4851777: Add BigDecimal sqrt method
Reviewed-by: bpb
This commit is contained in:
parent
8c58aff49d
commit
4045a8be07
@ -128,6 +128,7 @@ import java.util.Arrays;
|
||||
* <tr><td>Subtract</td><td>max(minuend.scale(), subtrahend.scale())</td>
|
||||
* <tr><td>Multiply</td><td>multiplier.scale() + multiplicand.scale()</td>
|
||||
* <tr><td>Divide</td><td>dividend.scale() - divisor.scale()</td>
|
||||
* <tr><td>Square root</td><td>radicand.scale()/2</td>
|
||||
* </table>
|
||||
*
|
||||
* These scales are the ones used by the methods which return exact
|
||||
@ -346,6 +347,16 @@ public class BigDecimal extends Number implements Comparable<BigDecimal> {
|
||||
public static final BigDecimal TEN =
|
||||
ZERO_THROUGH_TEN[10];
|
||||
|
||||
/**
|
||||
* The value 0.1, with a scale of 1.
|
||||
*/
|
||||
private static final BigDecimal ONE_TENTH = valueOf(1L, 1);
|
||||
|
||||
/**
|
||||
* The value 0.5, with a scale of 1.
|
||||
*/
|
||||
private static final BigDecimal ONE_HALF = valueOf(5L, 1);
|
||||
|
||||
// Constructors
|
||||
|
||||
/**
|
||||
@ -1995,6 +2006,295 @@ public class BigDecimal extends Number implements Comparable<BigDecimal> {
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an approximation to the square root of {@code this}
|
||||
* with rounding according to the context settings.
|
||||
*
|
||||
* <p>The preferred scale of the returned result is equal to
|
||||
* {@code this.scale()/2}. The value of the returned result is
|
||||
* always within one ulp of the exact decimal value for the
|
||||
* precision in question. If the rounding mode is {@link
|
||||
* RoundingMode#HALF_UP HALF_UP}, {@link RoundingMode#HALF_DOWN
|
||||
* HALF_DOWN}, or {@link RoundingMode#HALF_EVEN HALF_EVEN}, the
|
||||
* result is within one half an ulp of the exact decimal value.
|
||||
*
|
||||
* <p>Special case:
|
||||
* <ul>
|
||||
* <li> The square root of a number numerically equal to {@code
|
||||
* ZERO} is numerically equal to {@code ZERO} with a preferred
|
||||
* scale according to the general rule above. In particular, for
|
||||
* {@code ZERO}}, {@code ZERO.sqrt(mc).equals(ZERO)} is true with
|
||||
* any {@code MathContext} as an argument.
|
||||
* </ul>
|
||||
*
|
||||
* @param mc the context to use.
|
||||
* @return the square root of {@code this}.
|
||||
* @throws ArithmeticException if {@code this} is less than zero.
|
||||
* @throws ArithmeticException if an exact result is requested
|
||||
* ({@code mc.getPrecision()==0}) and there is no finite decimal
|
||||
* expansion of the exact result
|
||||
* @throws ArithmeticException if
|
||||
* {@code (mc.getRoundingMode()==RoundingMode.UNNECESSARY}) and
|
||||
* the exact result cannot fit in {@code mc.getPrecision()}
|
||||
* digits.
|
||||
* @since 9
|
||||
*/
|
||||
public BigDecimal sqrt(MathContext mc) {
|
||||
int signum = signum();
|
||||
if (signum == 1) {
|
||||
/*
|
||||
* The following code draws on the algorithm presented in
|
||||
* "Properly Rounded Variable Precision Square Root," Hull and
|
||||
* Abrham, ACM Transactions on Mathematical Software, Vol 11,
|
||||
* No. 3, September 1985, Pages 229-237.
|
||||
*
|
||||
* The BigDecimal computational model differs from the one
|
||||
* presented in the paper in several ways: first BigDecimal
|
||||
* numbers aren't necessarily normalized, second many more
|
||||
* rounding modes are supported, including UNNECESSARY, and
|
||||
* exact results can be requested.
|
||||
*
|
||||
* The main steps of the algorithm below are as follows,
|
||||
* first argument reduce the value to the numerical range
|
||||
* [1, 10) using the following relations:
|
||||
*
|
||||
* x = y * 10 ^ exp
|
||||
* sqrt(x) = sqrt(y) * 10^(exp / 2) if exp is even
|
||||
* sqrt(x) = sqrt(y/10) * 10 ^((exp+1)/2) is exp is odd
|
||||
*
|
||||
* Then use Newton's iteration on the reduced value to compute
|
||||
* the numerical digits of the desired result.
|
||||
*
|
||||
* Finally, scale back to the desired exponent range and
|
||||
* perform any adjustment to get the preferred scale in the
|
||||
* representation.
|
||||
*/
|
||||
|
||||
// The code below favors relative simplicity over checking
|
||||
// for special cases that could run faster.
|
||||
|
||||
int preferredScale = this.scale()/2;
|
||||
BigDecimal zeroWithFinalPreferredScale = valueOf(0L, preferredScale);
|
||||
|
||||
// First phase of numerical normalization, strip trailing
|
||||
// zeros and check for even powers of 10.
|
||||
BigDecimal stripped = this.stripTrailingZeros();
|
||||
int strippedScale = stripped.scale();
|
||||
|
||||
// Numerically sqrt(10^2N) = 10^N
|
||||
if (stripped.isPowerOfTen() &&
|
||||
strippedScale % 2 == 0) {
|
||||
BigDecimal result = valueOf(1L, strippedScale/2);
|
||||
if (result.scale() != preferredScale) {
|
||||
// Adjust to requested precision and preferred
|
||||
// scale as appropriate.
|
||||
result = result.add(zeroWithFinalPreferredScale, mc);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// After stripTrailingZeros, the representation is normalized as
|
||||
//
|
||||
// unscaledValue * 10^(-scale)
|
||||
//
|
||||
// where unscaledValue is an integer with the mimimum
|
||||
// precision for the cohort of the numerical value. To
|
||||
// allow binary floating-point hardware to be used to get
|
||||
// approximately a 15 digit approximation to the square
|
||||
// root, it is helpful to instead normalize this so that
|
||||
// the significand portion is to right of the decimal
|
||||
// point by roughly (scale() - precision() +1).
|
||||
|
||||
// Now the precision / scale adjustment
|
||||
int scaleAdjust = 0;
|
||||
int scale = stripped.scale() - stripped.precision() + 1;
|
||||
if (scale % 2 == 0) {
|
||||
scaleAdjust = scale;
|
||||
} else {
|
||||
scaleAdjust = scale - 1;
|
||||
}
|
||||
|
||||
BigDecimal working = stripped.scaleByPowerOfTen(scaleAdjust);
|
||||
|
||||
assert // Verify 0.1 <= working < 10
|
||||
ONE_TENTH.compareTo(working) <= 0 && working.compareTo(TEN) < 0;
|
||||
|
||||
// Use good ole' Math.sqrt to get the initial guess for
|
||||
// the Newton iteration, good to at least 15 decimal
|
||||
// digits. This approach does incur the cost of a
|
||||
//
|
||||
// BigDecimal -> double -> BigDecimal
|
||||
//
|
||||
// conversion cycle, but it avoids the need for several
|
||||
// Newton iterations in BigDecimal arithmetic to get the
|
||||
// working answer to 15 digits of precision. If many fewer
|
||||
// than 15 digits were needed, it might be faster to do
|
||||
// the loop entirely in BigDecimal arithmetic.
|
||||
//
|
||||
// (A double value might have as much many as 17 decimal
|
||||
// digits of precision; it depends on the relative density
|
||||
// of binary and decimal numbers at different regions of
|
||||
// the number line.)
|
||||
//
|
||||
// (It would be possible to check for certain special
|
||||
// cases to avoid doing any Newton iterations. For
|
||||
// example, if the BigDecimal -> double conversion was
|
||||
// known to be exact and the rounding mode had a
|
||||
// low-enough precision, the post-Newton rounding logic
|
||||
// could be applied directly.)
|
||||
|
||||
BigDecimal guess = new BigDecimal(Math.sqrt(working.doubleValue()));
|
||||
int guessPrecision = 15;
|
||||
int originalPrecision = mc.getPrecision();
|
||||
int targetPrecision;
|
||||
|
||||
// If an exact value is requested, it must only need about
|
||||
// half of the input digits to represent since multiplying
|
||||
// an N digit number by itself yield a 2N-1 digit or 2N
|
||||
// digit result.
|
||||
if (originalPrecision == 0) {
|
||||
targetPrecision = stripped.precision()/2 + 1;
|
||||
} else {
|
||||
targetPrecision = originalPrecision;
|
||||
}
|
||||
|
||||
// When setting the precision to use inside the Newton
|
||||
// iteration loop, take care to avoid the case where the
|
||||
// precision of the input exceeds the requested precision
|
||||
// and rounding the input value too soon.
|
||||
BigDecimal approx = guess;
|
||||
int workingPrecision = working.precision();
|
||||
do {
|
||||
int tmpPrecision = Math.max(Math.max(guessPrecision, targetPrecision + 2),
|
||||
workingPrecision);
|
||||
MathContext mcTmp = new MathContext(tmpPrecision, RoundingMode.HALF_EVEN);
|
||||
// approx = 0.5 * (approx + fraction / approx)
|
||||
approx = ONE_HALF.multiply(approx.add(working.divide(approx, mcTmp), mcTmp));
|
||||
guessPrecision *= 2;
|
||||
} while (guessPrecision < targetPrecision + 2);
|
||||
|
||||
BigDecimal result;
|
||||
RoundingMode targetRm = mc.getRoundingMode();
|
||||
if (targetRm == RoundingMode.UNNECESSARY || originalPrecision == 0) {
|
||||
RoundingMode tmpRm =
|
||||
(targetRm == RoundingMode.UNNECESSARY) ? RoundingMode.DOWN : targetRm;
|
||||
MathContext mcTmp = new MathContext(targetPrecision, tmpRm);
|
||||
result = approx.scaleByPowerOfTen(-scaleAdjust/2).round(mcTmp);
|
||||
|
||||
// If result*result != this numerically, the square
|
||||
// root isn't exact
|
||||
if (this.subtract(result.multiply(result)).compareTo(ZERO) != 0) {
|
||||
throw new ArithmeticException("Computed square root not exact.");
|
||||
}
|
||||
} else {
|
||||
result = approx.scaleByPowerOfTen(-scaleAdjust/2).round(mc);
|
||||
}
|
||||
|
||||
if (result.scale() != preferredScale) {
|
||||
// The preferred scale of an add is
|
||||
// max(addend.scale(), augend.scale()). Therefore, if
|
||||
// the scale of the result is first minimized using
|
||||
// stripTrailingZeros(), adding a zero of the
|
||||
// preferred scale rounding the correct precision will
|
||||
// perform the proper scale vs precision tradeoffs.
|
||||
result = result.stripTrailingZeros().
|
||||
add(zeroWithFinalPreferredScale,
|
||||
new MathContext(originalPrecision, RoundingMode.UNNECESSARY));
|
||||
}
|
||||
assert squareRootResultAssertions(result, mc);
|
||||
return result;
|
||||
} else {
|
||||
switch (signum) {
|
||||
case -1:
|
||||
throw new ArithmeticException("Attempted square root " +
|
||||
"of negative BigDecimal");
|
||||
case 0:
|
||||
return valueOf(0L, scale()/2);
|
||||
|
||||
default:
|
||||
throw new AssertionError("Bad value from signum");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private boolean isPowerOfTen() {
|
||||
return BigInteger.ONE.equals(this.unscaledValue());
|
||||
}
|
||||
|
||||
/**
|
||||
* For nonzero values, check numerical correctness properties of
|
||||
* the computed result for the chosen rounding mode.
|
||||
*
|
||||
* For the directed roundings, for DOWN and FLOOR, result^2 must
|
||||
* be {@code <=} the input and (result+ulp)^2 must be {@code >} the
|
||||
* input. Conversely, for UP and CEIL, result^2 must be {@code >=} the
|
||||
* input and (result-ulp)^2 must be {@code <} the input.
|
||||
*/
|
||||
private boolean squareRootResultAssertions(BigDecimal result, MathContext mc) {
|
||||
if (result.signum() == 0) {
|
||||
return squareRootZeroResultAssertions(result, mc);
|
||||
} else {
|
||||
RoundingMode rm = mc.getRoundingMode();
|
||||
BigDecimal ulp = result.ulp();
|
||||
BigDecimal neighborUp = result.add(ulp);
|
||||
// Make neighbor down accurate even for powers of ten
|
||||
if (this.isPowerOfTen()) {
|
||||
ulp = ulp.divide(TEN);
|
||||
}
|
||||
BigDecimal neighborDown = result.subtract(ulp);
|
||||
|
||||
// Both the starting value and result should be nonzero and positive.
|
||||
if (result.signum() != 1 ||
|
||||
this.signum() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
switch (rm) {
|
||||
case DOWN:
|
||||
case FLOOR:
|
||||
return
|
||||
result.multiply(result).compareTo(this) <= 0 &&
|
||||
neighborUp.multiply(neighborUp).compareTo(this) > 0;
|
||||
|
||||
case UP:
|
||||
case CEILING:
|
||||
return
|
||||
result.multiply(result).compareTo(this) >= 0 &&
|
||||
neighborDown.multiply(neighborDown).compareTo(this) < 0;
|
||||
|
||||
case HALF_DOWN:
|
||||
case HALF_EVEN:
|
||||
case HALF_UP:
|
||||
BigDecimal err = result.multiply(result).subtract(this).abs();
|
||||
BigDecimal errUp = neighborUp.multiply(neighborUp).subtract(this);
|
||||
BigDecimal errDown = this.subtract(neighborDown.multiply(neighborDown));
|
||||
// All error values should be positive so don't need to
|
||||
// compare absolute values.
|
||||
|
||||
int err_comp_errUp = err.compareTo(errUp);
|
||||
int err_comp_errDown = err.compareTo(errDown);
|
||||
|
||||
return
|
||||
errUp.signum() == 1 &&
|
||||
errDown.signum() == 1 &&
|
||||
|
||||
err_comp_errUp <= 0 &&
|
||||
err_comp_errDown <= 0 &&
|
||||
|
||||
((err_comp_errUp == 0 ) ? err_comp_errDown < 0 : true) &&
|
||||
((err_comp_errDown == 0 ) ? err_comp_errUp < 0 : true);
|
||||
// && could check for digit conditions for ties too
|
||||
|
||||
default: // Definition of UNNECESSARY already verified.
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private boolean squareRootZeroResultAssertions(BigDecimal result, MathContext mc) {
|
||||
return this.compareTo(ZERO) == 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a {@code BigDecimal} whose value is
|
||||
* <code>(this<sup>n</sup>)</code>, The power is computed exactly, to
|
||||
|
227
jdk/test/java/math/BigDecimal/SquareRootTests.java
Normal file
227
jdk/test/java/math/BigDecimal/SquareRootTests.java
Normal file
@ -0,0 +1,227 @@
|
||||
/*
|
||||
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
/*
|
||||
* @test
|
||||
* @bug 4851777
|
||||
* @summary Tests of BigDecimal.sqrt().
|
||||
*/
|
||||
|
||||
import java.math.*;
|
||||
import java.util.*;
|
||||
|
||||
public class SquareRootTests {
|
||||
|
||||
public static void main(String... args) {
|
||||
int failures = 0;
|
||||
|
||||
failures += negativeTests();
|
||||
failures += zeroTests();
|
||||
failures += evenPowersOfTenTests();
|
||||
failures += squareRootTwoTests();
|
||||
failures += lowPrecisionPerfectSquares();
|
||||
|
||||
if (failures > 0 ) {
|
||||
throw new RuntimeException("Incurred " + failures + " failures" +
|
||||
" testing BigDecimal.sqrt().");
|
||||
}
|
||||
}
|
||||
|
||||
private static int negativeTests() {
|
||||
int failures = 0;
|
||||
|
||||
for (long i = -10; i < 0; i++) {
|
||||
for (int j = -5; j < 5; j++) {
|
||||
try {
|
||||
BigDecimal input = BigDecimal.valueOf(i, j);
|
||||
BigDecimal result = input.sqrt(MathContext.DECIMAL64);
|
||||
System.err.println("Unexpected sqrt of negative: (" +
|
||||
input + ").sqrt() = " + result );
|
||||
failures += 1;
|
||||
} catch (ArithmeticException e) {
|
||||
; // Expected
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return failures;
|
||||
}
|
||||
|
||||
private static int zeroTests() {
|
||||
int failures = 0;
|
||||
|
||||
for (int i = -100; i < 100; i++) {
|
||||
BigDecimal expected = BigDecimal.valueOf(0L, i/2);
|
||||
// These results are independent of rounding mode
|
||||
failures += compare(BigDecimal.valueOf(0L, i).sqrt(MathContext.UNLIMITED),
|
||||
expected, true, "zeros");
|
||||
|
||||
failures += compare(BigDecimal.valueOf(0L, i).sqrt(MathContext.DECIMAL64),
|
||||
expected, true, "zeros");
|
||||
}
|
||||
|
||||
return failures;
|
||||
}
|
||||
|
||||
/**
|
||||
* sqrt(10^2N) is 10^N
|
||||
* Both numerical value and representation should be verified
|
||||
*/
|
||||
private static int evenPowersOfTenTests() {
|
||||
int failures = 0;
|
||||
MathContext oneDigitExactly = new MathContext(1, RoundingMode.UNNECESSARY);
|
||||
|
||||
for (int scale = -100; scale <= 100; scale++) {
|
||||
BigDecimal testValue = BigDecimal.valueOf(1, 2*scale);
|
||||
BigDecimal expectedNumericalResult = BigDecimal.valueOf(1, scale);
|
||||
|
||||
BigDecimal result;
|
||||
|
||||
|
||||
failures += equalNumerically(expectedNumericalResult,
|
||||
result = testValue.sqrt(MathContext.DECIMAL64),
|
||||
"Even powers of 10, DECIMAL64");
|
||||
|
||||
// Can round to one digit of precision exactly
|
||||
failures += equalNumerically(expectedNumericalResult,
|
||||
result = testValue.sqrt(oneDigitExactly),
|
||||
"even powers of 10, 1 digit");
|
||||
if (result.precision() > 1) {
|
||||
failures += 1;
|
||||
System.err.println("Excess precision for " + result);
|
||||
}
|
||||
|
||||
|
||||
// If rounding to more than one digit, do precision / scale checking...
|
||||
|
||||
}
|
||||
|
||||
return failures;
|
||||
}
|
||||
|
||||
private static int squareRootTwoTests() {
|
||||
int failures = 0;
|
||||
BigDecimal TWO = new BigDecimal(2);
|
||||
|
||||
// Square root of 2 truncated to 65 digits
|
||||
BigDecimal highPrecisionRoot2 =
|
||||
new BigDecimal("1.41421356237309504880168872420969807856967187537694807317667973799");
|
||||
|
||||
|
||||
RoundingMode[] modes = {
|
||||
RoundingMode.UP, RoundingMode.DOWN,
|
||||
RoundingMode.CEILING, RoundingMode.FLOOR,
|
||||
RoundingMode.HALF_UP, RoundingMode.HALF_DOWN, RoundingMode.HALF_EVEN
|
||||
};
|
||||
|
||||
// For each iteresting rounding mode, for precisions 1 to, say
|
||||
// 63 numerically compare TWO.sqrt(mc) to
|
||||
// highPrecisionRoot2.round(mc)
|
||||
|
||||
for (RoundingMode mode : modes) {
|
||||
for (int precision = 1; precision < 63; precision++) {
|
||||
MathContext mc = new MathContext(precision, mode);
|
||||
BigDecimal expected = highPrecisionRoot2.round(mc);
|
||||
BigDecimal computed = TWO.sqrt(mc);
|
||||
|
||||
equalNumerically(expected, computed, "sqrt(2)");
|
||||
}
|
||||
}
|
||||
|
||||
return failures;
|
||||
}
|
||||
|
||||
private static int lowPrecisionPerfectSquares() {
|
||||
int failures = 0;
|
||||
|
||||
// For 5^2 through 9^2, if the input is rounded to one digit
|
||||
// first before the root is computed, the wrong answer will
|
||||
// result. Verify results and scale for different rounding
|
||||
// modes and precisions.
|
||||
long[][] squaresWithOneDigitRoot = {{ 4, 2},
|
||||
{ 9, 3},
|
||||
{25, 5},
|
||||
{36, 6},
|
||||
{49, 7},
|
||||
{64, 8},
|
||||
{81, 9}};
|
||||
|
||||
for (long[] squareAndRoot : squaresWithOneDigitRoot) {
|
||||
BigDecimal square = new BigDecimal(squareAndRoot[0]);
|
||||
BigDecimal expected = new BigDecimal(squareAndRoot[1]);
|
||||
|
||||
for (int scale = 0; scale <= 4; scale++) {
|
||||
BigDecimal scaledSquare = square.setScale(scale, RoundingMode.UNNECESSARY);
|
||||
int expectedScale = scale/2;
|
||||
for (int precision = 0; precision <= 5; precision++) {
|
||||
for (RoundingMode rm : RoundingMode.values()) {
|
||||
MathContext mc = new MathContext(precision, rm);
|
||||
BigDecimal computedRoot = scaledSquare.sqrt(mc);
|
||||
failures += equalNumerically(expected, computedRoot, "simple squares");
|
||||
int computedScale = computedRoot.scale();
|
||||
if (precision >= expectedScale + 1 &&
|
||||
computedScale != expectedScale) {
|
||||
System.err.printf("%s\tprecision=%d\trm=%s%n",
|
||||
computedRoot.toString(), precision, rm);
|
||||
failures++;
|
||||
System.err.printf("\t%s does not have expected scale of %d%n.",
|
||||
computedRoot, expectedScale);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return failures;
|
||||
}
|
||||
|
||||
private static int compare(BigDecimal a, BigDecimal b, boolean expected, String prefix) {
|
||||
boolean result = a.equals(b);
|
||||
int failed = (result==expected) ? 0 : 1;
|
||||
if (failed == 1) {
|
||||
System.err.println("Testing " + prefix +
|
||||
"(" + a + ").compareTo(" + b + ") => " + result +
|
||||
"\n\tExpected " + expected);
|
||||
}
|
||||
return failed;
|
||||
}
|
||||
|
||||
private static int equalNumerically(BigDecimal a, BigDecimal b,
|
||||
String prefix) {
|
||||
return compareNumerically(a, b, 0, prefix);
|
||||
}
|
||||
|
||||
|
||||
private static int compareNumerically(BigDecimal a, BigDecimal b,
|
||||
int expected, String prefix) {
|
||||
int result = a.compareTo(b);
|
||||
int failed = (result==expected) ? 0 : 1;
|
||||
if (failed == 1) {
|
||||
System.err.println("Testing " + prefix +
|
||||
"(" + a + ").compareTo(" + b + ") => " + result +
|
||||
"\n\tExpected " + expected);
|
||||
}
|
||||
return failed;
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user