jdk-24/src/hotspot/share/utilities/globalDefinitions.hpp
Coleen Phillimore 0be6d52f4d 8215034: Remove old HOTSWAP conditionals
Reviewed-by: dcubed, jiangli, sspitsyn
2018-12-07 17:20:44 -05:00

1317 lines
44 KiB
C++

/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
#include "utilities/compilerWarnings.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
#include COMPILER_HEADER(utilities/globalDefinitions)
// Defaults for macros that might be defined per compiler.
#ifndef NOINLINE
#define NOINLINE
#endif
#ifndef ALWAYSINLINE
#define ALWAYSINLINE inline
#endif
#ifndef ATTRIBUTE_ALIGNED
#define ATTRIBUTE_ALIGNED(x)
#endif
// This file holds all globally used constants & types, class (forward)
// declarations and a few frequently used utility functions.
//----------------------------------------------------------------------------------------------------
// Printf-style formatters for fixed- and variable-width types as pointers and
// integers. These are derived from the definitions in inttypes.h. If the platform
// doesn't provide appropriate definitions, they should be provided in
// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
// Format 32-bit quantities.
#define INT32_FORMAT "%" PRId32
#define UINT32_FORMAT "%" PRIu32
#define INT32_FORMAT_W(width) "%" #width PRId32
#define UINT32_FORMAT_W(width) "%" #width PRIu32
#define PTR32_FORMAT "0x%08" PRIx32
#define PTR32_FORMAT_W(width) "0x%" #width PRIx32
// Format 64-bit quantities.
#define INT64_FORMAT "%" PRId64
#define UINT64_FORMAT "%" PRIu64
#define UINT64_FORMAT_X "%" PRIx64
#define INT64_FORMAT_W(width) "%" #width PRId64
#define UINT64_FORMAT_W(width) "%" #width PRIu64
#define PTR64_FORMAT "0x%016" PRIx64
// Format jlong, if necessary
#ifndef JLONG_FORMAT
#define JLONG_FORMAT INT64_FORMAT
#endif
#ifndef JULONG_FORMAT
#define JULONG_FORMAT UINT64_FORMAT
#endif
#ifndef JULONG_FORMAT_X
#define JULONG_FORMAT_X UINT64_FORMAT_X
#endif
// Format pointers which change size between 32- and 64-bit.
#ifdef _LP64
#define INTPTR_FORMAT "0x%016" PRIxPTR
#define PTR_FORMAT "0x%016" PRIxPTR
#else // !_LP64
#define INTPTR_FORMAT "0x%08" PRIxPTR
#define PTR_FORMAT "0x%08" PRIxPTR
#endif // _LP64
// Format pointers without leading zeros
#define INTPTRNZ_FORMAT "0x%" PRIxPTR
#define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
#define SSIZE_FORMAT "%" PRIdPTR
#define SIZE_FORMAT "%" PRIuPTR
#define SIZE_FORMAT_HEX "0x%" PRIxPTR
#define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
#define SIZE_FORMAT_W(width) "%" #width PRIuPTR
#define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
#define INTX_FORMAT "%" PRIdPTR
#define UINTX_FORMAT "%" PRIuPTR
#define INTX_FORMAT_W(width) "%" #width PRIdPTR
#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
//----------------------------------------------------------------------------------------------------
// Constants
const int LogBytesPerShort = 1;
const int LogBytesPerInt = 2;
#ifdef _LP64
const int LogBytesPerWord = 3;
#else
const int LogBytesPerWord = 2;
#endif
const int LogBytesPerLong = 3;
const int BytesPerShort = 1 << LogBytesPerShort;
const int BytesPerInt = 1 << LogBytesPerInt;
const int BytesPerWord = 1 << LogBytesPerWord;
const int BytesPerLong = 1 << LogBytesPerLong;
const int LogBitsPerByte = 3;
const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
const int BitsPerByte = 1 << LogBitsPerByte;
const int BitsPerShort = 1 << LogBitsPerShort;
const int BitsPerInt = 1 << LogBitsPerInt;
const int BitsPerWord = 1 << LogBitsPerWord;
const int BitsPerLong = 1 << LogBitsPerLong;
const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
const int WordsPerLong = 2; // Number of stack entries for longs
const int oopSize = sizeof(char*); // Full-width oop
extern int heapOopSize; // Oop within a java object
const int wordSize = sizeof(char*);
const int longSize = sizeof(jlong);
const int jintSize = sizeof(jint);
const int size_tSize = sizeof(size_t);
const int BytesPerOop = BytesPerWord; // Full-width oop
extern int LogBytesPerHeapOop; // Oop within a java object
extern int LogBitsPerHeapOop;
extern int BytesPerHeapOop;
extern int BitsPerHeapOop;
const int BitsPerJavaInteger = 32;
const int BitsPerJavaLong = 64;
const int BitsPerSize_t = size_tSize * BitsPerByte;
// Size of a char[] needed to represent a jint as a string in decimal.
const int jintAsStringSize = 12;
// An opaque struct of heap-word width, so that HeapWord* can be a generic
// pointer into the heap. We require that object sizes be measured in
// units of heap words, so that that
// HeapWord* hw;
// hw += oop(hw)->foo();
// works, where foo is a method (like size or scavenge) that returns the
// object size.
class HeapWord {
friend class VMStructs;
private:
char* i;
#ifndef PRODUCT
public:
char* value() { return i; }
#endif
};
// Analogous opaque struct for metadata allocated from
// metaspaces.
class MetaWord {
private:
char* i;
};
// HeapWordSize must be 2^LogHeapWordSize.
const int HeapWordSize = sizeof(HeapWord);
#ifdef _LP64
const int LogHeapWordSize = 3;
#else
const int LogHeapWordSize = 2;
#endif
const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
// The minimum number of native machine words necessary to contain "byte_size"
// bytes.
inline size_t heap_word_size(size_t byte_size) {
return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
}
//-------------------------------------------
// Constant for jlong (standardized by C++11)
// Build a 64bit integer constant
#define CONST64(x) (x ## LL)
#define UCONST64(x) (x ## ULL)
const jlong min_jlong = CONST64(0x8000000000000000);
const jlong max_jlong = CONST64(0x7fffffffffffffff);
const size_t K = 1024;
const size_t M = K*K;
const size_t G = M*K;
const size_t HWperKB = K / sizeof(HeapWord);
// Constants for converting from a base unit to milli-base units. For
// example from seconds to milliseconds and microseconds
const int MILLIUNITS = 1000; // milli units per base unit
const int MICROUNITS = 1000000; // micro units per base unit
const int NANOUNITS = 1000000000; // nano units per base unit
const jlong NANOSECS_PER_SEC = CONST64(1000000000);
const jint NANOSECS_PER_MILLISEC = 1000000;
inline const char* proper_unit_for_byte_size(size_t s) {
#ifdef _LP64
if (s >= 10*G) {
return "G";
}
#endif
if (s >= 10*M) {
return "M";
} else if (s >= 10*K) {
return "K";
} else {
return "B";
}
}
template <class T>
inline T byte_size_in_proper_unit(T s) {
#ifdef _LP64
if (s >= 10*G) {
return (T)(s/G);
}
#endif
if (s >= 10*M) {
return (T)(s/M);
} else if (s >= 10*K) {
return (T)(s/K);
} else {
return s;
}
}
inline const char* exact_unit_for_byte_size(size_t s) {
#ifdef _LP64
if (s >= G && (s % G) == 0) {
return "G";
}
#endif
if (s >= M && (s % M) == 0) {
return "M";
}
if (s >= K && (s % K) == 0) {
return "K";
}
return "B";
}
inline size_t byte_size_in_exact_unit(size_t s) {
#ifdef _LP64
if (s >= G && (s % G) == 0) {
return s / G;
}
#endif
if (s >= M && (s % M) == 0) {
return s / M;
}
if (s >= K && (s % K) == 0) {
return s / K;
}
return s;
}
//----------------------------------------------------------------------------------------------------
// VM type definitions
// intx and uintx are the 'extended' int and 'extended' unsigned int types;
// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
typedef intptr_t intx;
typedef uintptr_t uintx;
const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
const intx max_intx = (uintx)min_intx - 1;
const uintx max_uintx = (uintx)-1;
// Table of values:
// sizeof intx 4 8
// min_intx 0x80000000 0x8000000000000000
// max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
// max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
typedef unsigned int uint; NEEDS_CLEANUP
//----------------------------------------------------------------------------------------------------
// Java type definitions
// All kinds of 'plain' byte addresses
typedef signed char s_char;
typedef unsigned char u_char;
typedef u_char* address;
typedef uintptr_t address_word; // unsigned integer which will hold a pointer
// except for some implementations of a C++
// linkage pointer to function. Should never
// need one of those to be placed in this
// type anyway.
// Utility functions to "portably" (?) bit twiddle pointers
// Where portable means keep ANSI C++ compilers quiet
inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
// Utility functions to "portably" make cast to/from function pointers.
inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
inline address_word castable_address(address x) { return address_word(x) ; }
inline address_word castable_address(void* x) { return address_word(x) ; }
// Pointer subtraction.
// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
// the range we might need to find differences from one end of the heap
// to the other.
// A typical use might be:
// if (pointer_delta(end(), top()) >= size) {
// // enough room for an object of size
// ...
// and then additions like
// ... top() + size ...
// are safe because we know that top() is at least size below end().
inline size_t pointer_delta(const volatile void* left,
const volatile void* right,
size_t element_size) {
return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
}
// A version specialized for HeapWord*'s.
inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
return pointer_delta(left, right, sizeof(HeapWord));
}
// A version specialized for MetaWord*'s.
inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
return pointer_delta(left, right, sizeof(MetaWord));
}
//
// ANSI C++ does not allow casting from one pointer type to a function pointer
// directly without at best a warning. This macro accomplishes it silently
// In every case that is present at this point the value be cast is a pointer
// to a C linkage function. In some case the type used for the cast reflects
// that linkage and a picky compiler would not complain. In other cases because
// there is no convenient place to place a typedef with extern C linkage (i.e
// a platform dependent header file) it doesn't. At this point no compiler seems
// picky enough to catch these instances (which are few). It is possible that
// using templates could fix these for all cases. This use of templates is likely
// so far from the middle of the road that it is likely to be problematic in
// many C++ compilers.
//
#define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
// Unsigned byte types for os and stream.hpp
// Unsigned one, two, four and eigth byte quantities used for describing
// the .class file format. See JVM book chapter 4.
typedef jubyte u1;
typedef jushort u2;
typedef juint u4;
typedef julong u8;
const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
const julong max_julong = (julong)-1; // 0xFF....FF largest julong
typedef jbyte s1;
typedef jshort s2;
typedef jint s4;
typedef jlong s8;
const jbyte min_jbyte = -(1 << 7); // smallest jbyte
const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte
const jshort min_jshort = -(1 << 15); // smallest jshort
const jshort max_jshort = (1 << 15) - 1; // largest jshort
const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
//----------------------------------------------------------------------------------------------------
// JVM spec restrictions
const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
//----------------------------------------------------------------------------------------------------
// Default and minimum StringTable and SymbolTable size values
// Must be a power of 2
const size_t defaultStringTableSize = NOT_LP64(1024) LP64_ONLY(65536);
const size_t minimumStringTableSize = 128;
const size_t defaultSymbolTableSize = 32768; // 2^15
const size_t minimumSymbolTableSize = 1024;
//----------------------------------------------------------------------------------------------------
// Object alignment, in units of HeapWords.
//
// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
// reference fields can be naturally aligned.
extern int MinObjAlignment;
extern int MinObjAlignmentInBytes;
extern int MinObjAlignmentInBytesMask;
extern int LogMinObjAlignment;
extern int LogMinObjAlignmentInBytes;
const int LogKlassAlignmentInBytes = 3;
const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
// Maximal size of heap where unscaled compression can be used. Also upper bound
// for heap placement: 4GB.
const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
// Maximal size of heap where compressed oops can be used. Also upper bound for heap
// placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
extern uint64_t OopEncodingHeapMax;
// Maximal size of compressed class space. Above this limit compression is not possible.
// Also upper bound for placement of zero based class space. (Class space is further limited
// to be < 3G, see arguments.cpp.)
const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
// Machine dependent stuff
// The maximum size of the code cache. Can be overridden by targets.
#define CODE_CACHE_SIZE_LIMIT (2*G)
// Allow targets to reduce the default size of the code cache.
#define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
#include CPU_HEADER(globalDefinitions)
// To assure the IRIW property on processors that are not multiple copy
// atomic, sync instructions must be issued between volatile reads to
// assure their ordering, instead of after volatile stores.
// (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
// by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
#ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
#else
const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
#endif
// The expected size in bytes of a cache line, used to pad data structures.
#ifndef DEFAULT_CACHE_LINE_SIZE
#define DEFAULT_CACHE_LINE_SIZE 64
#endif
//----------------------------------------------------------------------------------------------------
// Utility macros for compilers
// used to silence compiler warnings
#define Unused_Variable(var) var
//----------------------------------------------------------------------------------------------------
// Miscellaneous
// 6302670 Eliminate Hotspot __fabsf dependency
// All fabs() callers should call this function instead, which will implicitly
// convert the operand to double, avoiding a dependency on __fabsf which
// doesn't exist in early versions of Solaris 8.
inline double fabsd(double value) {
return fabs(value);
}
// Returns numerator/denominator as percentage value from 0 to 100. If denominator
// is zero, return 0.0.
template<typename T>
inline double percent_of(T numerator, T denominator) {
return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
}
//----------------------------------------------------------------------------------------------------
// Special casts
// Cast floats into same-size integers and vice-versa w/o changing bit-pattern
typedef union {
jfloat f;
jint i;
} FloatIntConv;
typedef union {
jdouble d;
jlong l;
julong ul;
} DoubleLongConv;
inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
inline jint low (jlong value) { return jint(value); }
inline jint high(jlong value) { return jint(value >> 32); }
// the fancy casts are a hopefully portable way
// to do unsigned 32 to 64 bit type conversion
inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
*value |= (jlong)(julong)(juint)low; }
inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
*value |= (jlong)high << 32; }
inline jlong jlong_from(jint h, jint l) {
jlong result = 0; // initialization to avoid warning
set_high(&result, h);
set_low(&result, l);
return result;
}
union jlong_accessor {
jint words[2];
jlong long_value;
};
void basic_types_init(); // cannot define here; uses assert
// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
enum BasicType {
T_BOOLEAN = 4,
T_CHAR = 5,
T_FLOAT = 6,
T_DOUBLE = 7,
T_BYTE = 8,
T_SHORT = 9,
T_INT = 10,
T_LONG = 11,
T_OBJECT = 12,
T_ARRAY = 13,
T_VOID = 14,
T_ADDRESS = 15,
T_NARROWOOP = 16,
T_METADATA = 17,
T_NARROWKLASS = 18,
T_CONFLICT = 19, // for stack value type with conflicting contents
T_ILLEGAL = 99
};
inline bool is_java_primitive(BasicType t) {
return T_BOOLEAN <= t && t <= T_LONG;
}
inline bool is_subword_type(BasicType t) {
// these guys are processed exactly like T_INT in calling sequences:
return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
}
inline bool is_signed_subword_type(BasicType t) {
return (t == T_BYTE || t == T_SHORT);
}
inline bool is_reference_type(BasicType t) {
return (t == T_OBJECT || t == T_ARRAY);
}
// Convert a char from a classfile signature to a BasicType
inline BasicType char2type(char c) {
switch( c ) {
case 'B': return T_BYTE;
case 'C': return T_CHAR;
case 'D': return T_DOUBLE;
case 'F': return T_FLOAT;
case 'I': return T_INT;
case 'J': return T_LONG;
case 'S': return T_SHORT;
case 'Z': return T_BOOLEAN;
case 'V': return T_VOID;
case 'L': return T_OBJECT;
case '[': return T_ARRAY;
}
return T_ILLEGAL;
}
extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
extern BasicType name2type(const char* name);
// Auxiliary math routines
// least common multiple
extern size_t lcm(size_t a, size_t b);
// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
enum BasicTypeSize {
T_BOOLEAN_size = 1,
T_CHAR_size = 1,
T_FLOAT_size = 1,
T_DOUBLE_size = 2,
T_BYTE_size = 1,
T_SHORT_size = 1,
T_INT_size = 1,
T_LONG_size = 2,
T_OBJECT_size = 1,
T_ARRAY_size = 1,
T_NARROWOOP_size = 1,
T_NARROWKLASS_size = 1,
T_VOID_size = 0
};
// maps a BasicType to its instance field storage type:
// all sub-word integral types are widened to T_INT
extern BasicType type2field[T_CONFLICT+1];
extern BasicType type2wfield[T_CONFLICT+1];
// size in bytes
enum ArrayElementSize {
T_BOOLEAN_aelem_bytes = 1,
T_CHAR_aelem_bytes = 2,
T_FLOAT_aelem_bytes = 4,
T_DOUBLE_aelem_bytes = 8,
T_BYTE_aelem_bytes = 1,
T_SHORT_aelem_bytes = 2,
T_INT_aelem_bytes = 4,
T_LONG_aelem_bytes = 8,
#ifdef _LP64
T_OBJECT_aelem_bytes = 8,
T_ARRAY_aelem_bytes = 8,
#else
T_OBJECT_aelem_bytes = 4,
T_ARRAY_aelem_bytes = 4,
#endif
T_NARROWOOP_aelem_bytes = 4,
T_NARROWKLASS_aelem_bytes = 4,
T_VOID_aelem_bytes = 0
};
extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
#ifdef ASSERT
extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
#else
inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
#endif
// JavaValue serves as a container for arbitrary Java values.
class JavaValue {
public:
typedef union JavaCallValue {
jfloat f;
jdouble d;
jint i;
jlong l;
jobject h;
} JavaCallValue;
private:
BasicType _type;
JavaCallValue _value;
public:
JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
JavaValue(jfloat value) {
_type = T_FLOAT;
_value.f = value;
}
JavaValue(jdouble value) {
_type = T_DOUBLE;
_value.d = value;
}
jfloat get_jfloat() const { return _value.f; }
jdouble get_jdouble() const { return _value.d; }
jint get_jint() const { return _value.i; }
jlong get_jlong() const { return _value.l; }
jobject get_jobject() const { return _value.h; }
JavaCallValue* get_value_addr() { return &_value; }
BasicType get_type() const { return _type; }
void set_jfloat(jfloat f) { _value.f = f;}
void set_jdouble(jdouble d) { _value.d = d;}
void set_jint(jint i) { _value.i = i;}
void set_jlong(jlong l) { _value.l = l;}
void set_jobject(jobject h) { _value.h = h;}
void set_type(BasicType t) { _type = t; }
jboolean get_jboolean() const { return (jboolean) (_value.i);}
jbyte get_jbyte() const { return (jbyte) (_value.i);}
jchar get_jchar() const { return (jchar) (_value.i);}
jshort get_jshort() const { return (jshort) (_value.i);}
};
#define STACK_BIAS 0
// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
// in order to extend the reach of the stack pointer.
#if defined(SPARC) && defined(_LP64)
#undef STACK_BIAS
#define STACK_BIAS 0x7ff
#endif
// TosState describes the top-of-stack state before and after the execution of
// a bytecode or method. The top-of-stack value may be cached in one or more CPU
// registers. The TosState corresponds to the 'machine representation' of this cached
// value. There's 4 states corresponding to the JAVA types int, long, float & double
// as well as a 5th state in case the top-of-stack value is actually on the top
// of stack (in memory) and thus not cached. The atos state corresponds to the itos
// state when it comes to machine representation but is used separately for (oop)
// type specific operations (e.g. verification code).
enum TosState { // describes the tos cache contents
btos = 0, // byte, bool tos cached
ztos = 1, // byte, bool tos cached
ctos = 2, // char tos cached
stos = 3, // short tos cached
itos = 4, // int tos cached
ltos = 5, // long tos cached
ftos = 6, // float tos cached
dtos = 7, // double tos cached
atos = 8, // object cached
vtos = 9, // tos not cached
number_of_states,
ilgl // illegal state: should not occur
};
inline TosState as_TosState(BasicType type) {
switch (type) {
case T_BYTE : return btos;
case T_BOOLEAN: return ztos;
case T_CHAR : return ctos;
case T_SHORT : return stos;
case T_INT : return itos;
case T_LONG : return ltos;
case T_FLOAT : return ftos;
case T_DOUBLE : return dtos;
case T_VOID : return vtos;
case T_ARRAY : // fall through
case T_OBJECT : return atos;
default : return ilgl;
}
}
inline BasicType as_BasicType(TosState state) {
switch (state) {
case btos : return T_BYTE;
case ztos : return T_BOOLEAN;
case ctos : return T_CHAR;
case stos : return T_SHORT;
case itos : return T_INT;
case ltos : return T_LONG;
case ftos : return T_FLOAT;
case dtos : return T_DOUBLE;
case atos : return T_OBJECT;
case vtos : return T_VOID;
default : return T_ILLEGAL;
}
}
// Helper function to convert BasicType info into TosState
// Note: Cannot define here as it uses global constant at the time being.
TosState as_TosState(BasicType type);
// JavaThreadState keeps track of which part of the code a thread is executing in. This
// information is needed by the safepoint code.
//
// There are 4 essential states:
//
// _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
// _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
// _thread_in_vm : Executing in the vm
// _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
//
// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
// a transition from one state to another. These extra states makes it possible for the safepoint code to
// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
//
// Given a state, the xxxx_trans state can always be found by adding 1.
//
enum JavaThreadState {
_thread_uninitialized = 0, // should never happen (missing initialization)
_thread_new = 2, // just starting up, i.e., in process of being initialized
_thread_new_trans = 3, // corresponding transition state (not used, included for completness)
_thread_in_native = 4, // running in native code
_thread_in_native_trans = 5, // corresponding transition state
_thread_in_vm = 6, // running in VM
_thread_in_vm_trans = 7, // corresponding transition state
_thread_in_Java = 8, // running in Java or in stub code
_thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
_thread_blocked = 10, // blocked in vm
_thread_blocked_trans = 11, // corresponding transition state
_thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
};
//----------------------------------------------------------------------------------------------------
// 'Forward' declarations of frequently used classes
// (in order to reduce interface dependencies & reduce
// number of unnecessary compilations after changes)
class ClassFileStream;
class Event;
class Thread;
class VMThread;
class JavaThread;
class Threads;
class VM_Operation;
class VMOperationQueue;
class CodeBlob;
class CompiledMethod;
class nmethod;
class RuntimeBlob;
class OSRAdapter;
class I2CAdapter;
class C2IAdapter;
class CompiledIC;
class relocInfo;
class ScopeDesc;
class PcDesc;
class Recompiler;
class Recompilee;
class RecompilationPolicy;
class RFrame;
class CompiledRFrame;
class InterpretedRFrame;
class vframe;
class javaVFrame;
class interpretedVFrame;
class compiledVFrame;
class deoptimizedVFrame;
class externalVFrame;
class entryVFrame;
class RegisterMap;
class Mutex;
class Monitor;
class BasicLock;
class BasicObjectLock;
class PeriodicTask;
class JavaCallWrapper;
class oopDesc;
class metaDataOopDesc;
class NativeCall;
class zone;
class StubQueue;
class outputStream;
class ResourceArea;
class DebugInformationRecorder;
class ScopeValue;
class CompressedStream;
class DebugInfoReadStream;
class DebugInfoWriteStream;
class LocationValue;
class ConstantValue;
class IllegalValue;
class MonitorArray;
class MonitorInfo;
class OffsetClosure;
class OopMapCache;
class InterpreterOopMap;
class OopMapCacheEntry;
class OSThread;
typedef int (*OSThreadStartFunc)(void*);
class Space;
class JavaValue;
class methodHandle;
class JavaCallArguments;
//----------------------------------------------------------------------------------------------------
// Special constants for debugging
const jint badInt = -3; // generic "bad int" value
const intptr_t badAddressVal = -2; // generic "bad address" value
const intptr_t badOopVal = -1; // generic "bad oop" value
const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
const int badStackSegVal = 0xCA; // value used to zap stack segments
const int badHandleValue = 0xBC; // value used to zap vm handle area
const int badResourceValue = 0xAB; // value used to zap resource area
const int freeBlockPad = 0xBA; // value used to pad freed blocks.
const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk
const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
// (These must be implemented as #defines because C++ compilers are
// not obligated to inline non-integral constants!)
#define badAddress ((address)::badAddressVal)
#define badOop (cast_to_oop(::badOopVal))
#define badHeapWord (::badHeapWordVal)
// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
//----------------------------------------------------------------------------------------------------
// Utility functions for bitfield manipulations
const intptr_t AllBits = ~0; // all bits set in a word
const intptr_t NoBits = 0; // no bits set in a word
const jlong NoLongBits = 0; // no bits set in a long
const intptr_t OneBit = 1; // only right_most bit set in a word
// get a word with the n.th or the right-most or left-most n bits set
// (note: #define used only so that they can be used in enum constant definitions)
#define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
#define right_n_bits(n) (nth_bit(n) - 1)
#define left_n_bits(n) (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
// bit-operations using a mask m
inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
// bit-operations using the n.th bit
inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
return mask_bits(x >> start_bit_no, right_n_bits(field_length));
}
//----------------------------------------------------------------------------------------------------
// Utility functions for integers
// Avoid use of global min/max macros which may cause unwanted double
// evaluation of arguments.
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
// It is necessary to use templates here. Having normal overloaded
// functions does not work because it is necessary to provide both 32-
// and 64-bit overloaded functions, which does not work, and having
// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
// will be even more error-prone than macros.
template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
// true if x is a power of 2, false otherwise
inline bool is_power_of_2(intptr_t x) {
return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
}
// long version of is_power_of_2
inline bool is_power_of_2_long(jlong x) {
return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
}
// Returns largest i such that 2^i <= x.
// If x == 0, the function returns -1.
inline int log2_intptr(uintptr_t x) {
int i = -1;
uintptr_t p = 1;
while (p != 0 && p <= x) {
// p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
i++; p *= 2;
}
// p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
// If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
return i;
}
//* largest i such that 2^i <= x
inline int log2_long(julong x) {
int i = -1;
julong p = 1;
while (p != 0 && p <= x) {
// p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
i++; p *= 2;
}
// p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
// (if p = 0 then overflow occurred and i = 63)
return i;
}
// If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
inline int log2_intptr(intptr_t x) {
return log2_intptr((uintptr_t)x);
}
inline int log2_int(int x) {
STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
return log2_intptr((uintptr_t)x);
}
inline int log2_jint(jint x) {
STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
return log2_intptr((uintptr_t)x);
}
inline int log2_uint(uint x) {
STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
return log2_intptr((uintptr_t)x);
}
// A negative value of 'x' will return '63'
inline int log2_jlong(jlong x) {
STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
return log2_long((julong)x);
}
//* the argument must be exactly a power of 2
inline int exact_log2(intptr_t x) {
assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
return log2_intptr(x);
}
//* the argument must be exactly a power of 2
inline int exact_log2_long(jlong x) {
assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
return log2_long(x);
}
inline bool is_odd (intx x) { return x & 1; }
inline bool is_even(intx x) { return !is_odd(x); }
// abs methods which cannot overflow and so are well-defined across
// the entire domain of integer types.
static inline unsigned int uabs(unsigned int n) {
union {
unsigned int result;
int value;
};
result = n;
if (value < 0) result = 0-result;
return result;
}
static inline julong uabs(julong n) {
union {
julong result;
jlong value;
};
result = n;
if (value < 0) result = 0-result;
return result;
}
static inline julong uabs(jlong n) { return uabs((julong)n); }
static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
// "to" should be greater than "from."
inline intx byte_size(void* from, void* to) {
return (address)to - (address)from;
}
//----------------------------------------------------------------------------------------------------
// Avoid non-portable casts with these routines (DEPRECATED)
// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
// Bytes is optimized machine-specifically and may be much faster then the portable routines below.
// Given sequence of four bytes, build into a 32-bit word
// following the conventions used in class files.
// On the 386, this could be realized with a simple address cast.
//
// This routine takes eight bytes:
inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
| (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
| (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
| (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
| (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
| (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
| (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
| (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
}
// This routine takes four bytes:
inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
return (( u4(c1) << 24 ) & 0xff000000)
| (( u4(c2) << 16 ) & 0x00ff0000)
| (( u4(c3) << 8 ) & 0x0000ff00)
| (( u4(c4) << 0 ) & 0x000000ff);
}
// And this one works if the four bytes are contiguous in memory:
inline u4 build_u4_from( u1* p ) {
return build_u4_from( p[0], p[1], p[2], p[3] );
}
// Ditto for two-byte ints:
inline u2 build_u2_from( u1 c1, u1 c2 ) {
return u2((( u2(c1) << 8 ) & 0xff00)
| (( u2(c2) << 0 ) & 0x00ff));
}
// And this one works if the two bytes are contiguous in memory:
inline u2 build_u2_from( u1* p ) {
return build_u2_from( p[0], p[1] );
}
// Ditto for floats:
inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
u4 u = build_u4_from( c1, c2, c3, c4 );
return *(jfloat*)&u;
}
inline jfloat build_float_from( u1* p ) {
u4 u = build_u4_from( p );
return *(jfloat*)&u;
}
// now (64-bit) longs
inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
| (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
| (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
| (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
| (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
| (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
| (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
| (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
}
inline jlong build_long_from( u1* p ) {
return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
}
// Doubles, too!
inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
return *(jdouble*)&u;
}
inline jdouble build_double_from( u1* p ) {
jlong u = build_long_from( p );
return *(jdouble*)&u;
}
// Portable routines to go the other way:
inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
c1 = u1(x >> 8);
c2 = u1(x);
}
inline void explode_short_to( u2 x, u1* p ) {
explode_short_to( x, p[0], p[1]);
}
inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
c1 = u1(x >> 24);
c2 = u1(x >> 16);
c3 = u1(x >> 8);
c4 = u1(x);
}
inline void explode_int_to( u4 x, u1* p ) {
explode_int_to( x, p[0], p[1], p[2], p[3]);
}
// Pack and extract shorts to/from ints:
inline int extract_low_short_from_int(jint x) {
return x & 0xffff;
}
inline int extract_high_short_from_int(jint x) {
return (x >> 16) & 0xffff;
}
inline int build_int_from_shorts( jushort low, jushort high ) {
return ((int)((unsigned int)high << 16) | (unsigned int)low);
}
// Convert pointer to intptr_t, for use in printing pointers.
inline intptr_t p2i(const void * p) {
return (intptr_t) p;
}
// swap a & b
template<class T> static void swap(T& a, T& b) {
T tmp = a;
a = b;
b = tmp;
}
#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
//----------------------------------------------------------------------------------------------------
// Sum and product which can never overflow: they wrap, just like the
// Java operations. Note that we don't intend these to be used for
// general-purpose arithmetic: their purpose is to emulate Java
// operations.
// The goal of this code to avoid undefined or implementation-defined
// behavior. The use of an lvalue to reference cast is explicitly
// permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
// 15 in C++03]
#define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
inline TYPE NAME (TYPE in1, TYPE in2) { \
UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
return reinterpret_cast<TYPE&>(ures); \
}
JAVA_INTEGER_OP(+, java_add, jint, juint)
JAVA_INTEGER_OP(-, java_subtract, jint, juint)
JAVA_INTEGER_OP(*, java_multiply, jint, juint)
JAVA_INTEGER_OP(+, java_add, jlong, julong)
JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
#undef JAVA_INTEGER_OP
// Dereference vptr
// All C++ compilers that we know of have the vtbl pointer in the first
// word. If there are exceptions, this function needs to be made compiler
// specific.
static inline void* dereference_vptr(const void* addr) {
return *(void**)addr;
}
//----------------------------------------------------------------------------------------------------
// String type aliases used by command line flag declarations and
// processing utilities.
typedef const char* ccstr;
typedef const char* ccstrlist; // represents string arguments which accumulate
//----------------------------------------------------------------------------------------------------
// Default hash/equals functions used by ResourceHashtable and KVHashtable
template<typename K> unsigned primitive_hash(const K& k) {
unsigned hash = (unsigned)((uintptr_t)k);
return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
}
template<typename K> bool primitive_equals(const K& k0, const K& k1) {
return k0 == k1;
}
#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP