jdk-24/src/hotspot/share/gc/g1/g1CollectionSet.cpp

701 lines
26 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1CollectionSet.hpp"
#include "gc/g1/g1CollectionSetCandidates.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1ParScanThreadState.hpp"
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/heapRegionSet.hpp"
#include "logging/logStream.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/quickSort.hpp"
G1CollectorState* G1CollectionSet::collector_state() {
return _g1h->collector_state();
}
G1GCPhaseTimes* G1CollectionSet::phase_times() {
return _policy->phase_times();
}
double G1CollectionSet::predict_region_elapsed_time_ms(HeapRegion* hr) {
return _policy->predict_region_elapsed_time_ms(hr, collector_state()->in_young_only_phase());
}
G1CollectionSet::G1CollectionSet(G1CollectedHeap* g1h, G1Policy* policy) :
_g1h(g1h),
_policy(policy),
_candidates(NULL),
_eden_region_length(0),
_survivor_region_length(0),
_old_region_length(0),
_collection_set_regions(NULL),
_collection_set_cur_length(0),
_collection_set_max_length(0),
_optional_regions(NULL),
_optional_region_length(0),
_optional_region_max_length(0),
_bytes_used_before(0),
_recorded_rs_lengths(0),
_inc_build_state(Inactive),
_inc_bytes_used_before(0),
_inc_recorded_rs_lengths(0),
_inc_recorded_rs_lengths_diffs(0),
_inc_predicted_elapsed_time_ms(0.0),
_inc_predicted_elapsed_time_ms_diffs(0.0) {
}
G1CollectionSet::~G1CollectionSet() {
if (_collection_set_regions != NULL) {
FREE_C_HEAP_ARRAY(uint, _collection_set_regions);
}
free_optional_regions();
clear_candidates();
}
void G1CollectionSet::init_region_lengths(uint eden_cset_region_length,
uint survivor_cset_region_length) {
assert_at_safepoint_on_vm_thread();
_eden_region_length = eden_cset_region_length;
_survivor_region_length = survivor_cset_region_length;
assert((size_t) young_region_length() == _collection_set_cur_length,
"Young region length %u should match collection set length " SIZE_FORMAT, young_region_length(), _collection_set_cur_length);
_old_region_length = 0;
_optional_region_length = 0;
}
void G1CollectionSet::initialize(uint max_region_length) {
guarantee(_collection_set_regions == NULL, "Must only initialize once.");
_collection_set_max_length = max_region_length;
_collection_set_regions = NEW_C_HEAP_ARRAY(uint, max_region_length, mtGC);
}
void G1CollectionSet::initialize_optional(uint max_length) {
assert(_optional_regions == NULL, "Already initialized");
assert(_optional_region_length == 0, "Already initialized");
assert(_optional_region_max_length == 0, "Already initialized");
_optional_region_max_length = max_length;
_optional_regions = NEW_C_HEAP_ARRAY(HeapRegion*, _optional_region_max_length, mtGC);
}
void G1CollectionSet::free_optional_regions() {
_optional_region_length = 0;
_optional_region_max_length = 0;
if (_optional_regions != NULL) {
FREE_C_HEAP_ARRAY(HeapRegion*, _optional_regions);
_optional_regions = NULL;
}
}
void G1CollectionSet::clear_candidates() {
delete _candidates;
_candidates = NULL;
}
void G1CollectionSet::set_recorded_rs_lengths(size_t rs_lengths) {
_recorded_rs_lengths = rs_lengths;
}
// Add the heap region at the head of the non-incremental collection set
void G1CollectionSet::add_old_region(HeapRegion* hr) {
assert_at_safepoint_on_vm_thread();
assert(_inc_build_state == Active || hr->index_in_opt_cset() != G1OptionalCSet::InvalidCSetIndex,
"Precondition, actively building cset or adding optional later on");
assert(hr->is_old(), "the region should be old");
assert(!hr->in_collection_set(), "should not already be in the CSet");
_g1h->register_old_region_with_cset(hr);
_collection_set_regions[_collection_set_cur_length++] = hr->hrm_index();
assert(_collection_set_cur_length <= _collection_set_max_length, "Collection set now larger than maximum size.");
_bytes_used_before += hr->used();
size_t rs_length = hr->rem_set()->occupied();
_recorded_rs_lengths += rs_length;
_old_region_length += 1;
log_trace(gc, cset)("Added old region %d to collection set", hr->hrm_index());
}
void G1CollectionSet::add_optional_region(HeapRegion* hr) {
assert(!optional_is_full(), "Precondition, must have room left for this region");
assert(hr->is_old(), "the region should be old");
assert(!hr->in_collection_set(), "should not already be in the CSet");
_g1h->register_optional_region_with_cset(hr);
_optional_regions[_optional_region_length] = hr;
uint index = _optional_region_length++;
hr->set_index_in_opt_cset(index);
log_trace(gc, cset)("Added region %d to optional collection set (%u)", hr->hrm_index(), _optional_region_length);
}
// Initialize the per-collection-set information
void G1CollectionSet::start_incremental_building() {
assert(_collection_set_cur_length == 0, "Collection set must be empty before starting a new collection set.");
assert(_inc_build_state == Inactive, "Precondition");
_inc_bytes_used_before = 0;
_inc_recorded_rs_lengths = 0;
_inc_recorded_rs_lengths_diffs = 0;
_inc_predicted_elapsed_time_ms = 0.0;
_inc_predicted_elapsed_time_ms_diffs = 0.0;
_inc_build_state = Active;
}
void G1CollectionSet::finalize_incremental_building() {
assert(_inc_build_state == Active, "Precondition");
assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
// The two "main" fields, _inc_recorded_rs_lengths and
// _inc_predicted_elapsed_time_ms, are updated by the thread
// that adds a new region to the CSet. Further updates by the
// concurrent refinement thread that samples the young RSet lengths
// are accumulated in the *_diffs fields. Here we add the diffs to
// the "main" fields.
if (_inc_recorded_rs_lengths_diffs >= 0) {
_inc_recorded_rs_lengths += _inc_recorded_rs_lengths_diffs;
} else {
// This is defensive. The diff should in theory be always positive
// as RSets can only grow between GCs. However, given that we
// sample their size concurrently with other threads updating them
// it's possible that we might get the wrong size back, which
// could make the calculations somewhat inaccurate.
size_t diffs = (size_t) (-_inc_recorded_rs_lengths_diffs);
if (_inc_recorded_rs_lengths >= diffs) {
_inc_recorded_rs_lengths -= diffs;
} else {
_inc_recorded_rs_lengths = 0;
}
}
_inc_predicted_elapsed_time_ms += _inc_predicted_elapsed_time_ms_diffs;
_inc_recorded_rs_lengths_diffs = 0;
_inc_predicted_elapsed_time_ms_diffs = 0.0;
}
void G1CollectionSet::clear() {
assert_at_safepoint_on_vm_thread();
_collection_set_cur_length = 0;
_optional_region_length = 0;
}
void G1CollectionSet::iterate(HeapRegionClosure* cl) const {
iterate_from(cl, 0, 1);
}
void G1CollectionSet::iterate_from(HeapRegionClosure* cl, uint worker_id, uint total_workers) const {
size_t len = _collection_set_cur_length;
OrderAccess::loadload();
if (len == 0) {
return;
}
size_t start_pos = (worker_id * len) / total_workers;
size_t cur_pos = start_pos;
do {
HeapRegion* r = _g1h->region_at(_collection_set_regions[cur_pos]);
bool result = cl->do_heap_region(r);
if (result) {
cl->set_incomplete();
return;
}
cur_pos++;
if (cur_pos == len) {
cur_pos = 0;
}
} while (cur_pos != start_pos);
}
void G1CollectionSet::update_young_region_prediction(HeapRegion* hr,
size_t new_rs_length) {
// Update the CSet information that is dependent on the new RS length
assert(hr->is_young(), "Precondition");
assert(!SafepointSynchronize::is_at_safepoint(), "should not be at a safepoint");
// We could have updated _inc_recorded_rs_lengths and
// _inc_predicted_elapsed_time_ms directly but we'd need to do
// that atomically, as this code is executed by a concurrent
// refinement thread, potentially concurrently with a mutator thread
// allocating a new region and also updating the same fields. To
// avoid the atomic operations we accumulate these updates on two
// separate fields (*_diffs) and we'll just add them to the "main"
// fields at the start of a GC.
ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
_inc_recorded_rs_lengths_diffs += rs_lengths_diff;
double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr);
double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
_inc_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
hr->set_recorded_rs_length(new_rs_length);
hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
}
void G1CollectionSet::add_young_region_common(HeapRegion* hr) {
assert(hr->is_young(), "invariant");
assert(_inc_build_state == Active, "Precondition");
size_t collection_set_length = _collection_set_cur_length;
assert(collection_set_length <= INT_MAX, "Collection set is too large with %d entries", (int)collection_set_length);
hr->set_young_index_in_cset((int)collection_set_length);
_collection_set_regions[collection_set_length] = hr->hrm_index();
// Concurrent readers must observe the store of the value in the array before an
// update to the length field.
OrderAccess::storestore();
_collection_set_cur_length++;
assert(_collection_set_cur_length <= _collection_set_max_length, "Collection set larger than maximum allowed.");
// This routine is used when:
// * adding survivor regions to the incremental cset at the end of an
// evacuation pause or
// * adding the current allocation region to the incremental cset
// when it is retired.
// Therefore this routine may be called at a safepoint by the
// VM thread, or in-between safepoints by mutator threads (when
// retiring the current allocation region)
// We need to clear and set the cached recorded/cached collection set
// information in the heap region here (before the region gets added
// to the collection set). An individual heap region's cached values
// are calculated, aggregated with the policy collection set info,
// and cached in the heap region here (initially) and (subsequently)
// by the Young List sampling code.
// Ignore calls to this due to retirement during full gc.
if (!_g1h->collector_state()->in_full_gc()) {
size_t rs_length = hr->rem_set()->occupied();
double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr);
// Cache the values we have added to the aggregated information
// in the heap region in case we have to remove this region from
// the incremental collection set, or it is updated by the
// rset sampling code
hr->set_recorded_rs_length(rs_length);
hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
_inc_recorded_rs_lengths += rs_length;
_inc_predicted_elapsed_time_ms += region_elapsed_time_ms;
_inc_bytes_used_before += hr->used();
}
assert(!hr->in_collection_set(), "invariant");
_g1h->register_young_region_with_cset(hr);
}
void G1CollectionSet::add_survivor_regions(HeapRegion* hr) {
assert(hr->is_survivor(), "Must only add survivor regions, but is %s", hr->get_type_str());
add_young_region_common(hr);
}
void G1CollectionSet::add_eden_region(HeapRegion* hr) {
assert(hr->is_eden(), "Must only add eden regions, but is %s", hr->get_type_str());
add_young_region_common(hr);
}
#ifndef PRODUCT
class G1VerifyYoungAgesClosure : public HeapRegionClosure {
public:
bool _valid;
public:
G1VerifyYoungAgesClosure() : HeapRegionClosure(), _valid(true) { }
virtual bool do_heap_region(HeapRegion* r) {
guarantee(r->is_young(), "Region must be young but is %s", r->get_type_str());
SurvRateGroup* group = r->surv_rate_group();
if (group == NULL) {
log_error(gc, verify)("## encountered NULL surv_rate_group in young region");
_valid = false;
}
if (r->age_in_surv_rate_group() < 0) {
log_error(gc, verify)("## encountered negative age in young region");
_valid = false;
}
return false;
}
bool valid() const { return _valid; }
};
bool G1CollectionSet::verify_young_ages() {
assert_at_safepoint_on_vm_thread();
G1VerifyYoungAgesClosure cl;
iterate(&cl);
if (!cl.valid()) {
LogStreamHandle(Error, gc, verify) log;
print(&log);
}
return cl.valid();
}
class G1PrintCollectionSetDetailClosure : public HeapRegionClosure {
outputStream* _st;
public:
G1PrintCollectionSetDetailClosure(outputStream* st) : HeapRegionClosure(), _st(st) { }
virtual bool do_heap_region(HeapRegion* r) {
assert(r->in_collection_set(), "Region %u should be in collection set", r->hrm_index());
_st->print_cr(" " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
HR_FORMAT_PARAMS(r),
p2i(r->prev_top_at_mark_start()),
p2i(r->next_top_at_mark_start()),
r->age_in_surv_rate_group_cond());
return false;
}
};
void G1CollectionSet::print(outputStream* st) {
st->print_cr("\nCollection_set:");
G1PrintCollectionSetDetailClosure cl(st);
iterate(&cl);
}
#endif // !PRODUCT
double G1CollectionSet::finalize_young_part(double target_pause_time_ms, G1SurvivorRegions* survivors) {
double young_start_time_sec = os::elapsedTime();
finalize_incremental_building();
guarantee(target_pause_time_ms > 0.0,
"target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
size_t pending_cards = _policy->pending_cards();
double base_time_ms = _policy->predict_base_elapsed_time_ms(pending_cards);
double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
// The young list is laid with the survivor regions from the previous
// pause are appended to the RHS of the young list, i.e.
// [Newly Young Regions ++ Survivors from last pause].
uint survivor_region_length = survivors->length();
uint eden_region_length = _g1h->eden_regions_count();
init_region_lengths(eden_region_length, survivor_region_length);
verify_young_cset_indices();
// Clear the fields that point to the survivor list - they are all young now.
survivors->convert_to_eden();
_bytes_used_before = _inc_bytes_used_before;
time_remaining_ms = MAX2(time_remaining_ms - _inc_predicted_elapsed_time_ms, 0.0);
log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
eden_region_length, survivor_region_length, _inc_predicted_elapsed_time_ms, target_pause_time_ms);
// The number of recorded young regions is the incremental
// collection set's current size
set_recorded_rs_lengths(_inc_recorded_rs_lengths);
double young_end_time_sec = os::elapsedTime();
phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
return time_remaining_ms;
}
void G1CollectionSet::add_as_old(HeapRegion* hr) {
candidates()->pop_front(); // already have region via peek()
_g1h->old_set_remove(hr);
add_old_region(hr);
}
void G1CollectionSet::add_as_optional(HeapRegion* hr) {
assert(_optional_regions != NULL, "Must not be called before array is allocated");
candidates()->pop_front(); // already have region via peek()
_g1h->old_set_remove(hr);
add_optional_region(hr);
}
bool G1CollectionSet::optional_is_full() {
assert(_optional_region_length <= _optional_region_max_length, "Invariant");
return _optional_region_length == _optional_region_max_length;
}
void G1CollectionSet::clear_optional_region(const HeapRegion* hr) {
assert(_optional_regions != NULL, "Must not be called before array is allocated");
uint index = hr->index_in_opt_cset();
_optional_regions[index] = NULL;
}
static int compare_region_idx(const uint a, const uint b) {
if (a > b) {
return 1;
} else if (a == b) {
return 0;
} else {
return -1;
}
}
void G1CollectionSet::finalize_old_part(double time_remaining_ms) {
double non_young_start_time_sec = os::elapsedTime();
double predicted_old_time_ms = 0.0;
double predicted_optional_time_ms = 0.0;
double optional_threshold_ms = time_remaining_ms * _policy->optional_prediction_fraction();
uint expensive_region_num = 0;
if (collector_state()->in_mixed_phase()) {
candidates()->verify();
const uint min_old_cset_length = _policy->calc_min_old_cset_length();
const uint max_old_cset_length = MAX2(min_old_cset_length, _policy->calc_max_old_cset_length());
bool check_time_remaining = _policy->adaptive_young_list_length();
initialize_optional(max_old_cset_length - min_old_cset_length);
log_debug(gc, ergo, cset)("Start adding old regions for mixed gc. min %u regions, max %u regions, "
"time remaining %1.2fms, optional threshold %1.2fms",
min_old_cset_length, max_old_cset_length, time_remaining_ms, optional_threshold_ms);
HeapRegion* hr = candidates()->peek_front();
while (hr != NULL) {
if (old_region_length() + optional_region_length() >= max_old_cset_length) {
// Added maximum number of old regions to the CSet.
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). "
"old %u regions, optional %u regions",
old_region_length(), optional_region_length());
break;
}
// Stop adding regions if the remaining reclaimable space is
// not above G1HeapWastePercent.
size_t reclaimable_bytes = candidates()->remaining_reclaimable_bytes();
double reclaimable_percent = _policy->reclaimable_bytes_percent(reclaimable_bytes);
double threshold = (double) G1HeapWastePercent;
if (reclaimable_percent <= threshold) {
// We've added enough old regions that the amount of uncollected
// reclaimable space is at or below the waste threshold. Stop
// adding old regions to the CSet.
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
"reclaimable: " SIZE_FORMAT "%s (%1.2f%%) threshold: " UINTX_FORMAT "%%",
byte_size_in_proper_unit(reclaimable_bytes), proper_unit_for_byte_size(reclaimable_bytes),
reclaimable_percent, G1HeapWastePercent);
break;
}
double predicted_time_ms = predict_region_elapsed_time_ms(hr);
time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
// Add regions to old set until we reach minimum amount
if (old_region_length() < min_old_cset_length) {
predicted_old_time_ms += predicted_time_ms;
add_as_old(hr);
// Record the number of regions added when no time remaining
if (time_remaining_ms == 0.0) {
expensive_region_num++;
}
} else {
// In the non-auto-tuning case, we'll finish adding regions
// to the CSet if we reach the minimum.
if (!check_time_remaining) {
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min).");
break;
}
// Keep adding regions to old set until we reach optional threshold
if (time_remaining_ms > optional_threshold_ms) {
predicted_old_time_ms += predicted_time_ms;
add_as_old(hr);
} else if (time_remaining_ms > 0) {
// Keep adding optional regions until time is up
if (!optional_is_full()) {
predicted_optional_time_ms += predicted_time_ms;
add_as_optional(hr);
} else {
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (optional set full).");
break;
}
} else {
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high).");
break;
}
}
hr = candidates()->peek_front();
}
if (hr == NULL) {
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
}
candidates()->verify();
}
stop_incremental_building();
log_debug(gc, ergo, cset)("Finish choosing CSet regions old: %u, optional: %u, "
"predicted old time: %1.2fms, predicted optional time: %1.2fms, time remaining: %1.2f",
old_region_length(), optional_region_length(),
predicted_old_time_ms, predicted_optional_time_ms, time_remaining_ms);
if (expensive_region_num > 0) {
log_debug(gc, ergo, cset)("CSet contains %u old regions that were added although the predicted time was too high.",
expensive_region_num);
}
double non_young_end_time_sec = os::elapsedTime();
phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
QuickSort::sort(_collection_set_regions, _collection_set_cur_length, compare_region_idx, true);
}
HeapRegion* G1OptionalCSet::region_at(uint index) {
return _cset->optional_region_at(index);
}
void G1OptionalCSet::prepare_evacuation(double time_limit) {
assert(_current_index == _current_limit, "Before prepare no regions should be ready for evac");
uint prepared_regions = 0;
double prediction_ms = 0;
_prepare_failed = true;
for (uint i = _current_index; i < _cset->optional_region_length(); i++) {
HeapRegion* hr = region_at(i);
prediction_ms += _cset->predict_region_elapsed_time_ms(hr);
if (prediction_ms > time_limit) {
log_debug(gc, cset)("Prepared %u regions for optional evacuation. Predicted time: %.3fms", prepared_regions, prediction_ms);
return;
}
// This region will be included in the next optional evacuation.
prepare_to_evacuate_optional_region(hr);
prepared_regions++;
_current_limit++;
_prepare_failed = false;
}
log_debug(gc, cset)("Prepared all %u regions for optional evacuation. Predicted time: %.3fms",
prepared_regions, prediction_ms);
}
bool G1OptionalCSet::prepare_failed() {
return _prepare_failed;
}
void G1OptionalCSet::complete_evacuation() {
_evacuation_failed = false;
for (uint i = _current_index; i < _current_limit; i++) {
HeapRegion* hr = region_at(i);
_cset->clear_optional_region(hr);
if (hr->evacuation_failed()){
_evacuation_failed = true;
}
}
_current_index = _current_limit;
}
bool G1OptionalCSet::evacuation_failed() {
return _evacuation_failed;
}
G1OptionalCSet::~G1OptionalCSet() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
while (!is_empty()) {
// We want to return regions not evacuated to the collection set candidates
// in reverse order to maintain the old order.
HeapRegion* hr = _cset->remove_last_optional_region();
assert(hr != NULL, "Should be valid region left");
_pset->record_unused_optional_region(hr);
g1h->old_set_add(hr);
g1h->clear_in_cset(hr);
hr->set_index_in_opt_cset(InvalidCSetIndex);
_cset->candidates()->push_front(hr);
}
_cset->free_optional_regions();
}
uint G1OptionalCSet::size() {
return _cset->optional_region_length() - _current_index;
}
bool G1OptionalCSet::is_empty() {
return size() == 0;
}
void G1OptionalCSet::prepare_to_evacuate_optional_region(HeapRegion* hr) {
log_trace(gc, cset)("Adding region %u for optional evacuation", hr->hrm_index());
G1CollectedHeap::heap()->clear_in_cset(hr);
_cset->add_old_region(hr);
}
#ifdef ASSERT
class G1VerifyYoungCSetIndicesClosure : public HeapRegionClosure {
private:
size_t _young_length;
int* _heap_region_indices;
public:
G1VerifyYoungCSetIndicesClosure(size_t young_length) : HeapRegionClosure(), _young_length(young_length) {
_heap_region_indices = NEW_C_HEAP_ARRAY(int, young_length, mtGC);
for (size_t i = 0; i < young_length; i++) {
_heap_region_indices[i] = -1;
}
}
~G1VerifyYoungCSetIndicesClosure() {
FREE_C_HEAP_ARRAY(int, _heap_region_indices);
}
virtual bool do_heap_region(HeapRegion* r) {
const int idx = r->young_index_in_cset();
assert(idx > -1, "Young index must be set for all regions in the incremental collection set but is not for region %u.", r->hrm_index());
assert((size_t)idx < _young_length, "Young cset index too large for region %u", r->hrm_index());
assert(_heap_region_indices[idx] == -1,
"Index %d used by multiple regions, first use by region %u, second by region %u",
idx, _heap_region_indices[idx], r->hrm_index());
_heap_region_indices[idx] = r->hrm_index();
return false;
}
};
void G1CollectionSet::verify_young_cset_indices() const {
assert_at_safepoint_on_vm_thread();
G1VerifyYoungCSetIndicesClosure cl(_collection_set_cur_length);
iterate(&cl);
}
#endif