jdk-24/src/hotspot/cpu/arm/stubRoutinesCrypto_arm.cpp

1034 lines
34 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifdef COMPILE_CRYPTO
// The Rijndael S-box and inverted S-box are embedded here for a faster access.
//
// Note about lookup tables (T1...T4 and T5..T8):
// The tables (boxes) combine ahead-of-time precalculated transposition and mixing steps as
// an alternative to a runtime calculation.
// The tables are statically generated in com/sun/crypto/provider/AESCrypt class.
// Only the first table reference is passed to AES methods below. The other 3 tables
// in ecryption and decryption are calculated in runtime by rotating the T1 result accordingly.
// It is a free operation on ARM with embedded register-shifted-register EOR capability.
// The table reference is passed in a form of a last argument on the parametes list.
// The tables lookup method proves to perform better then a runtime Galois Field caclulation,
// due to a lack of HW acceleration for the later.
unsigned char * SBox;
unsigned char * SInvBox;
void aes_init() {
const static unsigned char Si[256] =
{
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
static const unsigned char S[256]={
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
SBox = (unsigned char*)S;
SInvBox = (unsigned char*)Si;
}
address generate_aescrypt_encryptBlock() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aesencryptBlock");
address start = __ pc();
// Register from = R0; // source byte array
// Register to = R1; // destination byte array
// Register key = R2; // expanded key array
// Register tbox = R3; // transposition box reference
__ push (RegisterSet(R4, R12) | LR);
__ fpush(FloatRegisterSet(D0, 4));
__ sub(SP, SP, 32);
// preserve TBox references
__ add(R3, R3, arrayOopDesc::base_offset_in_bytes(T_INT));
__ str(R3, Address(SP, 16));
// retrieve key length. The length is used to determine the number of subsequent rounds (10, 12 or 14)
__ ldr(R9, Address(R2, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ ldr(R5, Address(R0));
__ ldr(R10, Address(R2, 4, post_indexed));
__ rev(R5, R5);
__ eor(R5, R5, R10);
__ ldr(R6, Address(R0, 4));
__ ldr(R10, Address(R2, 4, post_indexed));
__ rev(R6, R6);
__ eor(R6, R6, R10);
__ ldr(R7, Address(R0, 8));
__ ldr(R10, Address(R2, 4, post_indexed));
__ rev(R7, R7);
__ eor(R7, R7, R10);
__ ldr(R8, Address(R0, 12));
__ ldr(R10, Address(R2, 4, post_indexed));
__ rev(R8, R8);
__ eor(R8, R8, R10);
// Store the key size; However before doing that adjust the key to compensate for the Initial and Last rounds
__ sub(R9, R9, 8);
__ fmsr(S7, R1);
// load first transporistion box (T1)
__ ldr(R0, Address(SP, 16));
__ mov(LR, R2);
Label round;
__ bind(round);
// Utilize a Transposition Box lookup along with subsequent shift and EOR with a round key.
// instructions ordering is rearranged to minimize ReadAferWrite dependency. Not that important on A15 target
// with register renaming but performs ~10% better on A9.
__ mov(R12, AsmOperand(R5, lsr, 24));
__ ubfx(R4, R6, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R7, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R8);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R10, R1, R12);
__ mov(R12, AsmOperand(R6, lsr, 24));
__ ubfx(R4, R7, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R8, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R5);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R11, R1, R12);
__ mov(R12, AsmOperand(R7, lsr, 24));
__ ubfx(R4, R8, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R5, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R6);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R3, R1, R12);
__ str(R3, Address(SP, 0));
__ mov(R12, AsmOperand(R8, lsr, 24));
__ ubfx(R4, R5, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R6, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R7);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R8, R1, R12);
// update round count
__ subs(R9, R9, 4);
__ mov(R5, R10);
__ mov(R6, R11);
__ ldr(R7, Address(SP, 0));
__ b(round, gt);
// last round - a special case, no MixColumn
__ mov_slow(R10, (int)SBox);
// output buffer pointer
__ fmrs(R9, S7);
__ ldr(R11, Address(LR, 4, post_indexed));
__ ldrb(R0, Address(R10, R5, lsr, 24));
__ ubfx(R12, R6, 16, 8);
__ ldrb(R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R7, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb (R12, R8);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ eor(R0, R0, R11);
__ rev(R0, R0);
__ str(R0, Address(R9, 4, post_indexed));
__ ldr(R11, Address(LR, 4, post_indexed));
__ ldrb(R0, Address(R10, R6, lsr, 24));
__ ubfx(R12, R7, 16, 8);
__ ldrb(R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R8, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb (R12, R5);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ eor(R0, R0, R11);
__ rev(R0, R0);
__ str(R0, Address(R9, 4, post_indexed));
__ ldr(R11, Address(LR, 4, post_indexed));
__ ldrb(R0, Address(R10, R7, lsr, 24));
__ ubfx(R12, R8, 16, 8);
__ ldrb(R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R5, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb (R12, R6);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ eor(R0, R0, R11);
__ rev(R0, R0);
__ str(R0, Address(R9, 4, post_indexed));
__ ldr(R11, Address(LR));
__ ldrb(R0, Address(R10, R8, lsr, 24));
__ ubfx(R12, R5, 16, 8);
__ ldrb(R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R6, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb (R12, R7);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ eor(R0, R0, R11);
__ rev(R0, R0);
__ str(R0, Address(R9));
__ add(SP, SP, 32);
__ fpop(FloatRegisterSet(D0, 4));
__ pop(RegisterSet(R4, R12) | PC);
return start;
}
address generate_aescrypt_decryptBlock() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aesdecryptBlock");
address start = __ pc();
// Register from = R0; // source byte array
// Register to = R1; // destination byte array
// Register key = R2; // expanded key array
// Register tbox = R3; // transposition box reference
__ push (RegisterSet(R4, R12) | LR);
__ fpush(FloatRegisterSet(D0, 4));
__ sub(SP, SP, 32);
// retrieve key length
__ ldr(R9, Address(R2, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
// preserve TBox references
__ add(R3, R3, arrayOopDesc::base_offset_in_bytes(T_INT));
__ str(R3, Address(SP, 16));
// Preserve the expanded key pointer
__ fmsr(S8, R2);
// The first key round is applied to the last round
__ add(LR, R2, 16);
__ ldr(R5, Address(R0));
__ ldr(R10, Address(LR, 4, post_indexed));
__ rev(R5, R5);
__ eor(R5, R5, R10);
__ ldr(R6, Address(R0, 4));
__ ldr(R10, Address(LR, 4, post_indexed));
__ rev(R6, R6);
__ eor(R6, R6, R10);
__ ldr(R7, Address(R0, 8));
__ ldr(R10, Address(LR, 4, post_indexed));
__ rev(R7, R7);
__ eor(R7, R7, R10);
__ ldr(R8, Address(R0, 12));
__ ldr(R10, Address(LR, 4, post_indexed));
__ rev(R8, R8);
__ eor(R8, R8, R10);
// Store the key size; However before doing that adjust the key to compensate for the Initial and Last rounds
__ sub(R9, R9, 8);
__ fmsr(S7, R1);
// load transporistion box (T5)
__ ldr(R0, Address(SP, 16));
Label round;
__ bind(round);
// each sub-block is treated similary:
// combine SubBytes|ShiftRows|MixColumn through a precalculated set of tables
// Utilize a Transposition Box lookup along with subsequent shift and EOR with a round key.
// instructions ordering is rearranged to minimize ReadAferWrite dependency. Not that important on A15 target
// with register renaming but performs ~10% better on A9.
__ mov(R12, AsmOperand(R5, lsr, 24));
__ ubfx(R4, R8, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R7, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R6);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R10, R1, R12);
__ mov(R12, AsmOperand(R6, lsr, 24));
__ ubfx(R4, R5, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R8, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R7);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R11, R1, R12);
__ mov(R12, AsmOperand(R7, lsr, 24));
__ ubfx(R4, R6, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R5, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R8);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R3, R1, R12);
__ str(R3, Address(SP, 0));
__ mov(R12, AsmOperand(R8, lsr, 24));
__ ubfx(R4, R7, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R6, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R5);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R8, R1, R12);
// update round count
__ subs(R9, R9, 4);
__ mov(R5, R10);
__ mov(R6, R11);
__ ldr(R7, Address(SP, 0));
__ b(round, gt);
// last round - a special case, no MixColumn:
// Retrieve expanded key pointer
__ fmrs(LR, S8);
__ mov_slow(R10, (int)SInvBox);
// output buffer pointer
__ fmrs(R9, S7);
// process each sub-block in a similar manner:
// 1. load a corresponding round key
__ ldr(R11, Address(LR, 4, post_indexed));
// 2. combine SubBytes and ShiftRows stages
__ ldrb(R0, Address(R10, R5, lsr, 24));
__ ubfx(R12, R8, 16, 8);
__ ldrb(R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R7, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb (R12, R6);
__ ldrb(R3, Address(R10, R12));
__ orr(R3, R3, AsmOperand(R0, lsl, 8));
// 3. AddRoundKey stage
__ eor(R0, R3, R11);
// 4. convert the result to LE representation
__ rev(R0, R0);
// 5. store in the output buffer
__ str(R0, Address(R9, 4, post_indexed));
__ ldr(R11, Address(LR, 4, post_indexed));
__ ldrb(R0, Address(R10, R6, lsr, 24));
__ ubfx(R12, R5, 16, 8);
__ ldrb(R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R8, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb (R12, R7);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ eor(R0, R0, R11);
__ rev(R0, R0);
__ str(R0, Address(R9, 4, post_indexed));
__ ldr(R11, Address(LR, 4, post_indexed));
__ ldrb(R0, Address(R10, R7, lsr, 24));
__ ubfx(R12, R6, 16, 8);
__ ldrb(R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R5, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb (R12, R8);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ eor(R0, R0, R11);
__ rev(R0, R0);
__ str(R0, Address(R9, 4, post_indexed));
__ ldr(R11, Address(LR));
__ ldrb(R0, Address(R10, R8, lsr, 24));
__ ubfx(R12, R7, 16, 8);
__ ldrb(R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R6, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb (R12, R5);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ eor(R0, R0, R11);
__ rev(R0, R0);
__ str(R0, Address(R9));
__ add(SP, SP, 32);
__ fpop(FloatRegisterSet(D0, 4));
__ pop(RegisterSet(R4, R12) | PC);
return start;
}
address generate_cipherBlockChaining_encryptAESCrypt() {
// R0 - plain
// R1 - cipher
// R2 - expanded key
// R3 - Initialization Vector (IV)
// [sp+0] - cipher len
// [sp+4] Transposition Box reference
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
address start = __ pc();
__ push(RegisterSet(R4, R12) | LR);
// load cipher length (which is first element on the original calling stack)
__ ldr(R4, Address(SP, 40));
__ sub(SP, SP, 32);
// preserve some arguments
__ mov(R5, R1);
__ mov(R6, R2);
// load IV
__ ldmia(R3, RegisterSet(R9, R12), writeback);
// preserve original source buffer on stack
__ str(R0, Address(SP, 16));
Label loop;
__ bind(loop);
__ ldmia(R0, RegisterSet(R0, R1) | RegisterSet(R7, R8));
__ eor(R0, R0, R9);
__ eor(R1, R1, R10);
__ eor(R7, R7, R11);
__ eor(R8, R8, R12);
__ stmia(SP, RegisterSet(R0, R1) | RegisterSet(R7, R8));
__ mov(R0, SP);
__ mov(R1, R5);
__ mov(R2, R6);
__ ldr(R3, Address(SP, 40+32+4));
// near call is sufficient since the target is also in the stubs
__ bl(StubRoutines::_aescrypt_encryptBlock);
__ subs(R4, R4, 16);
__ ldr(R0, Address(SP, 16), gt);
__ ldmia(R5, RegisterSet(R9, R12), writeback);
__ add(R0, R0, 16, gt);
__ str(R0, Address(SP, 16), gt);
__ b(loop, gt);
__ add(SP, SP, 32);
__ pop(RegisterSet(R4, R12) | LR);
// return cipher len (copied from the original argument)
__ ldr(R0, Address(SP));
__ bx(LR);
return start;
}
// The CBC decryption could benefit from parallel processing as the blocks could be
// decrypted separatly from each other.
// NEON is utilized (if available) to perform parallel execution on 8 blocks at a time.
// Since Transposition Box (tbox) is used the parallel execution will only apply to an
// Initial Round and the last round. It's not practical to use NEON for a table lookup
// larger than 128 bytes. It also appears to be faster performing tbox lookup
// sequentially then execute Galois Field calculation in parallel.
address generate_cipherBlockChaining_decryptAESCrypt() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
address start = __ pc();
Label single_block_done, single_block, cbc_done;
// R0 - cipher
// R1 - plain
// R2 - expanded key
// R3 - Initialization Vector (iv)
// [sp+0] - cipher len
// [sp+4] - Transpotition Box reference
__ push(RegisterSet(R4, R12) | LR);
// load cipher len: must be modulo 16
__ ldr(R4, Address(SP, 40));
if (VM_Version::has_simd()) {
__ andrs(R4, R4, 0x7f);
}
// preserve registers based arguments
__ mov(R7, R2);
__ mov(R8, R3);
if (VM_Version::has_simd()) {
__ b(single_block_done, eq);
}
__ bind(single_block);
// preserve args
__ mov(R5, R0);
__ mov(R6, R1);
// reload arguments
__ mov(R2, R7);
__ ldr(R3, Address(SP, 40+4));
// near call is sufficient as the method is part of the StubGenerator
__ bl((address)StubRoutines::_aescrypt_decryptBlock);
// check remainig cipher size (for individual block processing)
__ subs(R4, R4, 16);
if (VM_Version::has_simd()) {
__ tst(R4, 0x7f);
}
// load IV (changes based on a CBC schedule)
__ ldmia(R8, RegisterSet(R9, R12));
// load plaintext from the previous block processing
__ ldmia(R6, RegisterSet(R0, R3));
// perform IV addition and save the plaintext for good now
__ eor(R0, R0, R9);
__ eor(R1, R1, R10);
__ eor(R2, R2, R11);
__ eor(R3, R3, R12);
__ stmia(R6, RegisterSet(R0, R3));
// adjust pointers for next block processing
__ mov(R8, R5);
__ add(R0, R5, 16);
__ add(R1, R6, 16);
__ b(single_block, ne);
__ bind(single_block_done);
if (!VM_Version::has_simd()) {
__ b(cbc_done);
} else {
// done with single blocks.
// check if any 8 block chunks are available for parallel processing
__ ldr(R4, Address(SP, 40));
__ bics(R4, R4, 0x7f);
__ b(cbc_done, eq);
Label decrypt_8_blocks;
int quad = 1;
// Process 8 blocks in parallel
__ fpush(FloatRegisterSet(D8, 8));
__ sub(SP, SP, 40);
// record output buffer end address (used as a block counter)
Address output_buffer_end(SP, 16);
__ add(R5, R1, R4);
__ str(R5, output_buffer_end);
// preserve key pointer
Address rounds_key(SP, 28);
__ str(R7, rounds_key);
// in decryption the first 16 bytes of expanded key are used in the last round
__ add(LR, R7, 16);
// Record the end of the key which is used to indicate a last round
__ ldr(R3, Address(R7, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ add(R9, R7, AsmOperand(R3, lsl, 2));
// preserve IV
Address iv(SP, 36);
__ str(R8, iv);
__ bind(decrypt_8_blocks);
__ mov(R5, R1);
// preserve original source pointer
Address original_src(SP, 32);
__ str(R0, original_src);
// Apply ShiftRow for 8 block at once:
// use output buffer for a temp storage to preload it into cache
__ vld1(D18, LR, MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D0, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D0, D0, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ veor(D20, D0, D18, quad);
__ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D2, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D2, D2, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ veor(D20, D2, D18, quad);
__ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D4, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D4, D4, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ veor(D20, D4, D18, quad);
__ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D6, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D6, D6, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ veor(D20, D6, D18, quad);
__ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D8, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D8, D8, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ veor(D20, D8, D18, quad);
__ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D10, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D10, D10, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ veor(D20, D10, D18, quad);
__ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D12, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D12, D12, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ veor(D20, D12, D18, quad);
__ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D14, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D14, D14, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ veor(D20, D14, D18, quad);
__ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
// Local frame map:
// sp+20 - ouput buffer pointer
// sp+28 - key pointer
// sp+32 - original source
// sp+36 - block counter
// preserve output buffer pointer
Address block_current_output_buffer(SP, 20);
__ str(R1, block_current_output_buffer);
// individual rounds in block processing are executed sequentially .
Label block_start;
// record end of the output buffer
__ add(R0, R1, 128);
__ str(R0, Address(SP, 12));
__ bind(block_start);
// load transporistion box reference (T5)
// location of the reference (6th incoming argument, second slot on the stack):
// 10 scalar registers on stack
// 8 double-precision FP registers
// 40 bytes frame size for local storage
// 4 bytes offset to the original arguments list
__ ldr(R0, Address(SP, 40+64+40+4));
__ add(R0, R0, arrayOopDesc::base_offset_in_bytes(T_INT));
// load rounds key and compensate for the first and last rounds
__ ldr(LR, rounds_key);
__ add(LR, LR, 32);
// load block data out buffer
__ ldr(R2, block_current_output_buffer);
__ ldmia(R2, RegisterSet(R5, R8));
Label round;
__ bind(round);
// Utilize a Transposition Box lookup along with subsequent shift and EOR with a round key.
// instructions ordering is rearranged to minimize ReadAferWrite dependency. Not that important on A15 target
// with register renaming but performs ~10% better on A9.
__ mov(R12, AsmOperand(R5, lsr, 24));
__ ubfx(R4, R8, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R7, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R6);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R10, R1, R12);
__ mov(R12, AsmOperand(R6, lsr, 24));
__ ubfx(R4, R5, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R8, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R7);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R11, R1, R12);
__ mov(R12, AsmOperand(R7, lsr, 24));
__ ubfx(R4, R6, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R5, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R8);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R3, R1, R12);
__ str(R3, Address(SP, 0));
__ mov(R12, AsmOperand(R8, lsr, 24));
__ ubfx(R4, R7, 16, 8);
__ ldr (R1, Address(R0, R12, lsl, 2));
__ ldr(R2, Address(R0, R4, lsl, 2));
__ ubfx(R3, R6, 8, 8);
__ eor(R1, R1, AsmOperand(R2, ror, 8));
__ uxtb(R4, R5);
__ ldr(R3, Address(R0, R3, lsl, 2));
__ ldr(R4, Address(R0, R4, lsl, 2));
__ ldr(R12, Address(LR, 4, post_indexed));
__ eor(R1, R1, AsmOperand(R3, ror, 16));
__ eor(R12, R12, AsmOperand(R4, ror, 24));
__ eor(R8, R1, R12);
// see if we reached the key array end
__ cmp(R9, LR);
// load processed data
__ mov(R5, R10);
__ mov(R6, R11);
__ ldr(R7, Address(SP, 0));
__ b(round, gt);
// last round is special
// this round could be implemented through vtbl instruction in NEON. However vtbl is limited to a 32-byte wide table (4 vectors),
// thus it requires 8 lookup rounds to cover 256-byte wide Si table. On the other hand scalar lookup is independent of the
// lookup table size and thus proves to be faster.
__ ldr(LR, block_current_output_buffer);
// cipher counter
__ ldr(R11, Address(SP, 12));
__ mov_slow(R10, (int)SInvBox);
__ ldrb(R0, Address(R10, R5, lsr, 24));
__ ubfx(R12, R8, 16, 8);
__ ldrb (R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R7, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb(R12, R6);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ str(R0, Address(LR, 4, post_indexed));
__ ldrb(R0, Address(R10, R6, lsr, 24));
__ ubfx(R12, R5, 16, 8);
__ ldrb (R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R8, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb(R12, R7);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ str(R0, Address(LR, 4, post_indexed));
__ ldrb(R0, Address(R10, R7, lsr, 24));
__ ubfx(R12, R6, 16, 8);
__ ldrb (R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R5, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb(R12, R8);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ str(R0, Address(LR, 4, post_indexed));
__ ldrb(R0, Address(R10, R8, lsr, 24));
__ ubfx(R12, R7, 16, 8);
__ ldrb (R1, Address(R10, R12));
__ orr(R0, R1, AsmOperand(R0, lsl, 8));
__ ubfx(R12, R6, 8, 8);
__ ldrb(R2, Address(R10, R12));
__ orr(R0, R2, AsmOperand(R0, lsl, 8));
__ uxtb(R12, R5);
__ ldrb(R3, Address(R10, R12));
__ orr(R0, R3, AsmOperand(R0, lsl, 8));
__ str(R0, Address(LR, 4, post_indexed));
// preserve current scratch buffer pointer
__ cmp(R11, LR);
__ str(LR, block_current_output_buffer);
// go to the next block processing
__ b(block_start, ne);
// Perform last round AddRoundKey state on all 8 blocks
// load key pointer (remember that [sp+24] points to a byte #32 at the key array)
// last round is processed with the key[0 ..3]
__ ldr(LR, rounds_key);
// retireve original output buffer pointer
__ ldr(R1, block_current_output_buffer);
__ sub(R1, R1, 128);
__ mov(R5, R1);
// retrieve original cipher (source) pointer
__ ldr(R0, original_src);
// retrieve IV (second argument on stack)
__ ldr(R6, iv);
__ vld1(D20, R6, MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vrev(D20, D20, quad, 32, MacroAssembler::VELEM_SIZE_8);
// perform last AddRoundKey and IV addition
__ vld1(D18, Address(LR, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ veor(D22, D22, D18, quad);
__ veor(D22, D22, D20, quad);
__ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ veor(D22, D22, D18, quad);
__ veor(D22, D22, D0, quad);
__ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ veor(D22, D22, D18, quad);
__ veor(D22, D22, D2, quad);
__ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ veor(D22, D22, D18, quad);
__ veor(D22, D22, D4, quad);
__ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ veor(D22, D22, D18, quad);
__ veor(D22, D22, D6, quad);
__ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ veor(D22, D22, D18, quad);
__ veor(D22, D22, D8, quad);
__ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ veor(D22, D22, D18, quad);
__ veor(D22, D22, D10, quad);
__ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
__ veor(D22, D22, D18, quad);
__ veor(D22, D22, D12, quad);
__ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8);
__ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS);
// check if we're done
__ ldr(R4, output_buffer_end);
__ cmp(R4, R1);
__ add(R0, R0, 128-16);
__ str(R0, iv);
__ add(R0, R0, 16);
__ b(decrypt_8_blocks, ne);
__ add(SP, SP, 40);
__ fpop(FloatRegisterSet(D8, 8));
}
__ bind(cbc_done);
__ pop(RegisterSet(R4, R12) | LR);
__ ldr(R0, Address(SP));
__ bx(LR);
return start;
}
#endif // USE_CRYPTO