jdk-24/src/hotspot/share/gc/g1/g1CollectionSetChooser.cpp

271 lines
9.7 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1CollectionSetCandidates.hpp"
#include "gc/g1/g1CollectionSetChooser.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/space.inline.hpp"
#include "runtime/atomic.hpp"
#include "utilities/quickSort.hpp"
// Order regions according to GC efficiency. This will cause regions with a lot
// of live objects and large remembered sets to end up at the end of the array.
// Given that we might skip collecting the last few old regions, if after a few
// mixed GCs the remaining have reclaimable bytes under a certain threshold, the
// hope is that the ones we'll skip are ones with both large remembered sets and
// a lot of live objects, not the ones with just a lot of live objects if we
// ordered according to the amount of reclaimable bytes per region.
static int order_regions(HeapRegion* hr1, HeapRegion* hr2) {
// Make sure that NULL entries are moved to the end.
if (hr1 == NULL) {
if (hr2 == NULL) {
return 0;
} else {
return 1;
}
} else if (hr2 == NULL) {
return -1;
}
double gc_eff1 = hr1->gc_efficiency();
double gc_eff2 = hr2->gc_efficiency();
if (gc_eff1 > gc_eff2) {
return -1;
} if (gc_eff1 < gc_eff2) {
return 1;
} else {
return 0;
}
}
// Determine collection set candidates: For all regions determine whether they
// should be a collection set candidates, calculate their efficiency, sort and
// return them as G1CollectionSetCandidates instance.
// Threads calculate the GC efficiency of the regions they get to process, and
// put them into some work area unsorted. At the end the array is sorted and
// copied into the G1CollectionSetCandidates instance; the caller will be the new
// owner of this object.
class G1BuildCandidateRegionsTask : public AbstractGangTask {
// Work area for building the set of collection set candidates. Contains references
// to heap regions with their GC efficiencies calculated. To reduce contention
// on claiming array elements, worker threads claim parts of this array in chunks;
// Array elements may be NULL as threads might not get enough regions to fill
// up their chunks completely.
// Final sorting will remove them.
class G1BuildCandidateArray : public StackObj {
uint const _max_size;
uint const _chunk_size;
HeapRegion** _data;
uint volatile _cur_claim_idx;
// Calculates the maximum array size that will be used.
static uint required_array_size(uint num_regions, uint chunk_size, uint num_workers) {
uint const max_waste = num_workers * chunk_size;
// The array should be aligned with respect to chunk_size.
uint const aligned_num_regions = ((num_regions + chunk_size - 1) / chunk_size) * chunk_size;
return aligned_num_regions + max_waste;
}
public:
G1BuildCandidateArray(uint max_num_regions, uint chunk_size, uint num_workers) :
_max_size(required_array_size(max_num_regions, chunk_size, num_workers)),
_chunk_size(chunk_size),
_data(NEW_C_HEAP_ARRAY(HeapRegion*, _max_size, mtGC)),
_cur_claim_idx(0) {
for (uint i = 0; i < _max_size; i++) {
_data[i] = NULL;
}
}
~G1BuildCandidateArray() {
FREE_C_HEAP_ARRAY(HeapRegion*, _data);
}
// Claim a new chunk, returning its bounds [from, to[.
void claim_chunk(uint& from, uint& to) {
uint result = Atomic::add(&_cur_claim_idx, _chunk_size);
assert(_max_size > result - 1,
"Array too small, is %u should be %u with chunk size %u.",
_max_size, result, _chunk_size);
from = result - _chunk_size;
to = result;
}
// Set element in array.
void set(uint idx, HeapRegion* hr) {
assert(idx < _max_size, "Index %u out of bounds %u", idx, _max_size);
assert(_data[idx] == NULL, "Value must not have been set.");
_data[idx] = hr;
}
void sort_and_copy_into(HeapRegion** dest, uint num_regions) {
if (_cur_claim_idx == 0) {
return;
}
for (uint i = _cur_claim_idx; i < _max_size; i++) {
assert(_data[i] == NULL, "must be");
}
QuickSort::sort(_data, _cur_claim_idx, order_regions, true);
for (uint i = num_regions; i < _max_size; i++) {
assert(_data[i] == NULL, "must be");
}
for (uint i = 0; i < num_regions; i++) {
dest[i] = _data[i];
}
}
};
// Per-region closure. In addition to determining whether a region should be
// added to the candidates, and calculating those regions' gc efficiencies, also
// gather additional statistics.
class G1BuildCandidateRegionsClosure : public HeapRegionClosure {
G1BuildCandidateArray* _array;
uint _cur_chunk_idx;
uint _cur_chunk_end;
uint _regions_added;
size_t _reclaimable_bytes_added;
void add_region(HeapRegion* hr) {
if (_cur_chunk_idx == _cur_chunk_end) {
_array->claim_chunk(_cur_chunk_idx, _cur_chunk_end);
}
assert(_cur_chunk_idx < _cur_chunk_end, "Must be");
hr->calc_gc_efficiency();
_array->set(_cur_chunk_idx, hr);
_cur_chunk_idx++;
_regions_added++;
_reclaimable_bytes_added += hr->reclaimable_bytes();
}
bool should_add(HeapRegion* hr) { return G1CollectionSetChooser::should_add(hr); }
public:
G1BuildCandidateRegionsClosure(G1BuildCandidateArray* array) :
_array(array),
_cur_chunk_idx(0),
_cur_chunk_end(0),
_regions_added(0),
_reclaimable_bytes_added(0) { }
bool do_heap_region(HeapRegion* r) {
// We will skip any region that's currently used as an old GC
// alloc region (we should not consider those for collection
// before we fill them up).
if (should_add(r) && !G1CollectedHeap::heap()->is_old_gc_alloc_region(r)) {
add_region(r);
} else if (r->is_old()) {
// Keep remembered sets for humongous regions, otherwise clean out remembered
// sets for old regions.
r->rem_set()->clear(true /* only_cardset */);
} else {
assert(r->is_archive() || !r->is_old() || !r->rem_set()->is_tracked(),
"Missed to clear unused remembered set of region %u (%s) that is %s",
r->hrm_index(), r->get_type_str(), r->rem_set()->get_state_str());
}
return false;
}
uint regions_added() const { return _regions_added; }
size_t reclaimable_bytes_added() const { return _reclaimable_bytes_added; }
};
G1CollectedHeap* _g1h;
HeapRegionClaimer _hrclaimer;
uint volatile _num_regions_added;
size_t volatile _reclaimable_bytes_added;
G1BuildCandidateArray _result;
void update_totals(uint num_regions, size_t reclaimable_bytes) {
if (num_regions > 0) {
assert(reclaimable_bytes > 0, "invariant");
Atomic::add(&_num_regions_added, num_regions);
Atomic::add(&_reclaimable_bytes_added, reclaimable_bytes);
} else {
assert(reclaimable_bytes == 0, "invariant");
}
}
public:
G1BuildCandidateRegionsTask(uint max_num_regions, uint chunk_size, uint num_workers) :
AbstractGangTask("G1 Build Candidate Regions"),
_g1h(G1CollectedHeap::heap()),
_hrclaimer(num_workers),
_num_regions_added(0),
_reclaimable_bytes_added(0),
_result(max_num_regions, chunk_size, num_workers) { }
void work(uint worker_id) {
G1BuildCandidateRegionsClosure cl(&_result);
_g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
update_totals(cl.regions_added(), cl.reclaimable_bytes_added());
}
G1CollectionSetCandidates* get_sorted_candidates() {
HeapRegion** regions = NEW_C_HEAP_ARRAY(HeapRegion*, _num_regions_added, mtGC);
_result.sort_and_copy_into(regions, _num_regions_added);
return new G1CollectionSetCandidates(regions,
_num_regions_added,
_reclaimable_bytes_added);
}
};
uint G1CollectionSetChooser::calculate_work_chunk_size(uint num_workers, uint num_regions) {
assert(num_workers > 0, "Active gc workers should be greater than 0");
return MAX2(num_regions / num_workers, 1U);
}
bool G1CollectionSetChooser::should_add(HeapRegion* hr) {
return !hr->is_young() &&
!hr->is_pinned() &&
region_occupancy_low_enough_for_evac(hr->live_bytes()) &&
hr->rem_set()->is_complete();
}
G1CollectionSetCandidates* G1CollectionSetChooser::build(WorkGang* workers, uint max_num_regions) {
uint num_workers = workers->active_workers();
uint chunk_size = calculate_work_chunk_size(num_workers, max_num_regions);
G1BuildCandidateRegionsTask cl(max_num_regions, chunk_size, num_workers);
workers->run_task(&cl, num_workers);
G1CollectionSetCandidates* result = cl.get_sorted_candidates();
result->verify();
return result;
}