jdk-24/src/hotspot/share/gc/g1/g1DirtyCardQueue.cpp

377 lines
13 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CardTableEntryClosure.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "gc/g1/g1FreeIdSet.hpp"
#include "gc/g1/g1RedirtyCardsQueue.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/shared/workgroup.hpp"
#include "runtime/atomic.hpp"
#include "runtime/flags/flagSetting.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadSMR.hpp"
// Closure used for updating remembered sets and recording references that
// point into the collection set while the mutator is running.
// Assumed to be only executed concurrently with the mutator. Yields via
// SuspendibleThreadSet after every card.
class G1RefineCardConcurrentlyClosure: public G1CardTableEntryClosure {
public:
bool do_card_ptr(CardValue* card_ptr, uint worker_i) {
G1CollectedHeap::heap()->rem_set()->refine_card_concurrently(card_ptr, worker_i);
if (SuspendibleThreadSet::should_yield()) {
// Caller will actually yield.
return false;
}
// Otherwise, we finished successfully; return true.
return true;
}
};
G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) :
// Dirty card queues are always active, so we create them with their
// active field set to true.
PtrQueue(qset, true /* active */)
{ }
G1DirtyCardQueue::~G1DirtyCardQueue() {
flush();
}
void G1DirtyCardQueue::handle_completed_buffer() {
assert(_buf != NULL, "precondition");
BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
G1DirtyCardQueueSet* dcqs = dirty_card_qset();
if (dcqs->process_or_enqueue_completed_buffer(node)) {
reset(); // Buffer fully processed, reset index.
} else {
allocate_buffer(); // Buffer enqueued, get a new one.
}
}
G1DirtyCardQueueSet::G1DirtyCardQueueSet(bool notify_when_complete) :
PtrQueueSet(),
_cbl_mon(NULL),
_completed_buffers_head(NULL),
_completed_buffers_tail(NULL),
_num_entries_in_completed_buffers(0),
_process_completed_buffers_threshold(ProcessCompletedBuffersThresholdNever),
_process_completed_buffers(false),
_notify_when_complete(notify_when_complete),
_max_completed_buffers(MaxCompletedBuffersUnlimited),
_completed_buffers_padding(0),
_free_ids(NULL),
_processed_buffers_mut(0),
_processed_buffers_rs_thread(0)
{
_all_active = true;
}
G1DirtyCardQueueSet::~G1DirtyCardQueueSet() {
abandon_completed_buffers();
delete _free_ids;
}
// Determines how many mutator threads can process the buffers in parallel.
uint G1DirtyCardQueueSet::num_par_ids() {
return (uint)os::initial_active_processor_count();
}
void G1DirtyCardQueueSet::initialize(Monitor* cbl_mon,
BufferNode::Allocator* allocator,
bool init_free_ids) {
PtrQueueSet::initialize(allocator);
assert(_cbl_mon == NULL, "Init order issue?");
_cbl_mon = cbl_mon;
if (init_free_ids) {
_free_ids = new G1FreeIdSet(0, num_par_ids());
}
}
void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) {
G1ThreadLocalData::dirty_card_queue(t).handle_zero_index();
}
void G1DirtyCardQueueSet::enqueue_completed_buffer(BufferNode* cbn) {
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
cbn->set_next(NULL);
if (_completed_buffers_tail == NULL) {
assert(_completed_buffers_head == NULL, "Well-formedness");
_completed_buffers_head = cbn;
_completed_buffers_tail = cbn;
} else {
_completed_buffers_tail->set_next(cbn);
_completed_buffers_tail = cbn;
}
_num_entries_in_completed_buffers += buffer_size() - cbn->index();
if (!process_completed_buffers() &&
(num_completed_buffers() > process_completed_buffers_threshold())) {
set_process_completed_buffers(true);
if (_notify_when_complete) {
_cbl_mon->notify_all();
}
}
verify_num_entries_in_completed_buffers();
}
BufferNode* G1DirtyCardQueueSet::get_completed_buffer(size_t stop_at) {
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
if (num_completed_buffers() <= stop_at) {
return NULL;
}
assert(num_completed_buffers() > 0, "invariant");
assert(_completed_buffers_head != NULL, "invariant");
assert(_completed_buffers_tail != NULL, "invariant");
BufferNode* bn = _completed_buffers_head;
_num_entries_in_completed_buffers -= buffer_size() - bn->index();
_completed_buffers_head = bn->next();
if (_completed_buffers_head == NULL) {
assert(num_completed_buffers() == 0, "invariant");
_completed_buffers_tail = NULL;
set_process_completed_buffers(false);
}
verify_num_entries_in_completed_buffers();
bn->set_next(NULL);
return bn;
}
#ifdef ASSERT
void G1DirtyCardQueueSet::verify_num_entries_in_completed_buffers() const {
size_t actual = 0;
BufferNode* cur = _completed_buffers_head;
while (cur != NULL) {
actual += buffer_size() - cur->index();
cur = cur->next();
}
assert(actual == _num_entries_in_completed_buffers,
"Num entries in completed buffers should be " SIZE_FORMAT " but are " SIZE_FORMAT,
_num_entries_in_completed_buffers, actual);
}
#endif
void G1DirtyCardQueueSet::abandon_completed_buffers() {
BufferNode* buffers_to_delete = NULL;
{
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
buffers_to_delete = _completed_buffers_head;
_completed_buffers_head = NULL;
_completed_buffers_tail = NULL;
_num_entries_in_completed_buffers = 0;
set_process_completed_buffers(false);
}
while (buffers_to_delete != NULL) {
BufferNode* bn = buffers_to_delete;
buffers_to_delete = bn->next();
bn->set_next(NULL);
deallocate_buffer(bn);
}
}
void G1DirtyCardQueueSet::notify_if_necessary() {
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
if (num_completed_buffers() > process_completed_buffers_threshold()) {
set_process_completed_buffers(true);
if (_notify_when_complete)
_cbl_mon->notify();
}
}
// Merge lists of buffers. Notify the processing threads.
// The source queue is emptied as a result. The queues
// must share the monitor.
void G1DirtyCardQueueSet::merge_bufferlists(G1RedirtyCardsQueueSet* src) {
assert(allocator() == src->allocator(), "precondition");
const G1RedirtyCardsBufferList from = src->take_all_completed_buffers();
if (from._head == NULL) return;
MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
if (_completed_buffers_tail == NULL) {
assert(_completed_buffers_head == NULL, "Well-formedness");
_completed_buffers_head = from._head;
_completed_buffers_tail = from._tail;
} else {
assert(_completed_buffers_head != NULL, "Well formedness");
_completed_buffers_tail->set_next(from._head);
_completed_buffers_tail = from._tail;
}
_num_entries_in_completed_buffers += from._entry_count;
assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL ||
_completed_buffers_head != NULL && _completed_buffers_tail != NULL,
"Sanity");
verify_num_entries_in_completed_buffers();
}
bool G1DirtyCardQueueSet::apply_closure_to_buffer(G1CardTableEntryClosure* cl,
BufferNode* node,
uint worker_i) {
if (cl == NULL) return true;
bool result = true;
void** buf = BufferNode::make_buffer_from_node(node);
size_t i = node->index();
size_t limit = buffer_size();
for ( ; i < limit; ++i) {
CardTable::CardValue* card_ptr = static_cast<CardTable::CardValue*>(buf[i]);
assert(card_ptr != NULL, "invariant");
if (!cl->do_card_ptr(card_ptr, worker_i)) {
result = false; // Incomplete processing.
break;
}
}
assert(i <= buffer_size(), "invariant");
node->set_index(i);
return result;
}
#ifndef ASSERT
#define assert_fully_consumed(node, buffer_size)
#else
#define assert_fully_consumed(node, buffer_size) \
do { \
size_t _afc_index = (node)->index(); \
size_t _afc_size = (buffer_size); \
assert(_afc_index == _afc_size, \
"Buffer was not fully consumed as claimed: index: " \
SIZE_FORMAT ", size: " SIZE_FORMAT, \
_afc_index, _afc_size); \
} while (0)
#endif // ASSERT
bool G1DirtyCardQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) {
if (Thread::current()->is_Java_thread()) {
// If the number of buffers exceeds the limit, make this Java
// thread do the processing itself. We don't lock to access
// buffer count or padding; it is fine to be imprecise here. The
// add of padding could overflow, which is treated as unlimited.
size_t max_buffers = max_completed_buffers();
size_t limit = max_buffers + completed_buffers_padding();
if ((num_completed_buffers() > limit) && (limit >= max_buffers)) {
if (mut_process_buffer(node)) {
return true;
}
}
}
enqueue_completed_buffer(node);
return false;
}
bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) {
guarantee(_free_ids != NULL, "must be");
uint worker_i = _free_ids->claim_par_id(); // temporarily claim an id
G1RefineCardConcurrentlyClosure cl;
bool result = apply_closure_to_buffer(&cl, node, worker_i);
_free_ids->release_par_id(worker_i); // release the id
if (result) {
assert_fully_consumed(node, buffer_size());
Atomic::inc(&_processed_buffers_mut);
}
return result;
}
bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_i, size_t stop_at) {
G1RefineCardConcurrentlyClosure cl;
return apply_closure_to_completed_buffer(&cl, worker_i, stop_at, false);
}
bool G1DirtyCardQueueSet::apply_closure_during_gc(G1CardTableEntryClosure* cl, uint worker_i) {
assert_at_safepoint();
return apply_closure_to_completed_buffer(cl, worker_i, 0, true);
}
bool G1DirtyCardQueueSet::apply_closure_to_completed_buffer(G1CardTableEntryClosure* cl,
uint worker_i,
size_t stop_at,
bool during_pause) {
assert(!during_pause || stop_at == 0, "Should not leave any completed buffers during a pause");
BufferNode* nd = get_completed_buffer(stop_at);
if (nd == NULL) {
return false;
} else {
if (apply_closure_to_buffer(cl, nd, worker_i)) {
assert_fully_consumed(nd, buffer_size());
// Done with fully processed buffer.
deallocate_buffer(nd);
Atomic::inc(&_processed_buffers_rs_thread);
} else {
// Return partially processed buffer to the queue.
guarantee(!during_pause, "Should never stop early");
enqueue_completed_buffer(nd);
}
return true;
}
}
void G1DirtyCardQueueSet::abandon_logs() {
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
abandon_completed_buffers();
// Since abandon is done only at safepoints, we can safely manipulate
// these queues.
struct AbandonThreadLogClosure : public ThreadClosure {
virtual void do_thread(Thread* t) {
G1ThreadLocalData::dirty_card_queue(t).reset();
}
} closure;
Threads::threads_do(&closure);
G1BarrierSet::shared_dirty_card_queue().reset();
}
void G1DirtyCardQueueSet::concatenate_logs() {
// Iterate over all the threads, if we find a partial log add it to
// the global list of logs. Temporarily turn off the limit on the number
// of outstanding buffers.
assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
size_t old_limit = max_completed_buffers();
set_max_completed_buffers(MaxCompletedBuffersUnlimited);
struct ConcatenateThreadLogClosure : public ThreadClosure {
virtual void do_thread(Thread* t) {
G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t);
if (!dcq.is_empty()) {
dcq.flush();
}
}
} closure;
Threads::threads_do(&closure);
G1BarrierSet::shared_dirty_card_queue().flush();
set_max_completed_buffers(old_limit);
}