562 lines
16 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/sparsePRT.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/space.inline.hpp"
#include "runtime/mutexLocker.hpp"
#define SPARSE_PRT_VERBOSE 0
#define UNROLL_CARD_LOOPS 1
void SparsePRTEntry::init(RegionIdx_t region_ind) {
_region_ind = region_ind;
_next_index = NullEntry;
#if UNROLL_CARD_LOOPS
assert((cards_num() & (UnrollFactor - 1)) == 0, "Invalid number of cards in the entry");
for (int i = 0; i < cards_num(); i += UnrollFactor) {
_cards[i] = NullEntry;
_cards[i + 1] = NullEntry;
_cards[i + 2] = NullEntry;
_cards[i + 3] = NullEntry;
}
#else
for (int i = 0; i < cards_num(); i++)
_cards[i] = NullEntry;
#endif
}
bool SparsePRTEntry::contains_card(CardIdx_t card_index) const {
#if UNROLL_CARD_LOOPS
assert((cards_num() & (UnrollFactor - 1)) == 0, "Invalid number of cards in the entry");
for (int i = 0; i < cards_num(); i += UnrollFactor) {
if (_cards[i] == card_index ||
_cards[i + 1] == card_index ||
_cards[i + 2] == card_index ||
_cards[i + 3] == card_index) return true;
}
#else
for (int i = 0; i < cards_num(); i++) {
if (_cards[i] == card_index) return true;
}
#endif
// Otherwise, we're full.
return false;
}
int SparsePRTEntry::num_valid_cards() const {
int sum = 0;
#if UNROLL_CARD_LOOPS
assert((cards_num() & (UnrollFactor - 1)) == 0, "Invalid number of cards in the entry");
for (int i = 0; i < cards_num(); i += UnrollFactor) {
sum += (_cards[i] != NullEntry);
sum += (_cards[i + 1] != NullEntry);
sum += (_cards[i + 2] != NullEntry);
sum += (_cards[i + 3] != NullEntry);
}
#else
for (int i = 0; i < cards_num(); i++) {
sum += (_cards[i] != NullEntry);
}
#endif
// Otherwise, we're full.
return sum;
}
SparsePRTEntry::AddCardResult SparsePRTEntry::add_card(CardIdx_t card_index) {
#if UNROLL_CARD_LOOPS
assert((cards_num() & (UnrollFactor - 1)) == 0, "Invalid number of cards in the entry");
CardIdx_t c;
for (int i = 0; i < cards_num(); i += UnrollFactor) {
c = _cards[i];
if (c == card_index) return found;
if (c == NullEntry) { _cards[i] = card_index; return added; }
c = _cards[i + 1];
if (c == card_index) return found;
if (c == NullEntry) { _cards[i + 1] = card_index; return added; }
c = _cards[i + 2];
if (c == card_index) return found;
if (c == NullEntry) { _cards[i + 2] = card_index; return added; }
c = _cards[i + 3];
if (c == card_index) return found;
if (c == NullEntry) { _cards[i + 3] = card_index; return added; }
}
#else
for (int i = 0; i < cards_num(); i++) {
CardIdx_t c = _cards[i];
if (c == card_index) return found;
if (c == NullEntry) { _cards[i] = card_index; return added; }
}
#endif
// Otherwise, we're full.
return overflow;
}
void SparsePRTEntry::copy_cards(CardIdx_t* cards) const {
#if UNROLL_CARD_LOOPS
assert((cards_num() & (UnrollFactor - 1)) == 0, "Invalid number of cards in the entry");
for (int i = 0; i < cards_num(); i += UnrollFactor) {
cards[i] = _cards[i];
cards[i + 1] = _cards[i + 1];
cards[i + 2] = _cards[i + 2];
cards[i + 3] = _cards[i + 3];
}
#else
for (int i = 0; i < cards_num(); i++) {
cards[i] = _cards[i];
}
#endif
}
void SparsePRTEntry::copy_cards(SparsePRTEntry* e) const {
copy_cards(&e->_cards[0]);
}
// ----------------------------------------------------------------------
RSHashTable::RSHashTable(size_t capacity) :
_capacity(capacity), _capacity_mask(capacity-1),
_occupied_entries(0), _occupied_cards(0),
_entries((SparsePRTEntry*)NEW_C_HEAP_ARRAY(char, SparsePRTEntry::size() * capacity, mtGC)),
_buckets(NEW_C_HEAP_ARRAY(int, capacity, mtGC)),
_free_list(NullEntry), _free_region(0)
{
clear();
}
RSHashTable::~RSHashTable() {
if (_entries != NULL) {
FREE_C_HEAP_ARRAY(SparsePRTEntry, _entries, mtGC);
_entries = NULL;
}
if (_buckets != NULL) {
FREE_C_HEAP_ARRAY(int, _buckets, mtGC);
_buckets = NULL;
}
}
void RSHashTable::clear() {
_occupied_entries = 0;
_occupied_cards = 0;
guarantee(_entries != NULL, "INV");
guarantee(_buckets != NULL, "INV");
guarantee(_capacity <= ((size_t)1 << (sizeof(int)*BitsPerByte-1)) - 1,
"_capacity too large");
// This will put -1 == NullEntry in the key field of all entries.
memset(_entries, NullEntry, _capacity * SparsePRTEntry::size());
memset(_buckets, NullEntry, _capacity * sizeof(int));
_free_list = NullEntry;
_free_region = 0;
}
bool RSHashTable::add_card(RegionIdx_t region_ind, CardIdx_t card_index) {
SparsePRTEntry* e = entry_for_region_ind_create(region_ind);
assert(e != NULL && e->r_ind() == region_ind,
"Postcondition of call above.");
SparsePRTEntry::AddCardResult res = e->add_card(card_index);
if (res == SparsePRTEntry::added) _occupied_cards++;
#if SPARSE_PRT_VERBOSE
gclog_or_tty->print_cr(" after add_card[%d]: valid-cards = %d.",
pointer_delta(e, _entries, SparsePRTEntry::size()),
e->num_valid_cards());
#endif
assert(e->num_valid_cards() > 0, "Postcondition");
return res != SparsePRTEntry::overflow;
}
bool RSHashTable::get_cards(RegionIdx_t region_ind, CardIdx_t* cards) {
int ind = (int) (region_ind & capacity_mask());
int cur_ind = _buckets[ind];
SparsePRTEntry* cur;
while (cur_ind != NullEntry &&
(cur = entry(cur_ind))->r_ind() != region_ind) {
cur_ind = cur->next_index();
}
if (cur_ind == NullEntry) return false;
// Otherwise...
assert(cur->r_ind() == region_ind, "Postcondition of loop + test above.");
assert(cur->num_valid_cards() > 0, "Inv");
cur->copy_cards(cards);
return true;
}
SparsePRTEntry* RSHashTable::get_entry(RegionIdx_t region_ind) {
int ind = (int) (region_ind & capacity_mask());
int cur_ind = _buckets[ind];
SparsePRTEntry* cur;
while (cur_ind != NullEntry &&
(cur = entry(cur_ind))->r_ind() != region_ind) {
cur_ind = cur->next_index();
}
if (cur_ind == NullEntry) return NULL;
// Otherwise...
assert(cur->r_ind() == region_ind, "Postcondition of loop + test above.");
assert(cur->num_valid_cards() > 0, "Inv");
return cur;
}
bool RSHashTable::delete_entry(RegionIdx_t region_ind) {
int ind = (int) (region_ind & capacity_mask());
int* prev_loc = &_buckets[ind];
int cur_ind = *prev_loc;
SparsePRTEntry* cur;
while (cur_ind != NullEntry &&
(cur = entry(cur_ind))->r_ind() != region_ind) {
prev_loc = cur->next_index_addr();
cur_ind = *prev_loc;
}
if (cur_ind == NullEntry) return false;
// Otherwise, splice out "cur".
*prev_loc = cur->next_index();
_occupied_cards -= cur->num_valid_cards();
free_entry(cur_ind);
_occupied_entries--;
return true;
}
SparsePRTEntry*
RSHashTable::entry_for_region_ind(RegionIdx_t region_ind) const {
assert(occupied_entries() < capacity(), "Precondition");
int ind = (int) (region_ind & capacity_mask());
int cur_ind = _buckets[ind];
SparsePRTEntry* cur;
while (cur_ind != NullEntry &&
(cur = entry(cur_ind))->r_ind() != region_ind) {
cur_ind = cur->next_index();
}
if (cur_ind != NullEntry) {
assert(cur->r_ind() == region_ind, "Loop postcondition + test");
return cur;
} else {
return NULL;
}
}
SparsePRTEntry*
RSHashTable::entry_for_region_ind_create(RegionIdx_t region_ind) {
SparsePRTEntry* res = entry_for_region_ind(region_ind);
if (res == NULL) {
int new_ind = alloc_entry();
assert(0 <= new_ind && (size_t)new_ind < capacity(), "There should be room.");
res = entry(new_ind);
res->init(region_ind);
// Insert at front.
int ind = (int) (region_ind & capacity_mask());
res->set_next_index(_buckets[ind]);
_buckets[ind] = new_ind;
_occupied_entries++;
}
return res;
}
int RSHashTable::alloc_entry() {
int res;
if (_free_list != NullEntry) {
res = _free_list;
_free_list = entry(res)->next_index();
return res;
} else if ((size_t) _free_region+1 < capacity()) {
res = _free_region;
_free_region++;
return res;
} else {
return NullEntry;
}
}
void RSHashTable::free_entry(int fi) {
entry(fi)->set_next_index(_free_list);
_free_list = fi;
}
void RSHashTable::add_entry(SparsePRTEntry* e) {
assert(e->num_valid_cards() > 0, "Precondition.");
SparsePRTEntry* e2 = entry_for_region_ind_create(e->r_ind());
e->copy_cards(e2);
_occupied_cards += e2->num_valid_cards();
assert(e2->num_valid_cards() > 0, "Postcondition.");
}
CardIdx_t RSHashTableIter::find_first_card_in_list() {
CardIdx_t res;
while (_bl_ind != RSHashTable::NullEntry) {
res = _rsht->entry(_bl_ind)->card(0);
if (res != SparsePRTEntry::NullEntry) {
return res;
} else {
_bl_ind = _rsht->entry(_bl_ind)->next_index();
}
}
// Otherwise, none found:
return SparsePRTEntry::NullEntry;
}
size_t RSHashTableIter::compute_card_ind(CardIdx_t ci) {
return (_rsht->entry(_bl_ind)->r_ind() * HeapRegion::CardsPerRegion) + ci;
}
bool RSHashTableIter::has_next(size_t& card_index) {
_card_ind++;
CardIdx_t ci;
if (_card_ind < SparsePRTEntry::cards_num() &&
((ci = _rsht->entry(_bl_ind)->card(_card_ind)) !=
SparsePRTEntry::NullEntry)) {
card_index = compute_card_ind(ci);
return true;
}
// Otherwise, must find the next valid entry.
_card_ind = 0;
if (_bl_ind != RSHashTable::NullEntry) {
_bl_ind = _rsht->entry(_bl_ind)->next_index();
ci = find_first_card_in_list();
if (ci != SparsePRTEntry::NullEntry) {
card_index = compute_card_ind(ci);
return true;
}
}
// If we didn't return above, must go to the next non-null table index.
_tbl_ind++;
while ((size_t)_tbl_ind < _rsht->capacity()) {
_bl_ind = _rsht->_buckets[_tbl_ind];
ci = find_first_card_in_list();
if (ci != SparsePRTEntry::NullEntry) {
card_index = compute_card_ind(ci);
return true;
}
// Otherwise, try next entry.
_tbl_ind++;
}
// Otherwise, there were no entry.
return false;
}
bool RSHashTable::contains_card(RegionIdx_t region_index, CardIdx_t card_index) const {
SparsePRTEntry* e = entry_for_region_ind(region_index);
return (e != NULL && e->contains_card(card_index));
}
size_t RSHashTable::mem_size() const {
return sizeof(RSHashTable) +
capacity() * (SparsePRTEntry::size() + sizeof(int));
}
// ----------------------------------------------------------------------
SparsePRT* SparsePRT::_head_expanded_list = NULL;
void SparsePRT::add_to_expanded_list(SparsePRT* sprt) {
// We could expand multiple times in a pause -- only put on list once.
if (sprt->expanded()) return;
sprt->set_expanded(true);
SparsePRT* hd = _head_expanded_list;
while (true) {
sprt->_next_expanded = hd;
SparsePRT* res =
(SparsePRT*)
Atomic::cmpxchg_ptr(sprt, &_head_expanded_list, hd);
if (res == hd) return;
else hd = res;
}
}
SparsePRT* SparsePRT::get_from_expanded_list() {
SparsePRT* hd = _head_expanded_list;
while (hd != NULL) {
SparsePRT* next = hd->next_expanded();
SparsePRT* res =
(SparsePRT*)
Atomic::cmpxchg_ptr(next, &_head_expanded_list, hd);
if (res == hd) {
hd->set_next_expanded(NULL);
return hd;
} else {
hd = res;
}
}
return NULL;
}
void SparsePRT::reset_for_cleanup_tasks() {
_head_expanded_list = NULL;
}
void SparsePRT::do_cleanup_work(SparsePRTCleanupTask* sprt_cleanup_task) {
if (should_be_on_expanded_list()) {
sprt_cleanup_task->add(this);
}
}
void SparsePRT::finish_cleanup_task(SparsePRTCleanupTask* sprt_cleanup_task) {
assert(ParGCRareEvent_lock->owned_by_self(), "pre-condition");
SparsePRT* head = sprt_cleanup_task->head();
SparsePRT* tail = sprt_cleanup_task->tail();
if (head != NULL) {
assert(tail != NULL, "if head is not NULL, so should tail");
tail->set_next_expanded(_head_expanded_list);
_head_expanded_list = head;
} else {
assert(tail == NULL, "if head is NULL, so should tail");
}
}
bool SparsePRT::should_be_on_expanded_list() {
if (_expanded) {
assert(_cur != _next, "if _expanded is true, cur should be != _next");
} else {
assert(_cur == _next, "if _expanded is false, cur should be == _next");
}
return expanded();
}
void SparsePRT::cleanup_all() {
// First clean up all expanded tables so they agree on next and cur.
SparsePRT* sprt = get_from_expanded_list();
while (sprt != NULL) {
sprt->cleanup();
sprt = get_from_expanded_list();
}
}
SparsePRT::SparsePRT(HeapRegion* hr) :
_hr(hr), _expanded(false), _next_expanded(NULL)
{
_cur = new RSHashTable(InitialCapacity);
_next = _cur;
}
SparsePRT::~SparsePRT() {
assert(_next != NULL && _cur != NULL, "Inv");
if (_cur != _next) { delete _cur; }
delete _next;
}
size_t SparsePRT::mem_size() const {
// We ignore "_cur" here, because it either = _next, or else it is
// on the deleted list.
return sizeof(SparsePRT) + _next->mem_size();
}
bool SparsePRT::add_card(RegionIdx_t region_id, CardIdx_t card_index) {
#if SPARSE_PRT_VERBOSE
gclog_or_tty->print_cr(" Adding card %d from region %d to region %u sparse.",
card_index, region_id, _hr->hrs_index());
#endif
if (_next->occupied_entries() * 2 > _next->capacity()) {
expand();
}
return _next->add_card(region_id, card_index);
}
bool SparsePRT::get_cards(RegionIdx_t region_id, CardIdx_t* cards) {
return _next->get_cards(region_id, cards);
}
SparsePRTEntry* SparsePRT::get_entry(RegionIdx_t region_id) {
return _next->get_entry(region_id);
}
bool SparsePRT::delete_entry(RegionIdx_t region_id) {
return _next->delete_entry(region_id);
}
void SparsePRT::clear() {
// If they differ, _next is bigger then cur, so next has no chance of
// being the initial size.
if (_next != _cur) {
delete _next;
}
if (_cur->capacity() != InitialCapacity) {
delete _cur;
_cur = new RSHashTable(InitialCapacity);
} else {
_cur->clear();
}
_next = _cur;
_expanded = false;
}
void SparsePRT::cleanup() {
// Make sure that the current and next tables agree.
if (_cur != _next) {
delete _cur;
}
_cur = _next;
set_expanded(false);
}
void SparsePRT::expand() {
RSHashTable* last = _next;
_next = new RSHashTable(last->capacity() * 2);
#if SPARSE_PRT_VERBOSE
gclog_or_tty->print_cr(" Expanded sparse table for %u to %d.",
_hr->hrs_index(), _next->capacity());
#endif
for (size_t i = 0; i < last->capacity(); i++) {
SparsePRTEntry* e = last->entry((int)i);
if (e->valid_entry()) {
#if SPARSE_PRT_VERBOSE
gclog_or_tty->print_cr(" During expansion, transferred entry for %d.",
e->r_ind());
#endif
_next->add_entry(e);
}
}
if (last != _cur) {
delete last;
}
add_to_expanded_list(this);
}
void SparsePRTCleanupTask::add(SparsePRT* sprt) {
assert(sprt->should_be_on_expanded_list(), "pre-condition");
sprt->set_next_expanded(NULL);
if (_tail != NULL) {
_tail->set_next_expanded(sprt);
} else {
_head = sprt;
}
_tail = sprt;
}