This commit is contained in:
Sean Mullan 2015-06-09 09:19:43 -04:00
commit d107e7ec6c
22 changed files with 2019 additions and 644 deletions

View File

@ -61,7 +61,7 @@ $(eval $(call SetupNativeCompilation,BUILD_LIBINSTRUMENT, \
OUTPUT_DIR := $(INSTALL_LIBRARIES_HERE), \
SRC := $(LIBINSTRUMENT_SRC), \
OPTIMIZATION := LOW, \
CFLAGS := $(LIBINSTRUMENT_CFLAGS) $(CFLAGS_WARNINGS_ARE_ERRORS), \
CFLAGS := $(LIBINSTRUMENT_CFLAGS), \
CFLAGS_debug := -DJPLIS_LOGGING, \
CFLAGS_release := -DNO_JPLIS_LOGGING, \
MAPFILE := $(JDK_TOPDIR)/make/mapfiles/libinstrument/mapfile-vers, \

View File

@ -50,7 +50,7 @@ $(eval $(call SetupNativeCompilation,BUILD_LIBMANAGEMENT, \
OUTPUT_DIR := $(INSTALL_LIBRARIES_HERE), \
SRC := $(LIBMANAGEMENT_SRC), \
OPTIMIZATION := $(LIBMANAGEMENT_OPTIMIZATION), \
CFLAGS := $(CFLAGS_JDKLIB) $(CFLAGS_WARNINGS_ARE_ERRORS) $(LIBMANAGEMENT_CFLAGS), \
CFLAGS := $(CFLAGS_JDKLIB) $(LIBMANAGEMENT_CFLAGS), \
MAPFILE := $(JDK_TOPDIR)/make/mapfiles/libmanagement/mapfile-vers, \
LDFLAGS := $(LDFLAGS_JDKLIB) \
$(call SET_SHARED_LIBRARY_ORIGIN), \

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -39,7 +39,7 @@ $(eval $(call SetupNativeCompilation,BUILD_LIBATTACH, \
OUTPUT_DIR := $(INSTALL_LIBRARIES_HERE), \
SRC := $(call FindSrcDirsForLib, jdk.attach, attach), \
OPTIMIZATION := LOW, \
CFLAGS := $(CFLAGS_JDKLIB) $(CFLAGS_WARNINGS_ARE_ERRORS) \
CFLAGS := $(CFLAGS_JDKLIB) \
-I$(SUPPORT_OUTPUTDIR)/headers/jdk.attach \
$(LIBJAVA_HEADER_FLAGS) $(LIBATTACH_CFLAGS), \
CFLAGS_windows := /Gy, \

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -46,7 +46,7 @@ $(eval $(call SetupNativeCompilation,BUILD_LIBHPROF, \
OUTPUT_DIR := $(INSTALL_LIBRARIES_HERE), \
SRC := $(BUILD_LIBHPROF_SRC), \
OPTIMIZATION := $(LIBHPROF_OPTIMIZATION), \
CFLAGS := $(CFLAGS_JDKLIB) $(CFLAGS_WARNINGS_ARE_ERRORS) \
CFLAGS := $(CFLAGS_JDKLIB) \
$(BUILD_LIBHPROF_CFLAGS), \
CFLAGS_debug := -DHPROF_LOGGING, \
MAPFILE := $(JDK_TOPDIR)/make/mapfiles/libhprof/mapfile-vers, \
@ -75,7 +75,7 @@ $(eval $(call SetupNativeCompilation,BUILD_LIBJAVA_CRW_DEMO, \
OUTPUT_DIR := $(INSTALL_LIBRARIES_HERE), \
SRC := $(LIBJAVA_CRW_DEMO_SRC), \
OPTIMIZATION := LOW, \
CFLAGS := $(CFLAGS_JDKLIB) $(CFLAGS_WARNINGS_ARE_ERRORS) \
CFLAGS := $(CFLAGS_JDKLIB) \
$(addprefix -I, $(LIBJAVA_CRW_DEMO_SRC)), \
MAPFILE := $(JDK_TOPDIR)/make/mapfiles/libjava_crw_demo/mapfile-vers, \
LDFLAGS := $(LDFLAGS_JDKLIB) \

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -44,7 +44,7 @@ ifeq ($(OPENJDK_TARGET_OS), windows)
OUTPUT_DIR := $(INSTALL_LIBRARIES_HERE), \
SRC := $(LIBDT_SHMEM_SRC), \
OPTIMIZATION := LOW, \
CFLAGS := $(CFLAGS_JDKLIB) $(CFLAGS_WARNINGS_ARE_ERRORS) -DUSE_MMAP \
CFLAGS := $(CFLAGS_JDKLIB) -DUSE_MMAP \
$(LIBDT_SHMEM_CPPFLAGS), \
LDFLAGS := $(LDFLAGS_JDKLIB), \
LDFLAGS_windows := -export:jdwpTransport_OnLoad, \

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -41,7 +41,7 @@ $(eval $(call SetupNativeCompilation,BUILD_LIBDT_SOCKET, \
OUTPUT_DIR := $(INSTALL_LIBRARIES_HERE), \
SRC := $(LIBDT_SOCKET_SRC), \
OPTIMIZATION := LOW, \
CFLAGS := $(CFLAGS_JDKLIB) $(CFLAGS_CFLAGS_WARNINGS_ARE_ERRORS) -DUSE_MMAP \
CFLAGS := $(CFLAGS_JDKLIB) -DUSE_MMAP \
$(LIBDT_SOCKET_CPPFLAGS), \
MAPFILE := $(JDK_TOPDIR)/make/mapfiles/libdt_socket/mapfile-vers, \
LDFLAGS := $(LDFLAGS_JDKLIB) \
@ -77,7 +77,7 @@ $(eval $(call SetupNativeCompilation,BUILD_LIBJDWP, \
OUTPUT_DIR := $(INSTALL_LIBRARIES_HERE), \
SRC := $(LIBJDWP_SRC), \
OPTIMIZATION := LOW, \
CFLAGS := $(CFLAGS_JDKLIB) $(CFLAGS_WARNINGS_ARE_ERRORS) -DJDWP_LOGGING \
CFLAGS := $(CFLAGS_JDKLIB) -DJDWP_LOGGING \
$(LIBJDWP_CPPFLAGS) \
-I$(SUPPORT_OUTPUTDIR)/headers/jdk.jdwp.agent, \
MAPFILE := $(JDK_TOPDIR)/make/mapfiles/libjdwp/mapfile-vers, \

View File

@ -59,7 +59,7 @@ $(eval $(call SetupNativeCompilation,BUILD_LIBMANAGEMENT_EXT, \
SRC := $(LIBMANAGEMENT_EXT_SRC), \
LANG := C, \
OPTIMIZATION := $(LIBMANAGEMENT_EXT_OPTIMIZATION), \
CFLAGS := $(CFLAGS_JDKLIB) $(CFLAGS_WARNINGS_ARE_ERRORS) $(LIBMANAGEMENT_EXT_CFLAGS), \
CFLAGS := $(CFLAGS_JDKLIB) $(LIBMANAGEMENT_EXT_CFLAGS), \
MAPFILE := $(JDK_TOPDIR)/make/mapfiles/libmanagement_ext/mapfile-vers, \
LDFLAGS := $(LDFLAGS_JDKLIB) \
$(call SET_SHARED_LIBRARY_ORIGIN), \

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -30,12 +30,8 @@ include LibCommon.gmk
ifeq ($(OPENJDK_TARGET_OS_TYPE), unix)
ifeq (, $(filter $(OPENJDK_TARGET_OS), macosx aix))
# Suppress unused parameters required by exported JNI functions.
SCTP_WERROR := -Werror -Wno-error=unused-parameter
ifeq ($(OPENJDK_TARGET_CPU_ARCH), ppc)
SCTP_WERROR :=
endif
# DISABLED_WARNINGS_gcc := unused-parameter needed to
# suppress unused parameters required by exported JNI functions.
$(eval $(call SetupNativeCompilation,BUILD_LIBSCTP, \
LIBRARY := sctp, \
@ -49,7 +45,7 @@ ifeq ($(OPENJDK_TARGET_OS_TYPE), unix)
$(LIBJAVA_HEADER_FLAGS) \
-I$(SUPPORT_OUTPUTDIR)/headers/jdk.sctp \
-I$(SUPPORT_OUTPUTDIR)/headers/java.base, \
CFLAGS_linux := $(SCTP_WERROR), \
DISABLED_WARNINGS_gcc := unused-parameter, \
MAPFILE := $(JDK_TOPDIR)/make/mapfiles/libsctp/mapfile-vers, \
LDFLAGS := $(LDFLAGS_JDKLIB) \
$(call SET_SHARED_LIBRARY_ORIGIN), \

View File

@ -27,8 +27,6 @@ package java.lang.invoke;
import static java.lang.invoke.MethodHandleStatics.*;
import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
import java.lang.reflect.Field;
import sun.misc.Cleaner;
/**
* A {@code CallSite} is a holder for a variable {@link MethodHandle},
@ -138,47 +136,9 @@ public class CallSite {
/**
* {@code CallSite} dependency context.
* VM uses context class to store nmethod dependencies on the call site target.
* Can be in 2 states: (a) null; or (b) {@code Cleaner} instance pointing to some Class instance.
* Lazily initialized when CallSite instance is linked to some indy call site or VM needs
* it to store dependencies. As a corollary, "null" context means there are no dependencies
* registered yet. {@code Cleaner} is used in 2 roles:
* (a) context class access for VM;
* (b) stale context class cleanup.
* {@code Cleaner} holds the context class until cleanup action is finished (see {@code PhantomReference}).
* Though it's impossible to get the context class using {@code Reference.get()}, VM extracts it directly
* from {@code Reference.referent} field.
* JVM uses CallSite.context to store nmethod dependencies on the call site target.
*/
private volatile Cleaner context = null;
/**
* Default context.
* VM uses it to initialize non-linked CallSite context.
*/
private static class DefaultContext {}
private static final Cleaner DEFAULT_CONTEXT = makeContext(DefaultContext.class, null);
private static Cleaner makeContext(Class<?> referent, final CallSite holder) {
return Cleaner.create(referent,
new Runnable() {
@Override public void run() {
MethodHandleNatives.invalidateDependentNMethods(holder);
}
});
}
/** Initialize context class used for nmethod dependency tracking */
/*package-private*/
void initContext(Class<?> newContext) {
// If there are concurrent actions, exactly one succeeds.
if (context == null) {
UNSAFE.compareAndSwapObject(this, CONTEXT_OFFSET, /*expected=*/null, makeContext(newContext, this));
// No need to care about failed CAS attempt.
// Since initContext is called from indy call site linkage in newContext class, there's no risk
// that the context class becomes dead while corresponding context cleaner is alive (causing cleanup
// action in the wrong context).
}
}
private final MethodHandleNatives.CallSiteContext context = MethodHandleNatives.CallSiteContext.make(this);
/**
* Returns the type of this call site's target.

View File

@ -30,6 +30,7 @@ import java.lang.reflect.Field;
import static java.lang.invoke.MethodHandleNatives.Constants.*;
import static java.lang.invoke.MethodHandleStatics.*;
import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
import sun.misc.Cleaner;
/**
* The JVM interface for the method handles package is all here.
@ -61,8 +62,27 @@ class MethodHandleNatives {
static native void setCallSiteTargetNormal(CallSite site, MethodHandle target);
static native void setCallSiteTargetVolatile(CallSite site, MethodHandle target);
/** Invalidate CallSite context: clean up dependent nmethods and reset call site context to initial state (null). */
static native void invalidateDependentNMethods(CallSite site);
/** Represents a context to track nmethod dependencies on CallSite instance target. */
static class CallSiteContext implements Runnable {
//@Injected JVM_nmethodBucket* vmdependencies;
static CallSiteContext make(CallSite cs) {
final CallSiteContext newContext = new CallSiteContext();
// Cleaner is attached to CallSite instance and it clears native structures allocated for CallSite context.
// Though the CallSite can become unreachable, its Context is retained by the Cleaner instance (which is
// referenced from Cleaner class) until cleanup is performed.
Cleaner.create(cs, newContext);
return newContext;
}
@Override
public void run() {
MethodHandleNatives.clearCallSiteContext(this);
}
}
/** Invalidate all recorded nmethods. */
private static native void clearCallSiteContext(CallSiteContext context);
private static native void registerNatives();
static {
@ -235,7 +255,6 @@ class MethodHandleNatives {
return Invokers.linkToTargetMethod(type);
} else {
appendixResult[0] = callSite;
callSite.initContext(caller);
return Invokers.linkToCallSiteMethod(type);
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -60,11 +60,6 @@ final class DualPivotQuicksort {
*/
private static final int MAX_RUN_COUNT = 67;
/**
* The maximum length of run in merge sort.
*/
private static final int MAX_RUN_LENGTH = 33;
/**
* If the length of an array to be sorted is less than this
* constant, Quicksort is used in preference to merge sort.
@ -121,20 +116,24 @@ final class DualPivotQuicksort {
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
// Equal items in the beginning of the sequence
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break; // Sequence finishes with equal items
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
// Transform into an ascending sequence
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
// Merge a transformed descending sequence followed by an
// ascending sequence
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
@ -151,7 +150,7 @@ final class DualPivotQuicksort {
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
} else if (count <= 1) { // The array is already sorted
return;
}
@ -569,20 +568,24 @@ final class DualPivotQuicksort {
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
// Equal items in the beginning of the sequence
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break; // Sequence finishes with equal items
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
// Transform into an ascending sequence
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
long t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
// Merge a transformed descending sequence followed by an
// ascending sequence
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
@ -599,7 +602,7 @@ final class DualPivotQuicksort {
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
} else if (count <= 1) { // The array is already sorted
return;
}
@ -1053,20 +1056,24 @@ final class DualPivotQuicksort {
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
// Equal items in the beginning of the sequence
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break; // Sequence finishes with equal items
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
// Transform into an ascending sequence
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
short t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
// Merge a transformed descending sequence followed by an
// ascending sequence
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
@ -1083,7 +1090,7 @@ final class DualPivotQuicksort {
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
} else if (count <= 1) { // The array is already sorted
return;
}
@ -1537,20 +1544,24 @@ final class DualPivotQuicksort {
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
// Equal items in the beginning of the sequence
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break; // Sequence finishes with equal items
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
// Transform into an ascending sequence
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
char t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
// Merge a transformed descending sequence followed by an
// ascending sequence
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
@ -1567,7 +1578,7 @@ final class DualPivotQuicksort {
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
} else if (count <= 1) { // The array is already sorted
return;
}
@ -2117,20 +2128,24 @@ final class DualPivotQuicksort {
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
// Equal items in the beginning of the sequence
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break; // Sequence finishes with equal items
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
// Transform into an ascending sequence
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
float t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
// Merge a transformed descending sequence followed by an
// ascending sequence
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
@ -2147,7 +2162,7 @@ final class DualPivotQuicksort {
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
} else if (count <= 1) { // The array is already sorted
return;
}
@ -2656,20 +2671,24 @@ final class DualPivotQuicksort {
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
// Equal items in the beginning of the sequence
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break; // Sequence finishes with equal items
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
// Transform into an ascending sequence
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
double t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
// Merge a transformed descending sequence followed by an
// ascending sequence
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
@ -2686,7 +2705,7 @@ final class DualPivotQuicksort {
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
} else if (count <= 1) { // The array is already sorted
return;
}

View File

@ -28,6 +28,7 @@ package sun.security.ssl;
import java.security.AlgorithmConstraints;
import java.security.CryptoPrimitive;
import java.security.PrivateKey;
import java.security.Security;
import java.util.Set;
import java.util.HashSet;
@ -415,10 +416,12 @@ final class SignatureAndHashAlgorithm {
"SHA1withRSA", --p);
supports(HashAlgorithm.SHA1, SignatureAlgorithm.ECDSA,
"SHA1withECDSA", --p);
if (Security.getProvider("SunMSCAPI") == null) {
supports(HashAlgorithm.SHA224, SignatureAlgorithm.RSA,
"SHA224withRSA", --p);
supports(HashAlgorithm.SHA224, SignatureAlgorithm.ECDSA,
"SHA224withECDSA", --p);
}
supports(HashAlgorithm.SHA256, SignatureAlgorithm.RSA,
"SHA256withRSA", --p);
supports(HashAlgorithm.SHA256, SignatureAlgorithm.ECDSA,

View File

@ -0,0 +1,119 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 7130985
* @summary Four helper classes missing in Sun JDK
* @library /lib/testlibrary
* @build jdk.testlibrary.*
* @run main CorbaExceptionsCompileTest
*/
import java.io.*;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.rmi.RemoteException;
import org.omg.CORBA.ORBPackage.InvalidName;
import org.omg.CORBA.TypeCodePackage.BadKind;
import org.omg.CORBA.TypeCodePackage.Bounds;
import jdk.testlibrary.FileUtils;
import jdk.testlibrary.JDKToolLauncher;
public class CorbaExceptionsCompileTest implements CorbaExceptionsTest {
public CorbaExceptionsCompileTest() {
super();
}
public void testExceptionInvalidName()
throws java.rmi.RemoteException, InvalidName {}
public void testExceptionBounds()
throws java.rmi.RemoteException, Bounds {}
public void testExceptionBadKind()
throws java.rmi.RemoteException, BadKind {}
public void testExceptionCorba_Bounds()
throws java.rmi.RemoteException, org.omg.CORBA.Bounds {}
public static void main(String[] args) throws Exception {
final File f = new File(
CorbaExceptionsCompileTest.class.getProtectionDomain()
.getCodeSource().getLocation().getPath());
System.out.println(f.getCanonicalPath());
ProcessBuilder pb = new ProcessBuilder("ls", "-l");
pb.directory(f);
Process p = pb.start();
p.waitFor();
if (p.exitValue() == 0) {
try (BufferedReader br = new BufferedReader(
new InputStreamReader(p.getInputStream()))) {
StringBuilder builder = new StringBuilder();
String line = null;
while ( (line = br.readLine()) != null) {
builder.append(line + "\n");
}
String result = builder.toString();
System.out.println(result);
}
}
Path outDir = Paths.get("CorbaExceptionsCompileTest-compiled");
outDir = Files.createDirectory(outDir).toAbsolutePath();
JDKToolLauncher launcher = JDKToolLauncher.createUsingTestJDK("rmic");
launcher.addToolArg("-classpath").addToolArg(f.getCanonicalPath())
.addToolArg("-d").addToolArg(outDir.toString())
.addToolArg("-iiop").addToolArg("CorbaExceptionsCompileTest");
pb = new ProcessBuilder(launcher.getCommand());
pb.directory(f);
System.out.println("Working Directory: " + pb.directory());
System.out.println("CorbaExceptionsCompileTest.class exists: "
+ new File(f, "CorbaExceptionsCompileTest.class").exists());
p = pb.start();
p.waitFor();
if (p.exitValue() != 0) {
try (BufferedReader br = new BufferedReader(
new InputStreamReader(p.getInputStream()))) {
StringBuilder builder = new StringBuilder();
String line = null;
while ( (line = br.readLine()) != null) {
builder.append(line + "\n");
}
String result = builder.toString();
System.out.println(result);
throw new RuntimeException(launcher.getCommand() +
" -iiop CorbaExceptionsCompileTest failed with status: "
+ p.exitValue());
}
}
if (Files.exists(outDir))
FileUtils.deleteFileTreeWithRetry(outDir);
}
}

View File

@ -0,0 +1,35 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.rmi.Remote;
import org.omg.CORBA.ORBPackage.InvalidName;
import org.omg.CORBA.TypeCodePackage.BadKind;
import org.omg.CORBA.TypeCodePackage.Bounds;
public interface CorbaExceptionsTest extends Remote {
public void testExceptionInvalidName() throws java.rmi.RemoteException, InvalidName;
public void testExceptionBounds() throws java.rmi.RemoteException, Bounds;
public void testExceptionBadKind() throws java.rmi.RemoteException, BadKind;
public void testExceptionCorba_Bounds() throws java.rmi.RemoteException, org.omg.CORBA.Bounds;
}

View File

@ -38,6 +38,8 @@ public class InvokeSeveralWays {
failures++;
} catch (InvocationTargetException e) {
Throwable c = e.getCause();
if (BootstrapMethodError.class.isInstance(c)) {
c = c.getCause();
if (expected.isInstance(c))
System.out.println("EXPECTED: " + expected.getName() + ", "+ c);
else {
@ -45,6 +47,11 @@ public class InvokeSeveralWays {
System.out.println("FAIL: Unexpected wrapped exception " + c);
e.printStackTrace(System.out);
}
} else {
failures++;
System.out.println("FAIL: Exception from MethodHandle invocation not wrapped in BootstrapMethodError " + c);
e.printStackTrace(System.out);
}
} catch (Throwable e) {
failures++;
System.out.println("FAIL: Unexpected exception has been caught " + e);
@ -74,14 +81,19 @@ public class InvokeSeveralWays {
Invoker.invoke();
System.out.println("FAIL: No exception throw, probably failed to load modified bytecodes for MethodSupplier");
failures++;
} catch (Throwable e) {
if (expected.isInstance(e))
System.out.println("EXPECTED: " + expected.getName() + ", "+ e);
} catch (BootstrapMethodError e) {
Throwable c = e.getCause();
if (expected.isInstance(c))
System.out.println("EXPECTED: " + expected.getName() + ", "+ c);
else {
failures++;
System.out.println("FAIL: Unexpected exception has been caught " + e);
System.out.println("FAIL: Unexpected exception has been caught " + c);
e.printStackTrace(System.out);
}
} catch (Throwable e) {
failures++;
System.out.println("FAIL: Exception from MethodHandle invocation not wrapped in BootstrapMethodError " + e);
e.printStackTrace(System.out);
}
System.out.println();
try {

View File

@ -0,0 +1,708 @@
/*
* Copyright 2015 Goldman Sachs.
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.TimeUnit;
@State(Scope.Thread)
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
public class SortingIntBenchmarkTestJMH {
private static final int QUICKSORT_THRESHOLD = 286;
private static final int MAX_RUN_COUNT = 67;
private static final int INSERTION_SORT_THRESHOLD = 47;
public static final int MAX_VALUE = 1_000_000;
@Param({"pairFlipZeroPairFlip", "pairFlipOneHundredPairFlip"
, "zeroHi", "hiZeroLow", "hiFlatLow", "identical",
"randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"})
public String listType;
private int[] array;
private static final int LIST_SIZE = 10_000_000;
public static final int NUMBER_OF_ITERATIONS = 10;
@Setup
public void setUp() {
Random random = new Random(123456789012345L);
this.array = new int[LIST_SIZE];
int threeQuarters = (int) (LIST_SIZE * 0.75);
if ("zeroHi".equals(this.listType)) {
for (int i = 0; i < threeQuarters; i++) {
this.array[i] = 0;
}
int k = 1;
for (int i = threeQuarters; i < LIST_SIZE; i++) {
this.array[i] = k;
k++;
}
}
else if ("hiFlatLow".equals(this.listType)) {
int oneThird = LIST_SIZE / 3;
for (int i = 0; i < oneThird; i++) {
this.array[i] = i;
}
int twoThirds = oneThird * 2;
int constant = oneThird - 1;
for (int i = oneThird; i < twoThirds; i++) {
this.array[i] = constant;
}
for (int i = twoThirds; i < LIST_SIZE; i++) {
this.array[i] = constant - i + twoThirds;
}
}
else if ("hiZeroLow".equals(this.listType)) {
int oneThird = LIST_SIZE / 3;
for (int i = 0; i < oneThird; i++) {
this.array[i] = i;
}
int twoThirds = oneThird * 2;
for (int i = oneThird; i < twoThirds; i++) {
this.array[i] = 0;
}
for (int i = twoThirds; i < LIST_SIZE; i++) {
this.array[i] = oneThird - i + twoThirds;
}
}
else if ("identical".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = 0;
}
}
else if ("randomDups".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = random.nextInt(1000);
}
}
else if ("randomNoDups".equals(this.listType)) {
Set<Integer> set = new HashSet();
while (set.size() < LIST_SIZE + 1) {
set.add(random.nextInt());
}
List<Integer> list = new ArrayList<>(LIST_SIZE);
list.addAll(set);
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = list.get(i);
}
}
else if ("sortedReversedSorted".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE / 2; i++) {
this.array[i] = i;
}
int num = 0;
for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) {
this.array[i] = LIST_SIZE - num;
num++;
}
}
else if ("pairFlip".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = i;
}
for (int i = 0; i < LIST_SIZE; i += 2) {
int temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
}
else if ("endLessThan".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE - 1; i++) {
this.array[i] = 3;
}
this.array[LIST_SIZE - 1] = 1;
}
else if ("pairFlipZeroPairFlip".equals(this.listType)) {
//pairflip
for (int i = 0; i < 64; i++) {
this.array[i] = i;
}
for (int i = 0; i < 64; i += 2) {
int temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
//zero
for (int i = 64; i < this.array.length - 64; i++) {
this.array[i] = 0;
}
//pairflip
for (int i = this.array.length - 64; i < this.array.length; i++) {
this.array[i] = i;
}
for (int i = this.array.length - 64; i < this.array.length; i += 2) {
int temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
}
else if ("pairFlipOneHundredPairFlip".equals(this.listType)) {
//10, 5
for (int i = 0; i < 64; i++) {
if (i % 2 == 0) {
this.array[i] = 10;
}
else {
this.array[i] = 5;
}
}
//100
for (int i = 64; i < this.array.length - 64; i++) {
this.array[i] = 100;
}
//10, 5
for (int i = this.array.length - 64; i < this.array.length; i++) {
if (i % 2 == 0) {
this.array[i] = 10;
}
else {
this.array[i] = 5;
}
}
}
}
@Warmup(iterations = 20)
@Measurement(iterations = 10)
@Benchmark
public void sortNewWay() {
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
SortingIntTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0);
}
}
@Warmup(iterations = 20)
@Measurement(iterations = 10)
@Benchmark
public void sortCurrentWay() {
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
Arrays.sort(this.array);
}
}
static void sort(int[] a, int left, int right,
int[] work, int workBase, int workLen) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
SortingIntTestJMH.sort(a, left, right, true);
return;
}
/*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0;
run[0] = left;
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break;
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]) ;
}
else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]) ;
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo];
a[lo] = a[hi];
a[hi] = t;
}
}
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
// Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) {
run[++count] = right;
}
if (count <= 1) { // The array is already sorted
return;
}
// Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1) {
}
// Use or create temporary array b for merging
int[] b; // temp array; alternates with a
int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new int[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
}
else {
b = work;
ao = 0;
bo = workBase - left;
}
// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
}
else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
) {
}
run[++last] = right;
}
int[] t = a;
a = b;
b = t;
int o = ao;
ao = bo;
bo = o;
}
}
private static void sort(int[] a, int left, int right, boolean leftmost) {
int length = right - left + 1;
// Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
if (leftmost) {
/*
* Traditional (without sentinel) insertion sort,
* optimized for server VM, is used in case of
* the leftmost part.
*/
for (int i = left, j = i; i < right; j = ++i) {
int ai = a[i + 1];
while (ai < a[j]) {
a[j + 1] = a[j];
if (j-- == left) {
break;
}
}
a[j + 1] = ai;
}
}
else {
/*
* Skip the longest ascending sequence.
*/
do {
if (left >= right) {
return;
}
}
while (a[++left] >= a[left - 1]);
/*
* Every element from adjoining part plays the role
* of sentinel, therefore this allows us to avoid the
* left range check on each iteration. Moreover, we use
* the more optimized algorithm, so called pair insertion
* sort, which is faster (in the context of Quicksort)
* than traditional implementation of insertion sort.
*/
for (int k = left; ++left <= right; k = ++left) {
int a1 = a[k], a2 = a[left];
if (a1 < a2) {
a2 = a1;
a1 = a[left];
}
while (a1 < a[--k]) {
a[k + 2] = a[k];
}
a[++k + 1] = a1;
while (a2 < a[--k]) {
a[k + 1] = a[k];
}
a[k + 1] = a2;
}
int last = a[right];
while (last < a[--right]) {
a[right + 1] = a[right];
}
a[right + 1] = last;
}
return;
}
// Inexpensive approximation of length / 7
int seventh = (length >> 3) + (length >> 6) + 1;
/*
* Sort five evenly spaced elements around (and including) the
* center element in the range. These elements will be used for
* pivot selection as described below. The choice for spacing
* these elements was empirically determined to work well on
* a wide variety of inputs.
*/
int e3 = (left + right) >>> 1; // The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh;
// Sort these elements using insertion sort
if (a[e2] < a[e1]) {
int t = a[e2];
a[e2] = a[e1];
a[e1] = t;
}
if (a[e3] < a[e2]) {
int t = a[e3];
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
if (a[e4] < a[e3]) {
int t = a[e4];
a[e4] = a[e3];
a[e3] = t;
if (t < a[e2]) {
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
}
if (a[e5] < a[e4]) {
int t = a[e5];
a[e5] = a[e4];
a[e4] = t;
if (t < a[e3]) {
a[e4] = a[e3];
a[e3] = t;
if (t < a[e2]) {
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
}
}
// Pointers
int less = left; // The index of the first element of center part
int great = right; // The index before the first element of right part
if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*/
int pivot1 = a[e2];
int pivot2 = a[e4];
/*
* The first and the last elements to be sorted are moved to the
* locations formerly occupied by the pivots. When partitioning
* is complete, the pivots are swapped back into their final
* positions, and excluded from subsequent sorting.
*/
a[e2] = a[left];
a[e4] = a[right];
/*
* Skip elements, which are less or greater than pivot values.
*/
while (a[++less] < pivot1) {
}
while (a[--great] > pivot2) {
}
/*
* Partitioning:
*
* left part center part right part
* +--------------------------------------------------------------+
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
* +--------------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
int ak = a[k];
if (ak < pivot1) { // Move a[k] to left part
a[k] = a[less];
/*
* Here and below we use "a[i] = b; i++;" instead
* of "a[i++] = b;" due to performance issue.
*/
a[less] = ak;
++less;
}
else if (ak > pivot2) { // Move a[k] to right part
while (a[great] > pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] < pivot1) { // a[great] <= pivot2
a[k] = a[less];
a[less] = a[great];
++less;
}
else { // pivot1 <= a[great] <= pivot2
a[k] = a[great];
}
/*
* Here and below we use "a[i] = b; i--;" instead
* of "a[i--] = b;" due to performance issue.
*/
a[great] = ak;
--great;
}
}
// Swap pivots into their final positions
a[left] = a[less - 1];
a[less - 1] = pivot1;
a[right] = a[great + 1];
a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivots
SortingIntTestJMH.sort(a, left, less - 2, leftmost);
SortingIntTestJMH.sort(a, great + 2, right, false);
/*
* If center part is too large (comprises > 4/7 of the array),
* swap internal pivot values to ends.
*/
if (less < e1 && e5 < great) {
/*
* Skip elements, which are equal to pivot values.
*/
while (a[less] == pivot1) {
++less;
}
while (a[great] == pivot2) {
--great;
}
/*
* Partitioning:
*
* left part center part right part
* +----------------------------------------------------------+
* | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 |
* +----------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (*, less) == pivot1
* pivot1 < all in [less, k) < pivot2
* all in (great, *) == pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
int ak = a[k];
if (ak == pivot1) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
}
else if (ak == pivot2) { // Move a[k] to right part
while (a[great] == pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] == pivot1) { // a[great] < pivot2
a[k] = a[less];
/*
* Even though a[great] equals to pivot1, the
* assignment a[less] = pivot1 may be incorrect,
* if a[great] and pivot1 are floating-point zeros
* of different signs. Therefore in float and
* double sorting methods we have to use more
* accurate assignment a[less] = a[great].
*/
a[less] = pivot1;
++less;
}
else { // pivot1 < a[great] < pivot2
a[k] = a[great];
}
a[great] = ak;
--great;
}
}
}
// Sort center part recursively
SortingIntTestJMH.sort(a, less, great, false);
}
else { // Partitioning with one pivot
/*
* Use the third of the five sorted elements as pivot.
* This value is inexpensive approximation of the median.
*/
int pivot = a[e3];
/*
* Partitioning degenerates to the traditional 3-way
* (or "Dutch National Flag") schema:
*
* left part center part right part
* +-------------------------------------------------+
* | < pivot | == pivot | ? | > pivot |
* +-------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part.
*/
for (int k = less; k <= great; ++k) {
if (a[k] == pivot) {
continue;
}
int ak = a[k];
if (ak < pivot) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
}
else { // a[k] > pivot - Move a[k] to right part
while (a[great] > pivot) {
--great;
}
if (a[great] < pivot) { // a[great] <= pivot
a[k] = a[less];
a[less] = a[great];
++less;
}
else { // a[great] == pivot
/*
* Even though a[great] equals to pivot, the
* assignment a[k] = pivot may be incorrect,
* if a[great] and pivot are floating-point
* zeros of different signs. Therefore in float
* and double sorting methods we have to use
* more accurate assignment a[k] = a[great].
*/
a[k] = pivot;
}
a[great] = ak;
--great;
}
}
/*
* Sort left and right parts recursively.
* All elements from center part are equal
* and, therefore, already sorted.
*/
SortingIntTestJMH.sort(a, left, less - 1, leftmost);
SortingIntTestJMH.sort(a, great + 1, right, false);
}
}
private static void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}

View File

@ -0,0 +1,725 @@
/*
* Copyright 2015 Goldman Sachs.
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
import java.util.concurrent.TimeUnit;
@State(Scope.Thread)
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
public class SortingLongBenchmarkTestJMH {
private static final int QUICKSORT_THRESHOLD = 286;
private static final int MAX_RUN_COUNT = 67;
private static final int INSERTION_SORT_THRESHOLD = 47;
public static final int MAX_VALUE = 1_000_000;
@Param({"pairFlipZeroPairFlip", "descendingAscending", "zeroHi", "hiZeroLow", "hiFlatLow", "identical",
"randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"})
public String listType;
private long[] array;
private static final int LIST_SIZE = 10_000_000;
public static final int NUMBER_OF_ITERATIONS = 10;
@Setup
public void setUp() {
Random random = new Random(123456789012345L);
this.array = new long[LIST_SIZE];
int threeQuarters = (int) (LIST_SIZE * 0.75);
if ("zeroHi".equals(this.listType)) {
for (int i = 0; i < threeQuarters; i++) {
this.array[i] = 0;
}
int k = 1;
for (int i = threeQuarters; i < LIST_SIZE; i++) {
this.array[i] = k;
k++;
}
}
else if ("hiFlatLow".equals(this.listType)) {
int oneThird = LIST_SIZE / 3;
for (int i = 0; i < oneThird; i++) {
this.array[i] = i;
}
int twoThirds = oneThird * 2;
int constant = oneThird - 1;
for (int i = oneThird; i < twoThirds; i++) {
this.array[i] = constant;
}
for (int i = twoThirds; i < LIST_SIZE; i++) {
this.array[i] = constant - i + twoThirds;
}
}
else if ("hiZeroLow".equals(this.listType)) {
int oneThird = LIST_SIZE / 3;
for (int i = 0; i < oneThird; i++) {
this.array[i] = i;
}
int twoThirds = oneThird * 2;
for (int i = oneThird; i < twoThirds; i++) {
this.array[i] = 0;
}
for (int i = twoThirds; i < LIST_SIZE; i++) {
this.array[i] = oneThird - i + twoThirds;
}
}
else if ("identical".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = 0;
}
}
else if ("randomDups".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = random.nextInt(1000);
}
}
else if ("randomNoDups".equals(this.listType)) {
Set<Integer> set = new HashSet<>();
while (set.size() < LIST_SIZE + 1) {
set.add(random.nextInt());
}
List<Integer> list = new ArrayList<>(LIST_SIZE);
list.addAll(set);
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = list.get(i);
}
}
else if ("sortedReversedSorted".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE / 2; i++) {
this.array[i] = i;
}
int num = 0;
for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) {
this.array[i] = LIST_SIZE - num;
num++;
}
}
else if ("pairFlip".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE; i++) {
this.array[i] = i;
}
for (int i = 0; i < LIST_SIZE; i += 2) {
long temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
}
else if ("endLessThan".equals(this.listType)) {
for (int i = 0; i < LIST_SIZE - 1; i++) {
this.array[i] = 3;
}
this.array[LIST_SIZE - 1] = 1;
}
else if ("pairFlipZeroPairFlip".equals(this.listType)) {
//pairflip
for (int i = 0; i < 64; i++) {
this.array[i] = i;
}
for (int i = 0; i < 64; i += 2) {
long temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
//zero
for (int i = 64; i < this.array.length - 64; i++) {
this.array[i] = 0;
}
//pairflip
for (int i = this.array.length - 64; i < this.array.length; i++) {
this.array[i] = i;
}
for (int i = this.array.length - 64; i < this.array.length; i += 2) {
long temp = this.array[i];
this.array[i] = this.array[i + 1];
this.array[i + 1] = temp;
}
}
else if ("pairFlipOneHundredPairFlip".equals(this.listType)) {
//10, 5
for (int i = 0; i < 64; i++) {
if (i % 2 == 0) {
this.array[i] = 10;
}
else {
this.array[i] = 5;
}
}
//100
for (int i = 64; i < this.array.length - 64; i++) {
this.array[i] = 100;
}
//10, 5
for (int i = this.array.length - 64; i < this.array.length; i++) {
if (i % 2 == 0) {
this.array[i] = 10;
}
else {
this.array[i] = 5;
}
}
}
}
@Warmup(iterations = 20)
@Measurement(iterations = 10)
@Benchmark
public void sortNewWay() {
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
SortingLongTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0);
}
}
@Warmup(iterations = 20)
@Measurement(iterations = 10)
@Benchmark
public void sortOldWay() {
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
Arrays.sort(this.array);
}
}
/**
* Sorts the specified range of the array using the given
* workspace array slice if possible for merging
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
*/
static void sort(long[] a, int left, int right,
long[] work, int workBase, int workLen) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
SortingLongTestJMH.sort(a, left, right, true);
return;
}
/*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0;
run[0] = left;
// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
while (k < right && a[k] == a[k + 1])
k++;
if (k == right) break;
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]) ;
}
else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]) ;
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
long t = a[lo];
a[lo] = a[hi];
a[hi] = t;
}
}
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
count--;
}
/*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
// Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) {
run[++count] = right;
}
if (count <= 1) { // The array is already sorted
return;
}
// Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1) {
}
// Use or create temporary array b for merging
long[] b; // temp array; alternates with a
int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new long[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
}
else {
b = work;
ao = 0;
bo = workBase - left;
}
// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
}
else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
) {
}
run[++last] = right;
}
long[] t = a;
a = b;
b = t;
int o = ao;
ao = bo;
bo = o;
}
}
/**
* Sorts the specified range of the array by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param leftmost indicates if this part is the leftmost in the range
*/
private static void sort(long[] a, int left, int right, boolean leftmost) {
int length = right - left + 1;
// Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
if (leftmost) {
/*
* Traditional (without sentinel) insertion sort,
* optimized for server VM, is used in case of
* the leftmost part.
*/
for (int i = left, j = i; i < right; j = ++i) {
long ai = a[i + 1];
while (ai < a[j]) {
a[j + 1] = a[j];
if (j-- == left) {
break;
}
}
a[j + 1] = ai;
}
}
else {
/*
* Skip the longest ascending sequence.
*/
do {
if (left >= right) {
return;
}
}
while (a[++left] >= a[left - 1]);
/*
* Every element from adjoining part plays the role
* of sentinel, therefore this allows us to avoid the
* left range check on each iteration. Moreover, we use
* the more optimized algorithm, so called pair insertion
* sort, which is faster (in the context of Quicksort)
* than traditional implementation of insertion sort.
*/
for (int k = left; ++left <= right; k = ++left) {
long a1 = a[k], a2 = a[left];
if (a1 < a2) {
a2 = a1;
a1 = a[left];
}
while (a1 < a[--k]) {
a[k + 2] = a[k];
}
a[++k + 1] = a1;
while (a2 < a[--k]) {
a[k + 1] = a[k];
}
a[k + 1] = a2;
}
long last = a[right];
while (last < a[--right]) {
a[right + 1] = a[right];
}
a[right + 1] = last;
}
return;
}
// Inexpensive approximation of length / 7
int seventh = (length >> 3) + (length >> 6) + 1;
/*
* Sort five evenly spaced elements around (and including) the
* center element in the range. These elements will be used for
* pivot selection as described below. The choice for spacing
* these elements was empirically determined to work well on
* a wide variety of inputs.
*/
int e3 = (left + right) >>> 1; // The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh;
// Sort these elements using insertion sort
if (a[e2] < a[e1]) {
long t = a[e2];
a[e2] = a[e1];
a[e1] = t;
}
if (a[e3] < a[e2]) {
long t = a[e3];
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
if (a[e4] < a[e3]) {
long t = a[e4];
a[e4] = a[e3];
a[e3] = t;
if (t < a[e2]) {
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
}
if (a[e5] < a[e4]) {
long t = a[e5];
a[e5] = a[e4];
a[e4] = t;
if (t < a[e3]) {
a[e4] = a[e3];
a[e3] = t;
if (t < a[e2]) {
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) {
a[e2] = a[e1];
a[e1] = t;
}
}
}
}
// Pointers
int less = left; // The index of the first element of center part
int great = right; // The index before the first element of right part
if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*/
long pivot1 = a[e2];
long pivot2 = a[e4];
/*
* The first and the last elements to be sorted are moved to the
* locations formerly occupied by the pivots. When partitioning
* is complete, the pivots are swapped back into their final
* positions, and excluded from subsequent sorting.
*/
a[e2] = a[left];
a[e4] = a[right];
/*
* Skip elements, which are less or greater than pivot values.
*/
while (a[++less] < pivot1) {
}
while (a[--great] > pivot2) {
}
/*
* Partitioning:
*
* left part center part right part
* +--------------------------------------------------------------+
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
* +--------------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
long ak = a[k];
if (ak < pivot1) { // Move a[k] to left part
a[k] = a[less];
/*
* Here and below we use "a[i] = b; i++;" instead
* of "a[i++] = b;" due to performance issue.
*/
a[less] = ak;
++less;
}
else if (ak > pivot2) { // Move a[k] to right part
while (a[great] > pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] < pivot1) { // a[great] <= pivot2
a[k] = a[less];
a[less] = a[great];
++less;
}
else { // pivot1 <= a[great] <= pivot2
a[k] = a[great];
}
/*
* Here and below we use "a[i] = b; i--;" instead
* of "a[i--] = b;" due to performance issue.
*/
a[great] = ak;
--great;
}
}
// Swap pivots into their final positions
a[left] = a[less - 1];
a[less - 1] = pivot1;
a[right] = a[great + 1];
a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivots
SortingLongTestJMH.sort(a, left, less - 2, leftmost);
SortingLongTestJMH.sort(a, great + 2, right, false);
/*
* If center part is too large (comprises > 4/7 of the array),
* swap internal pivot values to ends.
*/
if (less < e1 && e5 < great) {
/*
* Skip elements, which are equal to pivot values.
*/
while (a[less] == pivot1) {
++less;
}
while (a[great] == pivot2) {
--great;
}
/*
* Partitioning:
*
* left part center part right part
* +----------------------------------------------------------+
* | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 |
* +----------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (*, less) == pivot1
* pivot1 < all in [less, k) < pivot2
* all in (great, *) == pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
long ak = a[k];
if (ak == pivot1) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
}
else if (ak == pivot2) { // Move a[k] to right part
while (a[great] == pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] == pivot1) { // a[great] < pivot2
a[k] = a[less];
/*
* Even though a[great] equals to pivot1, the
* assignment a[less] = pivot1 may be incorrect,
* if a[great] and pivot1 are floating-point zeros
* of different signs. Therefore in float and
* double sorting methods we have to use more
* accurate assignment a[less] = a[great].
*/
a[less] = pivot1;
++less;
}
else { // pivot1 < a[great] < pivot2
a[k] = a[great];
}
a[great] = ak;
--great;
}
}
}
// Sort center part recursively
SortingLongTestJMH.sort(a, less, great, false);
}
else { // Partitioning with one pivot
/*
* Use the third of the five sorted elements as pivot.
* This value is inexpensive approximation of the median.
*/
long pivot = a[e3];
/*
* Partitioning degenerates to the traditional 3-way
* (or "Dutch National Flag") schema:
*
* left part center part right part
* +-------------------------------------------------+
* | < pivot | == pivot | ? | > pivot |
* +-------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part.
*/
for (int k = less; k <= great; ++k) {
if (a[k] == pivot) {
continue;
}
long ak = a[k];
if (ak < pivot) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
}
else { // a[k] > pivot - Move a[k] to right part
while (a[great] > pivot) {
--great;
}
if (a[great] < pivot) { // a[great] <= pivot
a[k] = a[less];
a[less] = a[great];
++less;
}
else { // a[great] == pivot
/*
* Even though a[great] equals to pivot, the
* assignment a[k] = pivot may be incorrect,
* if a[great] and pivot are floating-point
* zeros of different signs. Therefore in float
* and double sorting methods we have to use
* more accurate assignment a[k] = a[great].
*/
a[k] = pivot;
}
a[great] = ak;
--great;
}
}
/*
* Sort left and right parts recursively.
* All elements from center part are equal
* and, therefore, already sorted.
*/
SortingLongTestJMH.sort(a, left, less - 1, leftmost);
SortingLongTestJMH.sort(a, great + 1, right, false);
}
}
private static void swap(long[] arr, int i, int j) {
long tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}

View File

@ -0,0 +1,274 @@
/*
* Copyright 2015 Goldman Sachs.
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @summary Tests the sorting of a large array of sorted primitive values,
* predominently for cases where the array is nearly sorted. This tests
* code that detects patterns in the array to determine if it is nearly
* sorted and if so employs and optimizes merge sort rather than a
* Dual-Pivot QuickSort.
*
* @run testng SortingNearlySortedPrimitive
*/
import org.testng.Assert;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import java.util.Arrays;
import java.util.function.Supplier;
public class SortingNearlySortedPrimitive {
private static final int ARRAY_SIZE = 1_000_000;
@DataProvider(name = "arrays")
public Object[][] createData() {
return new Object[][]{
{"hiZeroLowTest", (Supplier<int[]>) this::hiZeroLowData},
{"endLessThanTest", (Supplier<int[]>) this::endLessThanData},
{"highFlatLowTest", (Supplier<int[]>) this::highFlatLowData},
{"identicalTest", (Supplier<int[]>) this::identicalData},
{"sortedReversedSortedTest", (Supplier<int[]>) this::sortedReversedSortedData},
{"pairFlipTest", (Supplier<int[]>) this::pairFlipData},
{"zeroHiTest", (Supplier<int[]>) this::zeroHiData},
};
}
@Test(dataProvider = "arrays")
public void runTests(String testName, Supplier<int[]> dataMethod) throws Exception {
int[] intSourceArray = dataMethod.get();
// Clone source array to ensure it is not modified
this.sortAndAssert(intSourceArray.clone());
this.sortAndAssert(floatCopyFromInt(intSourceArray));
this.sortAndAssert(doubleCopyFromInt(intSourceArray));
this.sortAndAssert(longCopyFromInt(intSourceArray));
this.sortAndAssert(shortCopyFromInt(intSourceArray));
this.sortAndAssert(charCopyFromInt(intSourceArray));
}
private float[] floatCopyFromInt(int[] src) {
float[] result = new float[src.length];
for (int i = 0; i < result.length; i++) {
result[i] = src[i];
}
return result;
}
private double[] doubleCopyFromInt(int[] src) {
double[] result = new double[src.length];
for (int i = 0; i < result.length; i++) {
result[i] = src[i];
}
return result;
}
private long[] longCopyFromInt(int[] src) {
long[] result = new long[src.length];
for (int i = 0; i < result.length; i++) {
result[i] = src[i];
}
return result;
}
private short[] shortCopyFromInt(int[] src) {
short[] result = new short[src.length];
for (int i = 0; i < result.length; i++) {
result[i] = (short) src[i];
}
return result;
}
private char[] charCopyFromInt(int[] src) {
char[] result = new char[src.length];
for (int i = 0; i < result.length; i++) {
result[i] = (char) src[i];
}
return result;
}
private void sortAndAssert(int[] array) {
Arrays.sort(array);
for (int i = 1; i < ARRAY_SIZE; i++) {
if (array[i] < array[i - 1]) {
throw new AssertionError("not sorted");
}
}
Assert.assertEquals(ARRAY_SIZE, array.length);
}
private void sortAndAssert(char[] array) {
Arrays.sort(array);
for (int i = 1; i < ARRAY_SIZE; i++) {
if (array[i] < array[i - 1]) {
throw new AssertionError("not sorted");
}
}
Assert.assertEquals(ARRAY_SIZE, array.length);
}
private void sortAndAssert(short[] array) {
Arrays.sort(array);
for (int i = 1; i < ARRAY_SIZE; i++) {
if (array[i] < array[i - 1]) {
throw new AssertionError("not sorted");
}
}
Assert.assertEquals(ARRAY_SIZE, array.length);
}
private void sortAndAssert(double[] array) {
Arrays.sort(array);
for (int i = 1; i < ARRAY_SIZE; i++) {
if (array[i] < array[i - 1]) {
throw new AssertionError("not sorted");
}
}
Assert.assertEquals(ARRAY_SIZE, array.length);
}
private void sortAndAssert(float[] array) {
Arrays.sort(array);
for (int i = 1; i < ARRAY_SIZE; i++) {
if (array[i] < array[i - 1]) {
throw new AssertionError("not sorted");
}
}
Assert.assertEquals(ARRAY_SIZE, array.length);
}
private void sortAndAssert(long[] array) {
Arrays.sort(array);
for (int i = 1; i < ARRAY_SIZE; i++) {
if (array[i] < array[i - 1]) {
throw new AssertionError("not sorted");
}
}
Assert.assertEquals(ARRAY_SIZE, array.length);
}
private int[] zeroHiData() {
int[] array = new int[ARRAY_SIZE];
int threeQuarters = (int) (ARRAY_SIZE * 0.75);
for (int i = 0; i < threeQuarters; i++) {
array[i] = 0;
}
int k = 1;
for (int i = threeQuarters; i < ARRAY_SIZE; i++) {
array[i] = k;
k++;
}
return array;
}
private int[] hiZeroLowData() {
int[] array = new int[ARRAY_SIZE];
int oneThird = ARRAY_SIZE / 3;
for (int i = 0; i < oneThird; i++) {
array[i] = i;
}
int twoThirds = oneThird * 2;
for (int i = oneThird; i < twoThirds; i++) {
array[i] = 0;
}
for (int i = twoThirds; i < ARRAY_SIZE; i++) {
array[i] = oneThird - i + twoThirds;
}
return array;
}
private int[] highFlatLowData() {
int[] array = new int[ARRAY_SIZE];
int oneThird = ARRAY_SIZE / 3;
for (int i = 0; i < oneThird; i++) {
array[i] = i;
}
int twoThirds = oneThird * 2;
int constant = oneThird - 1;
for (int i = oneThird; i < twoThirds; i++) {
array[i] = constant;
}
for (int i = twoThirds; i < ARRAY_SIZE; i++) {
array[i] = constant - i + twoThirds;
}
return array;
}
private int[] identicalData() {
int[] array = new int[ARRAY_SIZE];
int listNumber = 24;
for (int i = 0; i < ARRAY_SIZE; i++) {
array[i] = listNumber;
}
return array;
}
private int[] endLessThanData() {
int[] array = new int[ARRAY_SIZE];
for (int i = 0; i < ARRAY_SIZE - 1; i++) {
array[i] = 3;
}
array[ARRAY_SIZE - 1] = 1;
return array;
}
private int[] sortedReversedSortedData() {
int[] array = new int[ARRAY_SIZE];
for (int i = 0; i < ARRAY_SIZE / 2; i++) {
array[i] = i;
}
int num = 0;
for (int i = ARRAY_SIZE / 2; i < ARRAY_SIZE; i++) {
array[i] = ARRAY_SIZE - num;
num++;
}
return array;
}
private int[] pairFlipData() {
int[] array = new int[ARRAY_SIZE];
for (int i = 0; i < ARRAY_SIZE; i++) {
array[i] = i;
}
for (int i = 0; i < ARRAY_SIZE; i += 2) {
int temp = array[i];
array[i] = array[i + 1];
array[i + 1] = temp;
}
return array;
}
}

View File

@ -21,25 +21,29 @@
* questions.
*/
/*
* @test
* @bug 8042397
* @summary Unit test for jmap utility test heap configuration reader
* @library /lib/testlibrary
* @modules java.management
* @build jdk.testlibrary.*
* @build JMapHeapConfigTest LingeredApp TmtoolTestScenario
* @run main JMapHeapConfigTest
*/
import java.io.IOException;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import jdk.test.lib.apps.LingeredApp;
import jdk.testlibrary.Utils;
import jdk.testlibrary.Platform;
/*
* @test
* @bug 8042397
* @summary Unit test for jmap utility test heap configuration reader
* @library /../../test/lib/share/classes
* @library /lib/testlibrary
* @modules java.management
* @build jdk.testlibrary.*
* @build jdk.test.lib.apps.*
* @build JMapHeapConfigTest TmtoolTestScenario
* @run main JMapHeapConfigTest
*/
public class JMapHeapConfigTest {
static final String expectedJMapValues[] = {

View File

@ -1,431 +0,0 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.file.Files;
import java.nio.file.NoSuchFileException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;
import java.nio.file.attribute.FileTime;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Map;
import java.util.UUID;
/**
* This is a framework to launch an app that could be synchronized with caller
* to make further attach actions reliable across supported platforms
* Caller example:
* SmartTestApp a = SmartTestApp.startApp(cmd);
* // do something
* a.stopApp();
*
* or fine grained control
*
* a = new SmartTestApp("MyLock.lck");
* a.createLock();
* a.runApp();
* a.waitAppReady();
* // do something
* a.deleteLock();
* a.waitAppTerminate();
*
* Then you can work with app output and process object
*
* output = a.getAppOutput();
* process = a.getProcess();
*
*/
public class LingeredApp {
private static final long spinDelay = 1000;
private final String lockFileName;
private long lockCreationTime;
private Process appProcess;
private final ArrayList<String> storedAppOutput;
/*
* Drain child process output, store it into string array
*/
class InputGobbler extends Thread {
InputStream is;
List<String> astr;
InputGobbler(InputStream is, List<String> astr) {
this.is = is;
this.astr = astr;
}
public void run() {
try {
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
String line = null;
while ((line = br.readLine()) != null) {
astr.add(line);
}
} catch (IOException ex) {
// pass
}
}
}
/**
* Create LingeredApp object on caller side. Lock file have be a valid filename
* at writable location
*
* @param lockFileName - the name of lock file
*/
public LingeredApp(String lockFileName) {
this.lockFileName = lockFileName;
this.storedAppOutput = new ArrayList();
}
/**
*
* @return name of lock file
*/
public String getLockFileName() {
return this.lockFileName;
}
/**
*
* @return name of testapp
*/
public String getAppName() {
return this.getClass().getName();
}
/**
*
* @return pid of java process running testapp
*/
public long getPid() {
if (appProcess == null) {
throw new RuntimeException("Process is not alive");
}
return appProcess.getPid();
}
/**
*
* @return process object
*/
public Process getProcess() {
return appProcess;
}
/**
*
* @return application output as string array. Empty array if application produced no output
*/
List<String> getAppOutput() {
if (appProcess.isAlive()) {
throw new RuntimeException("Process is still alive. Can't get its output.");
}
return storedAppOutput;
}
/* Make sure all part of the app use the same method to get dates,
as different methods could produce different results
*/
private static long epoch() {
return new Date().getTime();
}
private static long lastModified(String fileName) throws IOException {
Path path = Paths.get(fileName);
BasicFileAttributes attr = Files.readAttributes(path, BasicFileAttributes.class);
return attr.lastModifiedTime().toMillis();
}
private static void setLastModified(String fileName, long newTime) throws IOException {
Path path = Paths.get(fileName);
FileTime fileTime = FileTime.fromMillis(newTime);
Files.setLastModifiedTime(path, fileTime);
}
/**
* create lock
*
* @throws IOException
*/
public void createLock() throws IOException {
Path path = Paths.get(lockFileName);
// Files.deleteIfExists(path);
Files.createFile(path);
lockCreationTime = lastModified(lockFileName);
}
/**
* Delete lock
*
* @throws IOException
*/
public void deleteLock() throws IOException {
try {
Path path = Paths.get(lockFileName);
Files.delete(path);
} catch (NoSuchFileException ex) {
// Lock already deleted. Ignore error
}
}
public void waitAppTerminate() {
while (true) {
try {
appProcess.waitFor();
break;
} catch (InterruptedException ex) {
// pass
}
}
}
/**
* The app touches the lock file when it's started
* wait while it happens. Caller have to delete lock on wait error.
*
* @param timeout
* @throws java.io.IOException
*/
public void waitAppReady(long timeout) throws IOException {
long here = epoch();
while (true) {
long epoch = epoch();
if (epoch - here > (timeout * 1000)) {
throw new IOException("App waiting timeout");
}
// Live process should touch lock file every second
long lm = lastModified(lockFileName);
if (lm > lockCreationTime) {
break;
}
// Make sure process didn't already exit
if (!appProcess.isAlive()) {
throw new IOException("App exited unexpectedly with " + appProcess.exitValue());
}
try {
Thread.sleep(spinDelay);
} catch (InterruptedException ex) {
// pass
}
}
}
/**
* Run the app
*
* @param vmArguments
* @throws IOException
*/
public void runApp(List<String> vmArguments)
throws IOException {
// We should always use testjava or throw an exception,
// so we can't use JDKToolFinder.getJDKTool("java");
// that falls back to compile java on error
String jdkPath = System.getProperty("test.jdk");
if (jdkPath == null) {
// we are not under jtreg, try env
Map<String, String> env = System.getenv();
jdkPath = env.get("TESTJAVA");
}
if (jdkPath == null) {
throw new RuntimeException("Can't determine jdk path neither test.jdk property no TESTJAVA env are set");
}
String osname = System.getProperty("os.name");
String javapath = jdkPath + ((osname.startsWith("window")) ? "/bin/java.exe" : "/bin/java");
List<String> cmd = new ArrayList();
cmd.add(javapath);
if (vmArguments == null) {
// Propagate test.vm.options to LingeredApp, filter out possible empty options
String testVmOpts[] = System.getProperty("test.vm.opts","").split("\\s+");
for (String s : testVmOpts) {
if (!s.equals("")) {
cmd.add(s);
}
}
}
else{
// Lets user manage LingerApp options
cmd.addAll(vmArguments);
}
// Make sure we set correct classpath to run the app
cmd.add("-cp");
String classpath = System.getProperty("test.class.path");
cmd.add((classpath == null) ? "." : classpath);
cmd.add(this.getAppName());
cmd.add(lockFileName);
// Reporting
StringBuilder cmdLine = new StringBuilder();
for (String strCmd : cmd) {
cmdLine.append("'").append(strCmd).append("' ");
}
// A bit of verbosity
System.out.println("Command line: [" + cmdLine.toString() + "]");
ProcessBuilder pb = new ProcessBuilder(cmd);
// we don't expect any error output but make sure we are not stuck on pipe
// pb.redirectErrorStream(false);
pb.redirectError(ProcessBuilder.Redirect.INHERIT);
appProcess = pb.start();
// Create pipe reader for process, and read stdin and stderr to array of strings
InputGobbler gb = new InputGobbler(appProcess.getInputStream(), storedAppOutput);
gb.start();
}
/**
* High level interface for test writers
*/
/**
* Factory method that creates SmartAppTest object with ready to use application
* lock name is autogenerated, wait timeout is hardcoded
* @param cmd - vm options, could be null to auto add testvm.options
* @return LingeredApp object
* @throws IOException
*/
public static LingeredApp startApp(List<String> cmd) throws IOException {
final String lockName = UUID.randomUUID().toString() + ".lck";
final int waitTime = 10;
LingeredApp a = new LingeredApp(lockName);
a.createLock();
try {
a.runApp(cmd);
a.waitAppReady(waitTime);
} catch (Exception ex) {
a.deleteLock();
throw ex;
}
return a;
}
public static LingeredApp startApp() throws IOException {
return startApp(null);
}
/**
* Delete lock file that signal app to terminate, then
* waits until app is actually terminated.
* @throws IOException
*/
public void stopApp() throws IOException {
deleteLock();
waitAppTerminate();
int exitcode = appProcess.exitValue();
if (exitcode != 0) {
throw new IOException("LingeredApp terminated with non-zero exit code " + exitcode);
}
}
/**
* LastModified time might not work correctly in some cases it might
* cause later failures
*/
public static boolean isLastModifiedWorking() {
boolean sane = true;
try {
long lm = lastModified(".");
if (lm == 0) {
System.err.println("SANITY Warning! The lastModifiedTime() doesn't work on this system, it returns 0");
sane = false;
}
long now = epoch();
if (lm > now) {
System.err.println("SANITY Warning! The Clock is wrong on this system lastModifiedTime() > getTime()");
sane = false;
}
setLastModified(".", epoch());
long lm1 = lastModified(".");
if (lm1 <= lm) {
System.err.println("SANITY Warning! The setLastModified doesn't work on this system");
sane = false;
}
}
catch(IOException e) {
System.err.println("SANITY Warning! IOException during sanity check " + e);
sane = false;
}
return sane;
}
/**
* This part is the application it self
*/
public static void main(String args[]) {
if (args.length != 1) {
System.err.println("Lock file name is not specified");
System.exit(7);
}
String theLockFileName = args[0];
try {
Path path = Paths.get(theLockFileName);
while (Files.exists(path)) {
// Touch the lock to indicate our readiness
setLastModified(theLockFileName, epoch());
Thread.sleep(spinDelay);
}
} catch (NoSuchFileException ex) {
// Lock deleted while we are setting last modified time.
// Ignore error and lets the app exits
} catch (Exception ex) {
System.err.println("LingeredApp ERROR: " + ex);
// Leave exit_code = 1 to Java launcher
System.exit(3);
}
System.exit(0);
}
}

View File

@ -1,70 +0,0 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @summary Unit test for LingeredApp
* @compile LingeredAppTest.java
* @compile LingeredApp.java
* @run main LingeredAppTest
*/
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
public class LingeredAppTest {
public static void main(String[] args) {
try {
System.out.println("Starting LingeredApp with default parameters");
ArrayList<String> cmd = new ArrayList();
// Propagate test.vm.options to LingeredApp, filter out possible empty options
String testVmOpts[] = System.getProperty("test.vm.opts","").split("\\s+");
for (String s : testVmOpts) {
if (!s.equals("")) {
cmd.add(s);
}
}
cmd.add("-XX:+PrintFlagsFinal");
LingeredApp a = LingeredApp.startApp(cmd);
System.out.printf("App pid: %d\n", a.getPid());
a.stopApp();
System.out.println("App output:");
int count = 0;
for (String line : a.getAppOutput()) {
count += 1;
}
System.out.println("Found " + count + " lines in VM output");
System.out.println("Test PASSED");
} catch (IOException ex) {
ex.printStackTrace();
System.out.println("Test ERROR");
System.exit(3);
}
}
}

View File

@ -31,6 +31,8 @@ import java.util.List;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;
import jdk.test.lib.apps.LingeredApp;
import jdk.testlibrary.JDKToolLauncher;
import jdk.testlibrary.Utils;