jdk-24/hotspot/src/share/vm/gc_implementation/g1/concurrentMark.inline.hpp
Sangheon Kim 1a4c355bbc 8073654: Marking statistics should use size_t
Change data type from int to size_t to avoid overflows

Reviewed-by: jwilhelm, drwhite, tschatzl
2015-03-09 09:30:16 -07:00

389 lines
15 KiB
C++

/*
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_INLINE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_INLINE_HPP
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
// Utility routine to set an exclusive range of cards on the given
// card liveness bitmap
inline void ConcurrentMark::set_card_bitmap_range(BitMap* card_bm,
BitMap::idx_t start_idx,
BitMap::idx_t end_idx,
bool is_par) {
// Set the exclusive bit range [start_idx, end_idx).
assert((end_idx - start_idx) > 0, "at least one card");
assert(end_idx <= card_bm->size(), "sanity");
// Silently clip the end index
end_idx = MIN2(end_idx, card_bm->size());
// For small ranges use a simple loop; otherwise use set_range or
// use par_at_put_range (if parallel). The range is made up of the
// cards that are spanned by an object/mem region so 8 cards will
// allow up to object sizes up to 4K to be handled using the loop.
if ((end_idx - start_idx) <= 8) {
for (BitMap::idx_t i = start_idx; i < end_idx; i += 1) {
if (is_par) {
card_bm->par_set_bit(i);
} else {
card_bm->set_bit(i);
}
}
} else {
// Note BitMap::par_at_put_range() and BitMap::set_range() are exclusive.
if (is_par) {
card_bm->par_at_put_range(start_idx, end_idx, true);
} else {
card_bm->set_range(start_idx, end_idx);
}
}
}
// Returns the index in the liveness accounting card bitmap
// for the given address
inline BitMap::idx_t ConcurrentMark::card_bitmap_index_for(HeapWord* addr) {
// Below, the term "card num" means the result of shifting an address
// by the card shift -- address 0 corresponds to card number 0. One
// must subtract the card num of the bottom of the heap to obtain a
// card table index.
intptr_t card_num = intptr_t(uintptr_t(addr) >> CardTableModRefBS::card_shift);
return card_num - heap_bottom_card_num();
}
// Counts the given memory region in the given task/worker
// counting data structures.
inline void ConcurrentMark::count_region(MemRegion mr, HeapRegion* hr,
size_t* marked_bytes_array,
BitMap* task_card_bm) {
G1CollectedHeap* g1h = _g1h;
CardTableModRefBS* ct_bs = g1h->g1_barrier_set();
HeapWord* start = mr.start();
HeapWord* end = mr.end();
size_t region_size_bytes = mr.byte_size();
uint index = hr->hrm_index();
assert(!hr->is_continues_humongous(), "should not be HC region");
assert(hr == g1h->heap_region_containing(start), "sanity");
assert(hr == g1h->heap_region_containing(mr.last()), "sanity");
assert(marked_bytes_array != NULL, "pre-condition");
assert(task_card_bm != NULL, "pre-condition");
// Add to the task local marked bytes for this region.
marked_bytes_array[index] += region_size_bytes;
BitMap::idx_t start_idx = card_bitmap_index_for(start);
BitMap::idx_t end_idx = card_bitmap_index_for(end);
// Note: if we're looking at the last region in heap - end
// could be actually just beyond the end of the heap; end_idx
// will then correspond to a (non-existent) card that is also
// just beyond the heap.
if (g1h->is_in_g1_reserved(end) && !ct_bs->is_card_aligned(end)) {
// end of region is not card aligned - increment to cover
// all the cards spanned by the region.
end_idx += 1;
}
// The card bitmap is task/worker specific => no need to use
// the 'par' BitMap routines.
// Set bits in the exclusive bit range [start_idx, end_idx).
set_card_bitmap_range(task_card_bm, start_idx, end_idx, false /* is_par */);
}
// Counts the given memory region in the task/worker counting
// data structures for the given worker id.
inline void ConcurrentMark::count_region(MemRegion mr,
HeapRegion* hr,
uint worker_id) {
size_t* marked_bytes_array = count_marked_bytes_array_for(worker_id);
BitMap* task_card_bm = count_card_bitmap_for(worker_id);
count_region(mr, hr, marked_bytes_array, task_card_bm);
}
// Counts the given object in the given task/worker counting data structures.
inline void ConcurrentMark::count_object(oop obj,
HeapRegion* hr,
size_t* marked_bytes_array,
BitMap* task_card_bm) {
MemRegion mr((HeapWord*)obj, obj->size());
count_region(mr, hr, marked_bytes_array, task_card_bm);
}
// Attempts to mark the given object and, if successful, counts
// the object in the given task/worker counting structures.
inline bool ConcurrentMark::par_mark_and_count(oop obj,
HeapRegion* hr,
size_t* marked_bytes_array,
BitMap* task_card_bm) {
HeapWord* addr = (HeapWord*)obj;
if (_nextMarkBitMap->parMark(addr)) {
// Update the task specific count data for the object.
count_object(obj, hr, marked_bytes_array, task_card_bm);
return true;
}
return false;
}
// Attempts to mark the given object and, if successful, counts
// the object in the task/worker counting structures for the
// given worker id.
inline bool ConcurrentMark::par_mark_and_count(oop obj,
size_t word_size,
HeapRegion* hr,
uint worker_id) {
HeapWord* addr = (HeapWord*)obj;
if (_nextMarkBitMap->parMark(addr)) {
MemRegion mr(addr, word_size);
count_region(mr, hr, worker_id);
return true;
}
return false;
}
inline bool CMBitMapRO::iterate(BitMapClosure* cl, MemRegion mr) {
HeapWord* start_addr = MAX2(startWord(), mr.start());
HeapWord* end_addr = MIN2(endWord(), mr.end());
if (end_addr > start_addr) {
// Right-open interval [start-offset, end-offset).
BitMap::idx_t start_offset = heapWordToOffset(start_addr);
BitMap::idx_t end_offset = heapWordToOffset(end_addr);
start_offset = _bm.get_next_one_offset(start_offset, end_offset);
while (start_offset < end_offset) {
if (!cl->do_bit(start_offset)) {
return false;
}
HeapWord* next_addr = MIN2(nextObject(offsetToHeapWord(start_offset)), end_addr);
BitMap::idx_t next_offset = heapWordToOffset(next_addr);
start_offset = _bm.get_next_one_offset(next_offset, end_offset);
}
}
return true;
}
inline bool CMBitMapRO::iterate(BitMapClosure* cl) {
MemRegion mr(startWord(), sizeInWords());
return iterate(cl, mr);
}
#define check_mark(addr) \
assert(_bmStartWord <= (addr) && (addr) < (_bmStartWord + _bmWordSize), \
"outside underlying space?"); \
assert(G1CollectedHeap::heap()->is_in_exact(addr), \
err_msg("Trying to access not available bitmap "PTR_FORMAT \
" corresponding to "PTR_FORMAT" (%u)", \
p2i(this), p2i(addr), G1CollectedHeap::heap()->addr_to_region(addr)));
inline void CMBitMap::mark(HeapWord* addr) {
check_mark(addr);
_bm.set_bit(heapWordToOffset(addr));
}
inline void CMBitMap::clear(HeapWord* addr) {
check_mark(addr);
_bm.clear_bit(heapWordToOffset(addr));
}
inline bool CMBitMap::parMark(HeapWord* addr) {
check_mark(addr);
return _bm.par_set_bit(heapWordToOffset(addr));
}
inline bool CMBitMap::parClear(HeapWord* addr) {
check_mark(addr);
return _bm.par_clear_bit(heapWordToOffset(addr));
}
#undef check_mark
inline void CMTask::push(oop obj) {
HeapWord* objAddr = (HeapWord*) obj;
assert(_g1h->is_in_g1_reserved(objAddr), "invariant");
assert(!_g1h->is_on_master_free_list(
_g1h->heap_region_containing((HeapWord*) objAddr)), "invariant");
assert(!_g1h->is_obj_ill(obj), "invariant");
assert(_nextMarkBitMap->isMarked(objAddr), "invariant");
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("[%u] pushing " PTR_FORMAT, _worker_id, p2i((void*) obj));
}
if (!_task_queue->push(obj)) {
// The local task queue looks full. We need to push some entries
// to the global stack.
if (_cm->verbose_medium()) {
gclog_or_tty->print_cr("[%u] task queue overflow, "
"moving entries to the global stack",
_worker_id);
}
move_entries_to_global_stack();
// this should succeed since, even if we overflow the global
// stack, we should have definitely removed some entries from the
// local queue. So, there must be space on it.
bool success = _task_queue->push(obj);
assert(success, "invariant");
}
statsOnly( size_t tmp_size = (size_t)_task_queue->size();
if (tmp_size > _local_max_size) {
_local_max_size = tmp_size;
}
++_local_pushes );
}
// This determines whether the method below will check both the local
// and global fingers when determining whether to push on the stack a
// gray object (value 1) or whether it will only check the global one
// (value 0). The tradeoffs are that the former will be a bit more
// accurate and possibly push less on the stack, but it might also be
// a little bit slower.
#define _CHECK_BOTH_FINGERS_ 1
inline void CMTask::deal_with_reference(oop obj) {
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("[%u] we're dealing with reference = "PTR_FORMAT,
_worker_id, p2i((void*) obj));
}
++_refs_reached;
HeapWord* objAddr = (HeapWord*) obj;
assert(obj->is_oop_or_null(true /* ignore mark word */), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
if (_g1h->is_in_g1_reserved(objAddr)) {
assert(obj != NULL, "null check is implicit");
if (!_nextMarkBitMap->isMarked(objAddr)) {
// Only get the containing region if the object is not marked on the
// bitmap (otherwise, it's a waste of time since we won't do
// anything with it).
HeapRegion* hr = _g1h->heap_region_containing_raw(obj);
if (!hr->obj_allocated_since_next_marking(obj)) {
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("[%u] "PTR_FORMAT" is not considered marked",
_worker_id, p2i((void*) obj));
}
// we need to mark it first
if (_cm->par_mark_and_count(obj, hr, _marked_bytes_array, _card_bm)) {
// No OrderAccess:store_load() is needed. It is implicit in the
// CAS done in CMBitMap::parMark() call in the routine above.
HeapWord* global_finger = _cm->finger();
#if _CHECK_BOTH_FINGERS_
// we will check both the local and global fingers
if (_finger != NULL && objAddr < _finger) {
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("[%u] below the local finger ("PTR_FORMAT"), "
"pushing it", _worker_id, p2i(_finger));
}
push(obj);
} else if (_curr_region != NULL && objAddr < _region_limit) {
// do nothing
} else if (objAddr < global_finger) {
// Notice that the global finger might be moving forward
// concurrently. This is not a problem. In the worst case, we
// mark the object while it is above the global finger and, by
// the time we read the global finger, it has moved forward
// passed this object. In this case, the object will probably
// be visited when a task is scanning the region and will also
// be pushed on the stack. So, some duplicate work, but no
// correctness problems.
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("[%u] below the global finger "
"("PTR_FORMAT"), pushing it",
_worker_id, p2i(global_finger));
}
push(obj);
} else {
// do nothing
}
#else // _CHECK_BOTH_FINGERS_
// we will only check the global finger
if (objAddr < global_finger) {
// see long comment above
if (_cm->verbose_high()) {
gclog_or_tty->print_cr("[%u] below the global finger "
"("PTR_FORMAT"), pushing it",
_worker_id, p2i(global_finger));
}
push(obj);
}
#endif // _CHECK_BOTH_FINGERS_
}
}
}
}
}
inline void ConcurrentMark::markPrev(oop p) {
assert(!_prevMarkBitMap->isMarked((HeapWord*) p), "sanity");
// Note we are overriding the read-only view of the prev map here, via
// the cast.
((CMBitMap*)_prevMarkBitMap)->mark((HeapWord*) p);
}
inline void ConcurrentMark::grayRoot(oop obj, size_t word_size,
uint worker_id, HeapRegion* hr) {
assert(obj != NULL, "pre-condition");
HeapWord* addr = (HeapWord*) obj;
if (hr == NULL) {
hr = _g1h->heap_region_containing_raw(addr);
} else {
assert(hr->is_in(addr), "pre-condition");
}
assert(hr != NULL, "sanity");
// Given that we're looking for a region that contains an object
// header it's impossible to get back a HC region.
assert(!hr->is_continues_humongous(), "sanity");
// We cannot assert that word_size == obj->size() given that obj
// might not be in a consistent state (another thread might be in
// the process of copying it). So the best thing we can do is to
// assert that word_size is under an upper bound which is its
// containing region's capacity.
assert(word_size * HeapWordSize <= hr->capacity(),
err_msg("size: "SIZE_FORMAT" capacity: "SIZE_FORMAT" "HR_FORMAT,
word_size * HeapWordSize, hr->capacity(),
HR_FORMAT_PARAMS(hr)));
if (addr < hr->next_top_at_mark_start()) {
if (!_nextMarkBitMap->isMarked(addr)) {
par_mark_and_count(obj, word_size, hr, worker_id);
}
}
}
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_INLINE_HPP