[OptObjCopy]->link_thread_work_items(_obj_copy_lab_undo_waste, ObjCopyLABUndoWaste);
_termination_attempts = new WorkerDataArray<size_t>(max_gc_threads, "Termination Attempts:");
_gc_par_phases[Termination]->link_thread_work_items(_termination_attempts);
_opt_termination_attempts = new WorkerDataArray<size_t>(max_gc_threads, "Optional Termination Attempts:");
_gc_par_phases[OptTermination]->link_thread_work_items(_opt_termination_attempts);
if (UseStringDeduplication) {
_gc_par_phases[StringDedupQueueFixup] = new WorkerDataArray<double>(max_gc_threads, "Queue Fixup (ms):");
_gc_par_phases[StringDedupTableFixup] = new WorkerDataArray<double>(max_gc_threads, "Table Fixup (ms):");
} else {
_gc_par_phases[StringDedupQueueFixup] = NULL;
_gc_par_phases[StringDedupTableFixup] = NULL;
}
_gc_par_phases[RedirtyCards] = new WorkerDataArray<double>(max_gc_threads, "Parallel Redirty (ms):");
_redirtied_cards = new WorkerDataArray<size_t>(max_gc_threads, "Redirtied Cards:");
_gc_par_phases[RedirtyCards]->link_thread_work_items(_redirtied_cards);
_gc_par_phases[YoungFreeCSet] = new WorkerDataArray<double>(max_gc_threads, "Young Free Collection Set (ms):");
_gc_par_phases[NonYoungFreeCSet] = new WorkerDataArray<double>(max_gc_threads, "Non-Young Free Collection Set (ms):");
reset();
}
void G1GCPhaseTimes::reset() {
_cur_collection_initial_evac_time_ms = 0.0;
_cur_optional_evac_time_ms = 0.0;
_cur_collection_code_root_fixup_time_ms = 0.0;
_cur_strong_code_root_purge_time_ms = 0.0;
_cur_merge_heap_roots_time_ms = 0.0;
_cur_optional_merge_heap_roots_time_ms = 0.0;
_cur_prepare_merge_heap_roots_time_ms = 0.0;
_cur_optional_prepare_merge_heap_roots_time_ms = 0.0;
_cur_evac_fail_recalc_used = 0.0;
_cur_evac_fail_remove_self_forwards = 0.0;
_cur_string_deduplication_time_ms = 0.0;
_cur_prepare_tlab_time_ms = 0.0;
_cur_resize_tlab_time_ms = 0.0;
_cur_derived_pointer_table_update_time_ms = 0.0;
_cur_clear_ct_time_ms = 0.0;
_cur_expand_heap_time_ms = 0.0;
_cur_ref_proc_time_ms = 0.0;
_cur_collection_start_sec = 0.0;
_root_region_scan_wait_time_ms = 0.0;
_external_accounted_time_ms = 0.0;
_recorded_prepare_heap_roots_time_ms = 0.0;
_recorded_clear_claimed_marks_time_ms = 0.0;
_recorded_young_cset_choice_time_ms = 0.0;
_recorded_non_young_cset_choice_time_ms = 0.0;
_recorded_redirty_logged_cards_time_ms = 0.0;
_recorded_preserve_cm_referents_time_ms = 0.0;
_recorded_merge_pss_time_ms = 0.0;
_recorded_start_new_cset_time_ms = 0.0;
_recorded_total_free_cset_time_ms = 0.0;
_recorded_serial_free_cset_time_ms = 0.0;
_cur_fast_reclaim_humongous_time_ms = 0.0;
_cur_region_register_time = 0.0;
_cur_fast_reclaim_humongous_total = 0;
_cur_fast_reclaim_humongous_candidates = 0;
_cur_fast_reclaim_humongous_reclaimed = 0;
_cur_verify_before_time_ms = 0.0;
_cur_verify_after_time_ms = 0.0;
for (int i = 0; i < GCParPhasesSentinel; i++) {
if (_gc_par_phases[i] != NULL) {
_gc_par_phases[i]->reset();
}
}
_ref_phase_times.reset();
_weak_phase_times.reset();
}
void G1GCPhaseTimes::note_gc_start() {
_gc_start_counter = os::elapsed_counter();
reset();
}
#define ASSERT_PHASE_UNINITIALIZED(phase) \
assert(_gc_par_phases[phase] == NULL || _gc_par_phases[phase]->get(i) == uninitialized, "Phase " #phase " reported for thread that was not started");
double G1GCPhaseTimes::worker_time(GCParPhases phase, uint worker) {
if (_gc_par_phases[phase] == NULL) {
return 0.0;
}
double value = _gc_par_phases[phase]->get(worker);
if (value != WorkerDataArray<double>::uninitialized()) {
return value;
}
return 0.0;
}
void G1GCPhaseTimes::note_gc_end() {
_gc_pause_time_ms = TimeHelper::counter_to_millis(os::elapsed_counter() - _gc_start_counter);
double uninitialized = WorkerDataArray<double>::uninitialized();
for (uint i = 0; i < _max_gc_threads; i++) {
double worker_start = _gc_par_phases[GCWorkerStart]->get(i);
if (worker_start != uninitialized) {
assert(_gc_par_phases[GCWorkerEnd]->get(i) != uninitialized, "Worker started but not ended.");
double total_worker_time = _gc_par_phases[GCWorkerEnd]->get(i) - _gc_par_phases[GCWorkerStart]->get(i);
record_time_secs(GCWorkerTotal, i , total_worker_time);
double worker_known_time = worker_time(ExtRootScan, i) +
worker_time(ScanHR, i) +
worker_time(CodeRoots, i) +
worker_time(ObjCopy, i) +
worker_time(Termination, i);
record_time_secs(Other, i, total_worker_time - worker_known_time);
} else {
// Make sure all slots are uninitialized since this thread did not seem to have been started
ASSERT_PHASE_UNINITIALIZED(GCWorkerEnd);
ASSERT_PHASE_UNINITIALIZED(ExtRootScan);
ASSERT_PHASE_UNINITIALIZED(MergeER);
ASSERT_PHASE_UNINITIALIZED(MergeRS);
ASSERT_PHASE_UNINITIALIZED(OptMergeRS);
ASSERT_PHASE_UNINITIALIZED(MergeHCC);
ASSERT_PHASE_UNINITIALIZED(MergeLB);
ASSERT_PHASE_UNINITIALIZED(ScanHR);
ASSERT_PHASE_UNINITIALIZED(CodeRoots);
ASSERT_PHASE_UNINITIALIZED(OptCodeRoots);
ASSERT_PHASE_UNINITIALIZED(ObjCopy);
ASSERT_PHASE_UNINITIALIZED(OptObjCopy);
ASSERT_PHASE_UNINITIALIZED(Termination);
}
}
}
#undef ASSERT_PHASE_UNINITIALIZED
// record the time a phase took in seconds
void G1GCPhaseTimes::record_time_secs(GCParPhases phase, uint worker_id, double secs) {
_gc_par_phases[phase]->set(worker_id, secs);
}
// add a number of seconds to a phase
void G1GCPhaseTimes::add_time_secs(GCParPhases phase, uint worker_id, double secs) {
_gc_par_phases[phase]->add(worker_id, secs);
}
void G1GCPhaseTimes::record_or_add_time_secs(GCParPhases phase, uint worker_id, double secs) {
if (_gc_par_phases[phase]->get(worker_id) == _gc_par_phases[phase]->uninitialized()) {
record_time_secs(phase, worker_id, secs);
} else {
add_time_secs(phase, worker_id, secs);
}
}
double G1GCPhaseTimes::get_time_secs(GCParPhases phase, uint worker_id) {
return _gc_par_phases[phase]->get(worker_id);
}
void G1GCPhaseTimes::record_thread_work_item(GCParPhases phase, uint worker_id, size_t count, uint index) {
_gc_par_phases[phase]->set_thread_work_item(worker_id, count, index);
}
void G1GCPhaseTimes::record_or_add_thread_work_item(GCParPhases phase, uint worker_id, size_t count, uint index) {
_gc_par_phases[phase]->set_or_add_thread_work_item(worker_id, count, index);
}
size_t G1GCPhaseTimes::get_thread_work_item(GCParPhases phase, uint worker_id, uint index) {
return _gc_par_phases[phase]->get_thread_work_item(worker_id, index);
}
// return the average time for a phase in milliseconds
double G1GCPhaseTimes::average_time_ms(GCParPhases phase) {
return _gc_par_phases[phase]->average() * 1000.0;
}
size_t G1GCPhaseTimes::sum_thread_work_items(GCParPhases phase, uint index) {
assert(_gc_par_phases[phase]->thread_work_items(index) != NULL, "No sub count");
return _gc_par_phases[phase]->thread_work_items(index)->sum();
}
template <class T>
void G1GCPhaseTimes::details(T* phase, const char* indent) const {
LogTarget(Trace, gc, phases, task) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
ls.print("%s", indent);
phase->print_details_on(&ls);
}
}
void G1GCPhaseTimes::log_phase(WorkerDataArray<double>* phase, uint indent, outputStream* out, bool print_sum) const {
out->print("%s", Indents[indent]);
phase->print_summary_on(out, print_sum);
details(phase, Indents[indent]);
for (uint i = 0; i < phase->MaxThreadWorkItems; i++) {
WorkerDataArray<size_t>* work_items = phase->thread_work_items(i);
if (work_items != NULL) {
out->print("%s", Indents[indent + 1]);
work_items->print_summary_on(out, true);
details(work_items, Indents[indent + 1]);
}
}
}
void G1GCPhaseTimes::debug_phase(WorkerDataArray<double>* phase, uint extra_indent) const {
LogTarget(Debug, gc, phases) lt;
if (lt.is_enabled()) {
ResourceMark rm;
LogStream ls(lt);
log_phase(phase, 2 + extra_indent, &ls, true);
}
}
void G1GCPhaseTimes::trace_phase(WorkerDataArray<double>* phase, bool print_sum) const {
LogTarget(Trace, gc, phases) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
log_phase(phase, 3, &ls, print_sum);
}
}
#define TIME_FORMAT "%.1lfms"
void G1GCPhaseTimes::info_time(const char* name, double value) const {
log_info(gc, phases)("%s%s: " TIME_FORMAT, Indents[1], name, value);
}
void G1GCPhaseTimes::debug_time(const char* name, double value) const {
log_debug(gc, phases)("%s%s: " TIME_FORMAT, Indents[2], name, value);
}
void G1GCPhaseTimes::debug_time_for_reference(const char* name, double value) const {
LogTarget(Debug, gc, phases) lt;
LogTarget(Debug, gc, phases, ref) lt2;
if (lt.is_enabled()) {
LogStream ls(lt);
ls.print_cr("%s%s: " TIME_FORMAT, Indents[2], name, value);
} else if (lt2.is_enabled()) {
LogStream ls(lt2);
ls.print_cr("%s%s: " TIME_FORMAT, Indents[2], name, value);
}
}
void G1GCPhaseTimes::trace_time(const char* name, double value) const {
log_trace(gc, phases)("%s%s: " TIME_FORMAT, Indents[3], name, value);
}
void G1GCPhaseTimes::trace_count(const char* name, size_t value) const {
log_trace(gc, phases)("%s%s: " SIZE_FORMAT, Indents[3], name, value);
}
double G1GCPhaseTimes::print_pre_evacuate_collection_set() const {
const double sum_ms = _root_region_scan_wait_time_ms +
_recorded_young_cset_choice_time_ms +
_recorded_non_young_cset_choice_time_ms +
_cur_region_register_time +
_recorded_prepare_heap_roots_time_ms +
_recorded_clear_claimed_marks_time_ms;
info_time("Pre Evacuate Collection Set", sum_ms);
if (_root_region_scan_wait_time_ms > 0.0) {
debug_time("Root Region Scan Waiting", _root_region_scan_wait_time_ms);
}
debug_time("Prepare TLABs", _cur_prepare_tlab_time_ms);
debug_time("Choose Collection Set", (_recorded_young_cset_choice_time_ms + _recorded_non_young_cset_choice_time_ms));
debug_time("Region Register", _cur_region_register_time);
if (G1EagerReclaimHumongousObjects) {
trace_count("Humongous Total", _cur_fast_reclaim_humongous_total);
trace_count("Humongous Candidate", _cur_fast_reclaim_humongous_candidates);
}
debug_time("Prepare Heap Roots", _recorded_prepare_heap_roots_time_ms);
if (_recorded_clear_claimed_marks_time_ms > 0.0) {
debug_time("Clear Claimed Marks", _recorded_clear_claimed_marks_time_ms);
}
return sum_ms;
}
double G1GCPhaseTimes::print_evacuate_optional_collection_set() const {
const double sum_ms = _cur_optional_evac_time_ms + _cur_optional_merge_heap_roots_time_ms;
if (sum_ms > 0) {
info_time("Merge Optional Heap Roots", _cur_optional_merge_heap_roots_time_ms);
debug_time("Prepare Optional Merge Heap Roots", _cur_optional_prepare_merge_heap_roots_time_ms);
debug_phase(_gc_par_phases[OptMergeRS]);
info_time("Evacuate Optional Collection Set", _cur_optional_evac_time_ms);
debug_phase(_gc_par_phases[OptScanHR]);
debug_phase(_gc_par_phases[OptObjCopy]);
debug_phase(_gc_par_phases[OptCodeRoots]);
debug_phase(_gc_par_phases[OptTermination]);
}
return sum_ms;
}
double G1GCPhaseTimes::print_evacuate_initial_collection_set() const {
info_time("Merge Heap Roots", _cur_merge_heap_roots_time_ms);
debug_time("Prepare Merge Heap Roots", _cur_prepare_merge_heap_roots_time_ms);
debug_phase(_gc_par_phases[MergeER]);
debug_phase(_gc_par_phases[MergeRS]);
if (G1HotCardCache::default_use_cache()) {
debug_phase(_gc_par_phases[MergeHCC]);
}
debug_phase(_gc_par_phases[MergeLB]);
info_time("Evacuate Collection Set", _cur_collection_initial_evac_time_ms);
trace_phase(_gc_par_phases[GCWorkerStart], false);
debug_phase(_gc_par_phases[ExtRootScan]);
for (int i = ExtRootScanSubPhasesFirst; i <= ExtRootScanSubPhasesLast; i++) {
trace_phase(_gc_par_phases[i]);
}
debug_phase(_gc_par_phases[ScanHR]);
debug_phase(_gc_par_phases[CodeRoots]);
debug_phase(_gc_par_phases[ObjCopy]);
debug_phase(_gc_par_phases[Termination]);
debug_phase(_gc_par_phases[Other]);
debug_phase(_gc_par_phases[GCWorkerTotal]);
trace_phase(_gc_par_phases[GCWorkerEnd], false);
return _cur_collection_initial_evac_time_ms + _cur_merge_heap_roots_time_ms;
}
double G1GCPhaseTimes::print_post_evacuate_collection_set() const {
const double evac_fail_handling = _cur_evac_fail_recalc_used +
_cur_evac_fail_remove_self_forwards;
const double sum_ms = evac_fail_handling +
_cur_collection_code_root_fixup_time_ms +
_recorded_preserve_cm_referents_time_ms +
_cur_ref_proc_time_ms +
(_weak_phase_times.total_time_sec() * MILLIUNITS) +
_cur_clear_ct_time_ms +
_recorded_merge_pss_time_ms +
_cur_strong_code_root_purge_time_ms +
_recorded_redirty_logged_cards_time_ms +
_recorded_total_free_cset_time_ms +
_cur_fast_reclaim_humongous_time_ms +
_cur_expand_heap_time_ms +
_cur_string_deduplication_time_ms;
info_time("Post Evacuate Collection Set", sum_ms);
debug_time("Code Roots Fixup", _cur_collection_code_root_fixup_time_ms);
debug_time("Clear Card Table", _cur_clear_ct_time_ms);
debug_time_for_reference("Reference Processing", _cur_ref_proc_time_ms);
_ref_phase_times.print_all_references(2, false);
_weak_phase_times.log_print(2);
if (G1StringDedup::is_enabled()) {
debug_time("String Deduplication", _cur_string_deduplication_time_ms);
debug_phase(_gc_par_phases[StringDedupQueueFixup], 1);
debug_phase(_gc_par_phases[StringDedupTableFixup], 1);
}
if (G1CollectedHeap::heap()->evacuation_failed()) {
debug_time("Evacuation Failure", evac_fail_handling);
trace_time("Recalculate Used", _cur_evac_fail_recalc_used);
trace_time("Remove Self Forwards",_cur_evac_fail_remove_self_forwards);
}
debug_time("Merge Per-Thread State", _recorded_merge_pss_time_ms);
debug_time("Code Roots Purge", _cur_strong_code_root_purge_time_ms);
debug_time("Redirty Cards", _recorded_redirty_logged_cards_time_ms);
trace_phase(_gc_par_phases[RedirtyCards]);
#if COMPILER2_OR_JVMCI
debug_time("DerivedPointerTable Update", _cur_derived_pointer_table_update_time_ms);
#endif
debug_time("Free Collection Set", _recorded_total_free_cset_time_ms);
trace_time("Free Collection Set Serial", _recorded_serial_free_cset_time_ms);
trace_phase(_gc_par_phases[YoungFreeCSet]);
trace_phase(_gc_par_phases[NonYoungFreeCSet]);
if (G1EagerReclaimHumongousObjects) {
debug_time("Humongous Reclaim", _cur_fast_reclaim_humongous_time_ms);
trace_count("Humongous Reclaimed", _cur_fast_reclaim_humongous_reclaimed);
}
debug_time("Start New Collection Set", _recorded_start_new_cset_time_ms);
if (UseTLAB && ResizeTLAB) {
debug_time("Resize TLABs", _cur_resize_tlab_time_ms);
}
debug_time("Expand Heap After Collection", _cur_expand_heap_time_ms);
return sum_ms;
}
void G1GCPhaseTimes::print_other(double accounted_ms) const {
info_time("Other", _gc_pause_time_ms - accounted_ms);
}
void G1GCPhaseTimes::print() {
note_gc_end();
if (_cur_verify_before_time_ms > 0.0) {
debug_time("Verify Before", _cur_verify_before_time_ms);
}
double accounted_ms = 0.0;
accounted_ms += print_pre_evacuate_collection_set();
accounted_ms += print_evacuate_initial_collection_set();
accounted_ms += print_evacuate_optional_collection_set();
accounted_ms += print_post_evacuate_collection_set();
print_other(accounted_ms);
if (_cur_verify_after_time_ms > 0.0) {
debug_time("Verify After", _cur_verify_after_time_ms);
}
}
const char* G1GCPhaseTimes::phase_name(GCParPhases phase) {
static const char* names[] = {
"GCWorkerStart",
"ExtRootScan",
"ThreadRoots",
"UniverseRoots",
"JNIRoots",
"ObjectSynchronizerRoots",
"ManagementRoots",
"SystemDictionaryRoots",
"CLDGRoots",
"JVMTIRoots",
AOT_ONLY("AOTCodeRoots" COMMA)
"CMRefRoots",
"MergeER",
"MergeRS",
"OptMergeRS",
"MergeLB",
"MergeHCC",
"ScanHR",
"OptScanHR",
"CodeRoots",
"OptCodeRoots",
"ObjCopy",
"OptObjCopy",
"Termination",
"OptTermination",
"Other",
"GCWorkerTotal",
"GCWorkerEnd",
"StringDedupQueueFixup",
"StringDedupTableFixup",
"RedirtyCards",
"YoungFreeCSet",
"NonYoungFreeCSet"
//GCParPhasesSentinel only used to tell end of enum
};
STATIC_ASSERT(ARRAY_SIZE(names) == G1GCPhaseTimes::GCParPhasesSentinel); // GCParPhases enum and corresponding string array should have the same "length", this tries to assert it
return names[phase];
}
G1EvacPhaseWithTrimTimeTracker::G1EvacPhaseWithTrimTimeTracker(G1ParScanThreadState* pss, Tickspan& total_time, Tickspan& trim_time) :
_pss(pss),
_start(Ticks::now()),
_total_time(total_time),
_trim_time(trim_time),
_stopped(false) {
assert(_pss->trim_ticks().value() == 0, "Possibly remaining trim ticks left over from previous use");
}
G1EvacPhaseWithTrimTimeTracker::~G1EvacPhaseWithTrimTimeTracker() {
if (!_stopped) {
stop();
}
}
void G1EvacPhaseWithTrimTimeTracker::stop() {
assert(!_stopped, "Should only be called once");
_total_time += (Ticks::now() - _start) - _pss->trim_ticks();
_trim_time += _pss->trim_ticks();
_pss->reset_trim_ticks();
_stopped = true;
}
G1GCParPhaseTimesTracker::G1GCParPhaseTimesTracker(G1GCPhaseTimes* phase_times, G1GCPhaseTimes::GCParPhases phase, uint worker_id, bool must_record) :
_start_time(), _phase(phase), _phase_times(phase_times), _worker_id(worker_id), _event(), _must_record(must_record) {
if (_phase_times != NULL) {
_start_time = Ticks::now();
}
}
G1GCParPhaseTimesTracker::~G1GCParPhaseTimesTracker() {
if (_phase_times != NULL) {
if (_must_record) {
_phase_times->record_time_secs(_phase, _worker_id, (Ticks::now() - _start_time).seconds());
} else {
_phase_times->record_or_add_time_secs(_phase, _worker_id, (Ticks::now() - _start_time).seconds());
}
_event.commit(GCId::current(), _worker_id, G1GCPhaseTimes::phase_name(_phase));
}
}
G1EvacPhaseTimesTracker::G1EvacPhaseTimesTracker(G1GCPhaseTimes* phase_times,
G1ParScanThreadState* pss,
G1GCPhaseTimes::GCParPhases phase,
uint worker_id) :
G1GCParPhaseTimesTracker(phase_times, phase, worker_id),
_total_time(),
_trim_time(),
_trim_tracker(pss, _total_time, _trim_time) {
}
G1EvacPhaseTimesTracker::~G1EvacPhaseTimesTracker() {
if (_phase_times != NULL) {
// Explicitly stop the trim tracker since it's not yet destructed.
_trim_tracker.stop();
// Exclude trim time by increasing the start time.
_start_time += _trim_time;
_phase_times->record_or_add_time_secs(G1GCPhaseTimes::ObjCopy, _worker_id, _trim_time.seconds());
}
}