2018-12-12 12:17:33 -08:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2018, Intel Corporation.
|
|
|
|
*
|
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "precompiled.hpp"
|
|
|
|
#include "asm/assembler.hpp"
|
|
|
|
#include "asm/assembler.inline.hpp"
|
|
|
|
#include "runtime/stubRoutines.hpp"
|
|
|
|
#include "macroAssembler_x86.hpp"
|
|
|
|
|
2018-12-13 16:14:07 +01:00
|
|
|
#ifdef _LP64
|
2018-12-12 12:17:33 -08:00
|
|
|
// Multiply 128 x 128 bits, using 4 pclmulqdq operations
|
|
|
|
void MacroAssembler::schoolbookAAD(int i, Register htbl, XMMRegister data,
|
|
|
|
XMMRegister tmp0, XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3) {
|
|
|
|
movdqu(xmm15, Address(htbl, i * 16));
|
|
|
|
vpclmulhqlqdq(tmp3, data, xmm15); // 0x01
|
|
|
|
vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit);
|
|
|
|
vpclmulldq(tmp3, data, xmm15); // 0x00
|
|
|
|
vpxor(tmp0, tmp0, tmp3, Assembler::AVX_128bit);
|
|
|
|
vpclmulhdq(tmp3, data, xmm15); // 0x11
|
|
|
|
vpxor(tmp1, tmp1, tmp3, Assembler::AVX_128bit);
|
|
|
|
vpclmullqhqdq(tmp3, data, xmm15); // 0x10
|
|
|
|
vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Multiply two 128 bit numbers resulting in a 256 bit value
|
|
|
|
// Result of the multiplication followed by reduction stored in state
|
|
|
|
void MacroAssembler::gfmul(XMMRegister tmp0, XMMRegister state) {
|
|
|
|
const XMMRegister tmp1 = xmm4;
|
|
|
|
const XMMRegister tmp2 = xmm5;
|
|
|
|
const XMMRegister tmp3 = xmm6;
|
|
|
|
const XMMRegister tmp4 = xmm7;
|
|
|
|
|
|
|
|
vpclmulldq(tmp1, state, tmp0); //0x00 (a0 * b0)
|
|
|
|
vpclmulhdq(tmp4, state, tmp0);//0x11 (a1 * b1)
|
|
|
|
vpclmullqhqdq(tmp2, state, tmp0);//0x10 (a1 * b0)
|
|
|
|
vpclmulhqlqdq(tmp3, state, tmp0); //0x01 (a0 * b1)
|
|
|
|
|
|
|
|
vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit); // (a0 * b1) + (a1 * b0)
|
|
|
|
|
|
|
|
vpslldq(tmp3, tmp2, 8, Assembler::AVX_128bit);
|
|
|
|
vpsrldq(tmp2, tmp2, 8, Assembler::AVX_128bit);
|
|
|
|
vpxor(tmp1, tmp1, tmp3, Assembler::AVX_128bit); // tmp1 and tmp4 hold the result
|
|
|
|
vpxor(tmp4, tmp4, tmp2, Assembler::AVX_128bit); // of carryless multiplication
|
|
|
|
// Follows the reduction technique mentioned in
|
|
|
|
// Shift-XOR reduction described in Gueron-Kounavis May 2010
|
|
|
|
// First phase of reduction
|
|
|
|
//
|
|
|
|
vpslld(xmm8, tmp1, 31, Assembler::AVX_128bit); // packed right shift shifting << 31
|
|
|
|
vpslld(xmm9, tmp1, 30, Assembler::AVX_128bit); // packed right shift shifting << 30
|
|
|
|
vpslld(xmm10, tmp1, 25, Assembler::AVX_128bit);// packed right shift shifting << 25
|
|
|
|
// xor the shifted versions
|
|
|
|
vpxor(xmm8, xmm8, xmm9, Assembler::AVX_128bit);
|
|
|
|
vpxor(xmm8, xmm8, xmm10, Assembler::AVX_128bit);
|
|
|
|
vpslldq(xmm9, xmm8, 12, Assembler::AVX_128bit);
|
|
|
|
vpsrldq(xmm8, xmm8, 4, Assembler::AVX_128bit);
|
|
|
|
vpxor(tmp1, tmp1, xmm9, Assembler::AVX_128bit);// first phase of the reduction complete
|
|
|
|
//
|
|
|
|
// Second phase of the reduction
|
|
|
|
//
|
|
|
|
vpsrld(xmm9, tmp1, 1, Assembler::AVX_128bit);// packed left shifting >> 1
|
|
|
|
vpsrld(xmm10, tmp1, 2, Assembler::AVX_128bit);// packed left shifting >> 2
|
|
|
|
vpsrld(xmm11, tmp1, 7, Assembler::AVX_128bit);// packed left shifting >> 7
|
|
|
|
vpxor(xmm9, xmm9, xmm10, Assembler::AVX_128bit);// xor the shifted versions
|
|
|
|
vpxor(xmm9, xmm9, xmm11, Assembler::AVX_128bit);
|
|
|
|
vpxor(xmm9, xmm9, xmm8, Assembler::AVX_128bit);
|
|
|
|
vpxor(tmp1, tmp1, xmm9, Assembler::AVX_128bit);
|
|
|
|
vpxor(state, tmp4, tmp1, Assembler::AVX_128bit);// the result is in state
|
|
|
|
ret(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This method takes the subkey after expansion as input and generates 1 * 16 power of subkey H.
|
|
|
|
// The power of H is used in reduction process for one block ghash
|
|
|
|
void MacroAssembler::generateHtbl_one_block(Register htbl) {
|
|
|
|
const XMMRegister t = xmm13;
|
|
|
|
|
|
|
|
// load the original subkey hash
|
|
|
|
movdqu(t, Address(htbl, 0));
|
|
|
|
// shuffle using long swap mask
|
|
|
|
movdqu(xmm10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
|
|
|
|
vpshufb(t, t, xmm10, Assembler::AVX_128bit);
|
|
|
|
|
|
|
|
// Compute H' = GFMUL(H, 2)
|
|
|
|
vpsrld(xmm3, t, 7, Assembler::AVX_128bit);
|
|
|
|
movdqu(xmm4, ExternalAddress(StubRoutines::x86::ghash_shufflemask_addr()));
|
|
|
|
vpshufb(xmm3, xmm3, xmm4, Assembler::AVX_128bit);
|
|
|
|
movl(rax, 0xff00);
|
|
|
|
movdl(xmm4, rax);
|
|
|
|
vpshufb(xmm4, xmm4, xmm3, Assembler::AVX_128bit);
|
|
|
|
movdqu(xmm5, ExternalAddress(StubRoutines::x86::ghash_polynomial_addr()));
|
|
|
|
vpand(xmm5, xmm5, xmm4, Assembler::AVX_128bit);
|
|
|
|
vpsrld(xmm3, t, 31, Assembler::AVX_128bit);
|
|
|
|
vpslld(xmm4, t, 1, Assembler::AVX_128bit);
|
|
|
|
vpslldq(xmm3, xmm3, 4, Assembler::AVX_128bit);
|
|
|
|
vpxor(t, xmm4, xmm3, Assembler::AVX_128bit);// t holds p(x) <<1 or H * 2
|
|
|
|
|
|
|
|
//Adding p(x)<<1 to xmm5 which holds the reduction polynomial
|
|
|
|
vpxor(t, t, xmm5, Assembler::AVX_128bit);
|
|
|
|
movdqu(Address(htbl, 1 * 16), t); // H * 2
|
|
|
|
|
|
|
|
ret(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This method takes the subkey after expansion as input and generates the remaining powers of subkey H.
|
|
|
|
// The power of H is used in reduction process for eight block ghash
|
|
|
|
void MacroAssembler::generateHtbl_eight_blocks(Register htbl) {
|
|
|
|
const XMMRegister t = xmm13;
|
|
|
|
const XMMRegister tmp0 = xmm1;
|
|
|
|
Label GFMUL;
|
|
|
|
|
|
|
|
movdqu(t, Address(htbl, 1 * 16));
|
|
|
|
movdqu(tmp0, t);
|
|
|
|
|
|
|
|
// tmp0 and t hold H. Now we compute powers of H by using GFMUL(H, H)
|
|
|
|
call(GFMUL, relocInfo::none);
|
|
|
|
movdqu(Address(htbl, 2 * 16), t); //H ^ 2 * 2
|
|
|
|
call(GFMUL, relocInfo::none);
|
|
|
|
movdqu(Address(htbl, 3 * 16), t); //H ^ 3 * 2
|
|
|
|
call(GFMUL, relocInfo::none);
|
|
|
|
movdqu(Address(htbl, 4 * 16), t); //H ^ 4 * 2
|
|
|
|
call(GFMUL, relocInfo::none);
|
|
|
|
movdqu(Address(htbl, 5 * 16), t); //H ^ 5 * 2
|
|
|
|
call(GFMUL, relocInfo::none);
|
|
|
|
movdqu(Address(htbl, 6 * 16), t); //H ^ 6 * 2
|
|
|
|
call(GFMUL, relocInfo::none);
|
|
|
|
movdqu(Address(htbl, 7 * 16), t); //H ^ 7 * 2
|
|
|
|
call(GFMUL, relocInfo::none);
|
|
|
|
movdqu(Address(htbl, 8 * 16), t); //H ^ 8 * 2
|
|
|
|
ret(0);
|
|
|
|
|
|
|
|
bind(GFMUL);
|
|
|
|
gfmul(tmp0, t);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Multiblock and single block GHASH computation using Shift XOR reduction technique
|
|
|
|
void MacroAssembler::avx_ghash(Register input_state, Register htbl,
|
|
|
|
Register input_data, Register blocks) {
|
|
|
|
|
|
|
|
// temporary variables to hold input data and input state
|
|
|
|
const XMMRegister data = xmm1;
|
|
|
|
const XMMRegister state = xmm0;
|
|
|
|
// temporary variables to hold intermediate results
|
|
|
|
const XMMRegister tmp0 = xmm3;
|
|
|
|
const XMMRegister tmp1 = xmm4;
|
|
|
|
const XMMRegister tmp2 = xmm5;
|
|
|
|
const XMMRegister tmp3 = xmm6;
|
|
|
|
// temporary variables to hold byte and long swap masks
|
|
|
|
const XMMRegister bswap_mask = xmm2;
|
|
|
|
const XMMRegister lswap_mask = xmm14;
|
|
|
|
|
|
|
|
Label GENERATE_HTBL_1_BLK, GENERATE_HTBL_8_BLKS, BEGIN_PROCESS, GFMUL, BLOCK8_REDUCTION,
|
|
|
|
ONE_BLK_INIT, PROCESS_1_BLOCK, PROCESS_8_BLOCKS, SAVE_STATE, EXIT_GHASH;
|
|
|
|
|
|
|
|
testptr(blocks, blocks);
|
|
|
|
jcc(Assembler::zero, EXIT_GHASH);
|
|
|
|
|
|
|
|
// Check if Hashtable (1*16) has been already generated
|
|
|
|
// For anything less than 8 blocks, we generate only the first power of H.
|
|
|
|
movdqu(tmp2, Address(htbl, 1 * 16));
|
|
|
|
ptest(tmp2, tmp2);
|
|
|
|
jcc(Assembler::notZero, BEGIN_PROCESS);
|
|
|
|
call(GENERATE_HTBL_1_BLK, relocInfo::none);
|
|
|
|
|
|
|
|
// Shuffle the input state
|
|
|
|
bind(BEGIN_PROCESS);
|
|
|
|
movdqu(lswap_mask, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
|
|
|
|
movdqu(state, Address(input_state, 0));
|
|
|
|
vpshufb(state, state, lswap_mask, Assembler::AVX_128bit);
|
|
|
|
|
|
|
|
cmpl(blocks, 8);
|
|
|
|
jcc(Assembler::below, ONE_BLK_INIT);
|
|
|
|
// If we have 8 blocks or more data, then generate remaining powers of H
|
|
|
|
movdqu(tmp2, Address(htbl, 8 * 16));
|
|
|
|
ptest(tmp2, tmp2);
|
|
|
|
jcc(Assembler::notZero, PROCESS_8_BLOCKS);
|
|
|
|
call(GENERATE_HTBL_8_BLKS, relocInfo::none);
|
|
|
|
|
|
|
|
//Do 8 multiplies followed by a reduction processing 8 blocks of data at a time
|
|
|
|
//Each block = 16 bytes.
|
|
|
|
bind(PROCESS_8_BLOCKS);
|
|
|
|
subl(blocks, 8);
|
|
|
|
movdqu(bswap_mask, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
|
|
|
|
movdqu(data, Address(input_data, 16 * 7));
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
//Loading 1*16 as calculated powers of H required starts at that location.
|
|
|
|
movdqu(xmm15, Address(htbl, 1 * 16));
|
|
|
|
//Perform carryless multiplication of (H*2, data block #7)
|
|
|
|
vpclmulhqlqdq(tmp2, data, xmm15);//a0 * b1
|
|
|
|
vpclmulldq(tmp0, data, xmm15);//a0 * b0
|
|
|
|
vpclmulhdq(tmp1, data, xmm15);//a1 * b1
|
|
|
|
vpclmullqhqdq(tmp3, data, xmm15);//a1* b0
|
|
|
|
vpxor(tmp2, tmp2, tmp3, Assembler::AVX_128bit);// (a0 * b1) + (a1 * b0)
|
|
|
|
|
|
|
|
movdqu(data, Address(input_data, 16 * 6));
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
// Perform carryless multiplication of (H^2 * 2, data block #6)
|
|
|
|
schoolbookAAD(2, htbl, data, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
|
|
|
|
movdqu(data, Address(input_data, 16 * 5));
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
// Perform carryless multiplication of (H^3 * 2, data block #5)
|
|
|
|
schoolbookAAD(3, htbl, data, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
movdqu(data, Address(input_data, 16 * 4));
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
// Perform carryless multiplication of (H^4 * 2, data block #4)
|
|
|
|
schoolbookAAD(4, htbl, data, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
movdqu(data, Address(input_data, 16 * 3));
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
// Perform carryless multiplication of (H^5 * 2, data block #3)
|
|
|
|
schoolbookAAD(5, htbl, data, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
movdqu(data, Address(input_data, 16 * 2));
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
// Perform carryless multiplication of (H^6 * 2, data block #2)
|
|
|
|
schoolbookAAD(6, htbl, data, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
movdqu(data, Address(input_data, 16 * 1));
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
// Perform carryless multiplication of (H^7 * 2, data block #1)
|
|
|
|
schoolbookAAD(7, htbl, data, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
movdqu(data, Address(input_data, 16 * 0));
|
|
|
|
// xor data block#0 with input state before perfoming carry-less multiplication
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
vpxor(data, data, state, Assembler::AVX_128bit);
|
|
|
|
// Perform carryless multiplication of (H^8 * 2, data block #0)
|
|
|
|
schoolbookAAD(8, htbl, data, tmp0, tmp1, tmp2, tmp3);
|
|
|
|
vpslldq(tmp3, tmp2, 8, Assembler::AVX_128bit);
|
|
|
|
vpsrldq(tmp2, tmp2, 8, Assembler::AVX_128bit);
|
|
|
|
vpxor(tmp0, tmp0, tmp3, Assembler::AVX_128bit);// tmp0, tmp1 contains aggregated results of
|
|
|
|
vpxor(tmp1, tmp1, tmp2, Assembler::AVX_128bit);// the multiplication operation
|
|
|
|
|
|
|
|
// we have the 2 128-bit partially accumulated multiplication results in tmp0:tmp1
|
|
|
|
// with higher 128-bit in tmp1 and lower 128-bit in corresponding tmp0
|
|
|
|
// Follows the reduction technique mentioned in
|
|
|
|
// Shift-XOR reduction described in Gueron-Kounavis May 2010
|
|
|
|
bind(BLOCK8_REDUCTION);
|
|
|
|
// First Phase of the reduction
|
|
|
|
vpslld(xmm8, tmp0, 31, Assembler::AVX_128bit); // packed right shifting << 31
|
|
|
|
vpslld(xmm9, tmp0, 30, Assembler::AVX_128bit); // packed right shifting << 30
|
|
|
|
vpslld(xmm10, tmp0, 25, Assembler::AVX_128bit); // packed right shifting << 25
|
|
|
|
// xor the shifted versions
|
|
|
|
vpxor(xmm8, xmm8, xmm10, Assembler::AVX_128bit);
|
|
|
|
vpxor(xmm8, xmm8, xmm9, Assembler::AVX_128bit);
|
|
|
|
|
|
|
|
vpslldq(xmm9, xmm8, 12, Assembler::AVX_128bit);
|
|
|
|
vpsrldq(xmm8, xmm8, 4, Assembler::AVX_128bit);
|
|
|
|
|
|
|
|
vpxor(tmp0, tmp0, xmm9, Assembler::AVX_128bit); // first phase of reduction is complete
|
|
|
|
// second phase of the reduction
|
|
|
|
vpsrld(xmm9, tmp0, 1, Assembler::AVX_128bit); // packed left shifting >> 1
|
|
|
|
vpsrld(xmm10, tmp0, 2, Assembler::AVX_128bit); // packed left shifting >> 2
|
|
|
|
vpsrld(tmp2, tmp0, 7, Assembler::AVX_128bit); // packed left shifting >> 7
|
|
|
|
// xor the shifted versions
|
|
|
|
vpxor(xmm9, xmm9, xmm10, Assembler::AVX_128bit);
|
|
|
|
vpxor(xmm9, xmm9, tmp2, Assembler::AVX_128bit);
|
|
|
|
vpxor(xmm9, xmm9, xmm8, Assembler::AVX_128bit);
|
|
|
|
vpxor(tmp0, xmm9, tmp0, Assembler::AVX_128bit);
|
|
|
|
// Final result is in state
|
|
|
|
vpxor(state, tmp0, tmp1, Assembler::AVX_128bit);
|
|
|
|
|
|
|
|
lea(input_data, Address(input_data, 16 * 8));
|
|
|
|
cmpl(blocks, 8);
|
|
|
|
jcc(Assembler::below, ONE_BLK_INIT);
|
|
|
|
jmp(PROCESS_8_BLOCKS);
|
|
|
|
|
|
|
|
// Since this is one block operation we will only use H * 2 i.e. the first power of H
|
|
|
|
bind(ONE_BLK_INIT);
|
|
|
|
movdqu(tmp0, Address(htbl, 1 * 16));
|
|
|
|
movdqu(bswap_mask, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
|
|
|
|
|
|
|
|
//Do one (128 bit x 128 bit) carry-less multiplication at a time followed by a reduction.
|
|
|
|
bind(PROCESS_1_BLOCK);
|
|
|
|
cmpl(blocks, 0);
|
|
|
|
jcc(Assembler::equal, SAVE_STATE);
|
|
|
|
subl(blocks, 1);
|
|
|
|
movdqu(data, Address(input_data, 0));
|
|
|
|
vpshufb(data, data, bswap_mask, Assembler::AVX_128bit);
|
|
|
|
vpxor(state, state, data, Assembler::AVX_128bit);
|
|
|
|
// gfmul(H*2, state)
|
|
|
|
call(GFMUL, relocInfo::none);
|
|
|
|
addptr(input_data, 16);
|
|
|
|
jmp(PROCESS_1_BLOCK);
|
|
|
|
|
|
|
|
bind(SAVE_STATE);
|
|
|
|
vpshufb(state, state, lswap_mask, Assembler::AVX_128bit);
|
|
|
|
movdqu(Address(input_state, 0), state);
|
|
|
|
jmp(EXIT_GHASH);
|
|
|
|
|
|
|
|
bind(GFMUL);
|
|
|
|
gfmul(tmp0, state);
|
|
|
|
|
|
|
|
bind(GENERATE_HTBL_1_BLK);
|
|
|
|
generateHtbl_one_block(htbl);
|
|
|
|
|
|
|
|
bind(GENERATE_HTBL_8_BLKS);
|
|
|
|
generateHtbl_eight_blocks(htbl);
|
|
|
|
|
|
|
|
bind(EXIT_GHASH);
|
|
|
|
// zero out xmm registers used for Htbl storage
|
|
|
|
vpxor(xmm0, xmm0, xmm0, Assembler::AVX_128bit);
|
|
|
|
vpxor(xmm1, xmm1, xmm1, Assembler::AVX_128bit);
|
|
|
|
vpxor(xmm3, xmm3, xmm3, Assembler::AVX_128bit);
|
|
|
|
vpxor(xmm15, xmm15, xmm15, Assembler::AVX_128bit);
|
2018-12-13 16:14:07 +01:00
|
|
|
}
|
|
|
|
#endif // _LP64
|