jdk-24/src/hotspot/share/code/codeCache.cpp
Lutz Schmidt 8e05550ef3 8214526: Change CodeHeap State Analytics control from UL to Print*
Reviewed-by: coleenp, kvn, stuefe, thartmann
2018-12-04 11:57:18 +01:00

1750 lines
59 KiB
C++

/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "aot/aotLoader.hpp"
#include "code/codeBlob.hpp"
#include "code/codeCache.hpp"
#include "code/codeHeapState.hpp"
#include "code/compiledIC.hpp"
#include "code/dependencies.hpp"
#include "code/dependencyContext.hpp"
#include "code/icBuffer.hpp"
#include "code/nmethod.hpp"
#include "code/pcDesc.hpp"
#include "compiler/compileBroker.hpp"
#include "jfr/jfrEvents.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/iterator.hpp"
#include "memory/resourceArea.hpp"
#include "oops/method.inline.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "oops/verifyOopClosure.hpp"
#include "runtime/arguments.hpp"
#include "runtime/compilationPolicy.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/icache.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/safepointVerifiers.hpp"
#include "runtime/sweeper.hpp"
#include "runtime/vmThread.hpp"
#include "services/memoryService.hpp"
#include "utilities/align.hpp"
#include "utilities/vmError.hpp"
#include "utilities/xmlstream.hpp"
#ifdef COMPILER1
#include "c1/c1_Compilation.hpp"
#include "c1/c1_Compiler.hpp"
#endif
#ifdef COMPILER2
#include "opto/c2compiler.hpp"
#include "opto/compile.hpp"
#include "opto/node.hpp"
#endif
// Helper class for printing in CodeCache
class CodeBlob_sizes {
private:
int count;
int total_size;
int header_size;
int code_size;
int stub_size;
int relocation_size;
int scopes_oop_size;
int scopes_metadata_size;
int scopes_data_size;
int scopes_pcs_size;
public:
CodeBlob_sizes() {
count = 0;
total_size = 0;
header_size = 0;
code_size = 0;
stub_size = 0;
relocation_size = 0;
scopes_oop_size = 0;
scopes_metadata_size = 0;
scopes_data_size = 0;
scopes_pcs_size = 0;
}
int total() { return total_size; }
bool is_empty() { return count == 0; }
void print(const char* title) {
tty->print_cr(" #%d %s = %dK (hdr %d%%, loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
count,
title,
(int)(total() / K),
header_size * 100 / total_size,
relocation_size * 100 / total_size,
code_size * 100 / total_size,
stub_size * 100 / total_size,
scopes_oop_size * 100 / total_size,
scopes_metadata_size * 100 / total_size,
scopes_data_size * 100 / total_size,
scopes_pcs_size * 100 / total_size);
}
void add(CodeBlob* cb) {
count++;
total_size += cb->size();
header_size += cb->header_size();
relocation_size += cb->relocation_size();
if (cb->is_nmethod()) {
nmethod* nm = cb->as_nmethod_or_null();
code_size += nm->insts_size();
stub_size += nm->stub_size();
scopes_oop_size += nm->oops_size();
scopes_metadata_size += nm->metadata_size();
scopes_data_size += nm->scopes_data_size();
scopes_pcs_size += nm->scopes_pcs_size();
} else {
code_size += cb->code_size();
}
}
};
// Iterate over all CodeHeaps
#define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
#define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
#define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
// Iterate over all CodeBlobs (cb) on the given CodeHeap
#define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
address CodeCache::_low_bound = 0;
address CodeCache::_high_bound = 0;
int CodeCache::_number_of_nmethods_with_dependencies = 0;
nmethod* CodeCache::_scavenge_root_nmethods = NULL;
ExceptionCache* volatile CodeCache::_exception_cache_purge_list = NULL;
// Initialize arrays of CodeHeap subsets
GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
// Prepare error message
const char* error = "Invalid code heap sizes";
err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
" + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
if (total_size > cache_size) {
// Some code heap sizes were explicitly set: total_size must be <= cache_size
message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
vm_exit_during_initialization(error, message);
} else if (all_set && total_size != cache_size) {
// All code heap sizes were explicitly set: total_size must equal cache_size
message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
vm_exit_during_initialization(error, message);
}
}
void CodeCache::initialize_heaps() {
bool non_nmethod_set = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
bool profiled_set = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
bool non_profiled_set = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
size_t min_size = os::vm_page_size();
size_t cache_size = ReservedCodeCacheSize;
size_t non_nmethod_size = NonNMethodCodeHeapSize;
size_t profiled_size = ProfiledCodeHeapSize;
size_t non_profiled_size = NonProfiledCodeHeapSize;
// Check if total size set via command line flags exceeds the reserved size
check_heap_sizes((non_nmethod_set ? non_nmethod_size : min_size),
(profiled_set ? profiled_size : min_size),
(non_profiled_set ? non_profiled_size : min_size),
cache_size,
non_nmethod_set && profiled_set && non_profiled_set);
// Determine size of compiler buffers
size_t code_buffers_size = 0;
#ifdef COMPILER1
// C1 temporary code buffers (see Compiler::init_buffer_blob())
const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
code_buffers_size += c1_count * Compiler::code_buffer_size();
#endif
#ifdef COMPILER2
// C2 scratch buffers (see Compile::init_scratch_buffer_blob())
const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
// Initial size of constant table (this may be increased if a compiled method needs more space)
code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
#endif
// Increase default non_nmethod_size to account for compiler buffers
if (!non_nmethod_set) {
non_nmethod_size += code_buffers_size;
}
// Calculate default CodeHeap sizes if not set by user
if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
// Check if we have enough space for the non-nmethod code heap
if (cache_size > non_nmethod_size) {
// Use the default value for non_nmethod_size and one half of the
// remaining size for non-profiled and one half for profiled methods
size_t remaining_size = cache_size - non_nmethod_size;
profiled_size = remaining_size / 2;
non_profiled_size = remaining_size - profiled_size;
} else {
// Use all space for the non-nmethod heap and set other heaps to minimal size
non_nmethod_size = cache_size - 2 * min_size;
profiled_size = min_size;
non_profiled_size = min_size;
}
} else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
// The user explicitly set some code heap sizes. Increase or decrease the (default)
// sizes of the other code heaps accordingly. First adapt non-profiled and profiled
// code heap sizes and then only change non-nmethod code heap size if still necessary.
intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
if (non_profiled_set) {
if (!profiled_set) {
// Adapt size of profiled code heap
if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
// Not enough space available, set to minimum size
diff_size += profiled_size - min_size;
profiled_size = min_size;
} else {
profiled_size += diff_size;
diff_size = 0;
}
}
} else if (profiled_set) {
// Adapt size of non-profiled code heap
if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
// Not enough space available, set to minimum size
diff_size += non_profiled_size - min_size;
non_profiled_size = min_size;
} else {
non_profiled_size += diff_size;
diff_size = 0;
}
} else if (non_nmethod_set) {
// Distribute remaining size between profiled and non-profiled code heaps
diff_size = cache_size - non_nmethod_size;
profiled_size = diff_size / 2;
non_profiled_size = diff_size - profiled_size;
diff_size = 0;
}
if (diff_size != 0) {
// Use non-nmethod code heap for remaining space requirements
assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
non_nmethod_size += diff_size;
}
}
// We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
if (!heap_available(CodeBlobType::MethodProfiled)) {
non_profiled_size += profiled_size;
profiled_size = 0;
}
// We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
if (!heap_available(CodeBlobType::MethodNonProfiled)) {
non_nmethod_size += non_profiled_size;
non_profiled_size = 0;
}
// Make sure we have enough space for VM internal code
uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
if (non_nmethod_size < min_code_cache_size) {
vm_exit_during_initialization(err_msg(
"Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
non_nmethod_size/K, min_code_cache_size/K));
}
// Verify sizes and update flag values
assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
// If large page support is enabled, align code heaps according to large
// page size to make sure that code cache is covered by large pages.
const size_t alignment = MAX2(page_size(false), (size_t) os::vm_allocation_granularity());
non_nmethod_size = align_up(non_nmethod_size, alignment);
profiled_size = align_down(profiled_size, alignment);
// Reserve one continuous chunk of memory for CodeHeaps and split it into
// parts for the individual heaps. The memory layout looks like this:
// ---------- high -----------
// Non-profiled nmethods
// Profiled nmethods
// Non-nmethods
// ---------- low ------------
ReservedCodeSpace rs = reserve_heap_memory(cache_size);
ReservedSpace non_method_space = rs.first_part(non_nmethod_size);
ReservedSpace rest = rs.last_part(non_nmethod_size);
ReservedSpace profiled_space = rest.first_part(profiled_size);
ReservedSpace non_profiled_space = rest.last_part(profiled_size);
// Non-nmethods (stubs, adapters, ...)
add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
// Tier 2 and tier 3 (profiled) methods
add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
// Tier 1 and tier 4 (non-profiled) methods and native methods
add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
}
size_t CodeCache::page_size(bool aligned) {
if (os::can_execute_large_page_memory()) {
return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, 8) :
os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8);
} else {
return os::vm_page_size();
}
}
ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
// Align and reserve space for code cache
const size_t rs_ps = page_size();
const size_t rs_align = MAX2(rs_ps, (size_t) os::vm_allocation_granularity());
const size_t rs_size = align_up(size, rs_align);
ReservedCodeSpace rs(rs_size, rs_align, rs_ps > (size_t) os::vm_page_size());
if (!rs.is_reserved()) {
vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)",
rs_size/K));
}
// Initialize bounds
_low_bound = (address)rs.base();
_high_bound = _low_bound + rs.size();
return rs;
}
// Heaps available for allocation
bool CodeCache::heap_available(int code_blob_type) {
if (!SegmentedCodeCache) {
// No segmentation: use a single code heap
return (code_blob_type == CodeBlobType::All);
} else if (Arguments::is_interpreter_only()) {
// Interpreter only: we don't need any method code heaps
return (code_blob_type == CodeBlobType::NonNMethod);
} else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
// Tiered compilation: use all code heaps
return (code_blob_type < CodeBlobType::All);
} else {
// No TieredCompilation: we only need the non-nmethod and non-profiled code heap
return (code_blob_type == CodeBlobType::NonNMethod) ||
(code_blob_type == CodeBlobType::MethodNonProfiled);
}
}
const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
switch(code_blob_type) {
case CodeBlobType::NonNMethod:
return "NonNMethodCodeHeapSize";
break;
case CodeBlobType::MethodNonProfiled:
return "NonProfiledCodeHeapSize";
break;
case CodeBlobType::MethodProfiled:
return "ProfiledCodeHeapSize";
break;
}
ShouldNotReachHere();
return NULL;
}
int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
if (lhs->code_blob_type() == rhs->code_blob_type()) {
return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
} else {
return lhs->code_blob_type() - rhs->code_blob_type();
}
}
void CodeCache::add_heap(CodeHeap* heap) {
assert(!Universe::is_fully_initialized(), "late heap addition?");
_heaps->insert_sorted<code_heap_compare>(heap);
int type = heap->code_blob_type();
if (code_blob_type_accepts_compiled(type)) {
_compiled_heaps->insert_sorted<code_heap_compare>(heap);
}
if (code_blob_type_accepts_nmethod(type)) {
_nmethod_heaps->insert_sorted<code_heap_compare>(heap);
}
if (code_blob_type_accepts_allocable(type)) {
_allocable_heaps->insert_sorted<code_heap_compare>(heap);
}
}
void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
// Check if heap is needed
if (!heap_available(code_blob_type)) {
return;
}
// Create CodeHeap
CodeHeap* heap = new CodeHeap(name, code_blob_type);
add_heap(heap);
// Reserve Space
size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size());
size_initial = align_up(size_initial, os::vm_page_size());
if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)",
heap->name(), size_initial/K));
}
// Register the CodeHeap
MemoryService::add_code_heap_memory_pool(heap, name);
}
CodeHeap* CodeCache::get_code_heap_containing(void* start) {
FOR_ALL_HEAPS(heap) {
if ((*heap)->contains(start)) {
return *heap;
}
}
return NULL;
}
CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
assert(cb != NULL, "CodeBlob is null");
FOR_ALL_HEAPS(heap) {
if ((*heap)->contains_blob(cb)) {
return *heap;
}
}
ShouldNotReachHere();
return NULL;
}
CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
FOR_ALL_HEAPS(heap) {
if ((*heap)->accepts(code_blob_type)) {
return *heap;
}
}
return NULL;
}
CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
assert_locked_or_safepoint(CodeCache_lock);
assert(heap != NULL, "heap is null");
return (CodeBlob*)heap->first();
}
CodeBlob* CodeCache::first_blob(int code_blob_type) {
if (heap_available(code_blob_type)) {
return first_blob(get_code_heap(code_blob_type));
} else {
return NULL;
}
}
CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
assert_locked_or_safepoint(CodeCache_lock);
assert(heap != NULL, "heap is null");
return (CodeBlob*)heap->next(cb);
}
/**
* Do not seize the CodeCache lock here--if the caller has not
* already done so, we are going to lose bigtime, since the code
* cache will contain a garbage CodeBlob until the caller can
* run the constructor for the CodeBlob subclass he is busy
* instantiating.
*/
CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
// Possibly wakes up the sweeper thread.
NMethodSweeper::notify(code_blob_type);
assert_locked_or_safepoint(CodeCache_lock);
assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
if (size <= 0) {
return NULL;
}
CodeBlob* cb = NULL;
// Get CodeHeap for the given CodeBlobType
CodeHeap* heap = get_code_heap(code_blob_type);
assert(heap != NULL, "heap is null");
while (true) {
cb = (CodeBlob*)heap->allocate(size);
if (cb != NULL) break;
if (!heap->expand_by(CodeCacheExpansionSize)) {
// Save original type for error reporting
if (orig_code_blob_type == CodeBlobType::All) {
orig_code_blob_type = code_blob_type;
}
// Expansion failed
if (SegmentedCodeCache) {
// Fallback solution: Try to store code in another code heap.
// NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
// Note that in the sweeper, we check the reverse_free_ratio of the code heap
// and force stack scanning if less than 10% of the code heap are free.
int type = code_blob_type;
switch (type) {
case CodeBlobType::NonNMethod:
type = CodeBlobType::MethodNonProfiled;
break;
case CodeBlobType::MethodNonProfiled:
type = CodeBlobType::MethodProfiled;
break;
case CodeBlobType::MethodProfiled:
// Avoid loop if we already tried that code heap
if (type == orig_code_blob_type) {
type = CodeBlobType::MethodNonProfiled;
}
break;
}
if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
if (PrintCodeCacheExtension) {
tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
heap->name(), get_code_heap(type)->name());
}
return allocate(size, type, orig_code_blob_type);
}
}
MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CompileBroker::handle_full_code_cache(orig_code_blob_type);
return NULL;
}
if (PrintCodeCacheExtension) {
ResourceMark rm;
if (_nmethod_heaps->length() >= 1) {
tty->print("%s", heap->name());
} else {
tty->print("CodeCache");
}
tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
(intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
(address)heap->high() - (address)heap->low_boundary());
}
}
print_trace("allocation", cb, size);
return cb;
}
void CodeCache::free(CodeBlob* cb) {
assert_locked_or_safepoint(CodeCache_lock);
CodeHeap* heap = get_code_heap(cb);
print_trace("free", cb);
if (cb->is_nmethod()) {
heap->set_nmethod_count(heap->nmethod_count() - 1);
if (((nmethod *)cb)->has_dependencies()) {
_number_of_nmethods_with_dependencies--;
}
}
if (cb->is_adapter_blob()) {
heap->set_adapter_count(heap->adapter_count() - 1);
}
// Get heap for given CodeBlob and deallocate
get_code_heap(cb)->deallocate(cb);
assert(heap->blob_count() >= 0, "sanity check");
}
void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
assert_locked_or_safepoint(CodeCache_lock);
guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
print_trace("free_unused_tail", cb);
// We also have to account for the extra space (i.e. header) used by the CodeBlob
// which provides the memory (see BufferBlob::create() in codeBlob.cpp).
used += CodeBlob::align_code_offset(cb->header_size());
// Get heap for given CodeBlob and deallocate its unused tail
get_code_heap(cb)->deallocate_tail(cb, used);
// Adjust the sizes of the CodeBlob
cb->adjust_size(used);
}
void CodeCache::commit(CodeBlob* cb) {
// this is called by nmethod::nmethod, which must already own CodeCache_lock
assert_locked_or_safepoint(CodeCache_lock);
CodeHeap* heap = get_code_heap(cb);
if (cb->is_nmethod()) {
heap->set_nmethod_count(heap->nmethod_count() + 1);
if (((nmethod *)cb)->has_dependencies()) {
_number_of_nmethods_with_dependencies++;
}
}
if (cb->is_adapter_blob()) {
heap->set_adapter_count(heap->adapter_count() + 1);
}
// flush the hardware I-cache
ICache::invalidate_range(cb->content_begin(), cb->content_size());
}
bool CodeCache::contains(void *p) {
// S390 uses contains() in current_frame(), which is used before
// code cache initialization if NativeMemoryTracking=detail is set.
S390_ONLY(if (_heaps == NULL) return false;)
// It should be ok to call contains without holding a lock.
FOR_ALL_HEAPS(heap) {
if ((*heap)->contains(p)) {
return true;
}
}
return false;
}
bool CodeCache::contains(nmethod *nm) {
return contains((void *)nm);
}
// This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
// looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
// valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
CodeBlob* CodeCache::find_blob(void* start) {
CodeBlob* result = find_blob_unsafe(start);
// We could potentially look up non_entrant methods
guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
return result;
}
// Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
// what you are doing)
CodeBlob* CodeCache::find_blob_unsafe(void* start) {
// NMT can walk the stack before code cache is created
if (_heaps != NULL) {
CodeHeap* heap = get_code_heap_containing(start);
if (heap != NULL) {
return heap->find_blob_unsafe(start);
}
}
return NULL;
}
nmethod* CodeCache::find_nmethod(void* start) {
CodeBlob* cb = find_blob(start);
assert(cb->is_nmethod(), "did not find an nmethod");
return (nmethod*)cb;
}
void CodeCache::blobs_do(void f(CodeBlob* nm)) {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_HEAPS(heap) {
FOR_ALL_BLOBS(cb, *heap) {
f(cb);
}
}
}
void CodeCache::nmethods_do(void f(nmethod* nm)) {
assert_locked_or_safepoint(CodeCache_lock);
NMethodIterator iter(NMethodIterator::all_blobs);
while(iter.next()) {
f(iter.method());
}
}
void CodeCache::metadata_do(void f(Metadata* m)) {
assert_locked_or_safepoint(CodeCache_lock);
NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
iter.method()->metadata_do(f);
}
AOTLoader::metadata_do(f);
}
int CodeCache::alignment_unit() {
return (int)_heaps->first()->alignment_unit();
}
int CodeCache::alignment_offset() {
return (int)_heaps->first()->alignment_offset();
}
// Mark nmethods for unloading if they contain otherwise unreachable oops.
void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
assert_locked_or_safepoint(CodeCache_lock);
UnloadingScope scope(is_alive);
CompiledMethodIterator iter(CompiledMethodIterator::only_alive);
while(iter.next()) {
iter.method()->do_unloading(unloading_occurred);
}
}
void CodeCache::blobs_do(CodeBlobClosure* f) {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_ALLOCABLE_HEAPS(heap) {
FOR_ALL_BLOBS(cb, *heap) {
if (cb->is_alive()) {
f->do_code_blob(cb);
#ifdef ASSERT
if (cb->is_nmethod()) {
Universe::heap()->verify_nmethod((nmethod*)cb);
}
#endif //ASSERT
}
}
}
}
// Walk the list of methods which might contain oops to the java heap.
void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
assert_locked_or_safepoint(CodeCache_lock);
const bool fix_relocations = f->fix_relocations();
debug_only(mark_scavenge_root_nmethods());
nmethod* prev = NULL;
nmethod* cur = scavenge_root_nmethods();
while (cur != NULL) {
debug_only(cur->clear_scavenge_root_marked());
assert(cur->scavenge_root_not_marked(), "");
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
LogTarget(Trace, gc, nmethod) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
CompileTask::print(&ls, cur,
is_live ? "scavenge root " : "dead scavenge root", /*short_form:*/ true);
}
if (is_live) {
// Perform cur->oops_do(f), maybe just once per nmethod.
f->do_code_blob(cur);
}
nmethod* const next = cur->scavenge_root_link();
// The scavengable nmethod list must contain all methods with scavengable
// oops. It is safe to include more nmethod on the list, but we do not
// expect any live non-scavengable nmethods on the list.
if (fix_relocations) {
if (!is_live || !cur->detect_scavenge_root_oops()) {
unlink_scavenge_root_nmethod(cur, prev);
} else {
prev = cur;
}
}
cur = next;
}
// Check for stray marks.
debug_only(verify_perm_nmethods(NULL));
}
void CodeCache::register_scavenge_root_nmethod(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
if (!nm->on_scavenge_root_list() && nm->detect_scavenge_root_oops()) {
add_scavenge_root_nmethod(nm);
}
}
void CodeCache::verify_scavenge_root_nmethod(nmethod* nm) {
nm->verify_scavenge_root_oops();
}
void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
nm->set_on_scavenge_root_list();
nm->set_scavenge_root_link(_scavenge_root_nmethods);
set_scavenge_root_nmethods(nm);
print_trace("add_scavenge_root", nm);
}
void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
assert_locked_or_safepoint(CodeCache_lock);
assert((prev == NULL && scavenge_root_nmethods() == nm) ||
(prev != NULL && prev->scavenge_root_link() == nm), "precondition");
print_trace("unlink_scavenge_root", nm);
if (prev == NULL) {
set_scavenge_root_nmethods(nm->scavenge_root_link());
} else {
prev->set_scavenge_root_link(nm->scavenge_root_link());
}
nm->set_scavenge_root_link(NULL);
nm->clear_on_scavenge_root_list();
}
void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
print_trace("drop_scavenge_root", nm);
nmethod* prev = NULL;
for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
if (cur == nm) {
unlink_scavenge_root_nmethod(cur, prev);
return;
}
prev = cur;
}
assert(false, "should have been on list");
}
void CodeCache::prune_scavenge_root_nmethods() {
assert_locked_or_safepoint(CodeCache_lock);
debug_only(mark_scavenge_root_nmethods());
nmethod* last = NULL;
nmethod* cur = scavenge_root_nmethods();
while (cur != NULL) {
nmethod* next = cur->scavenge_root_link();
debug_only(cur->clear_scavenge_root_marked());
assert(cur->scavenge_root_not_marked(), "");
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
if (!cur->is_zombie() && !cur->is_unloaded()
&& cur->detect_scavenge_root_oops()) {
// Keep it. Advance 'last' to prevent deletion.
last = cur;
} else {
// Prune it from the list, so we don't have to look at it any more.
print_trace("prune_scavenge_root", cur);
unlink_scavenge_root_nmethod(cur, last);
}
cur = next;
}
// Check for stray marks.
debug_only(verify_perm_nmethods(NULL));
}
#ifndef PRODUCT
void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
// While we are here, verify the integrity of the list.
mark_scavenge_root_nmethods();
for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
cur->clear_scavenge_root_marked();
}
verify_perm_nmethods(f);
}
// Temporarily mark nmethods that are claimed to be on the scavenge list.
void CodeCache::mark_scavenge_root_nmethods() {
NMethodIterator iter(NMethodIterator::only_alive);
while(iter.next()) {
nmethod* nm = iter.method();
assert(nm->scavenge_root_not_marked(), "clean state");
if (nm->on_scavenge_root_list())
nm->set_scavenge_root_marked();
}
}
// If the closure is given, run it on the unlisted nmethods.
// Also make sure that the effects of mark_scavenge_root_nmethods is gone.
void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
NMethodIterator iter(NMethodIterator::only_alive);
while(iter.next()) {
nmethod* nm = iter.method();
bool call_f = (f_or_null != NULL);
assert(nm->scavenge_root_not_marked(), "must be already processed");
if (nm->on_scavenge_root_list())
call_f = false; // don't show this one to the client
Universe::heap()->verify_nmethod(nm);
if (call_f) f_or_null->do_code_blob(nm);
}
}
#endif //PRODUCT
void CodeCache::verify_clean_inline_caches() {
#ifdef ASSERT
NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
nmethod* nm = iter.method();
assert(!nm->is_unloaded(), "Tautology");
nm->verify_clean_inline_caches();
nm->verify();
}
#endif
}
void CodeCache::verify_icholder_relocations() {
#ifdef ASSERT
// make sure that we aren't leaking icholders
int count = 0;
FOR_ALL_HEAPS(heap) {
FOR_ALL_BLOBS(cb, *heap) {
CompiledMethod *nm = cb->as_compiled_method_or_null();
if (nm != NULL) {
count += nm->verify_icholder_relocations();
}
}
}
assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
CompiledICHolder::live_count(), "must agree");
#endif
}
// Defer freeing of concurrently cleaned ExceptionCache entries until
// after a global handshake operation.
void CodeCache::release_exception_cache(ExceptionCache* entry) {
if (SafepointSynchronize::is_at_safepoint()) {
delete entry;
} else {
for (;;) {
ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list);
entry->set_purge_list_next(purge_list_head);
if (Atomic::cmpxchg(entry, &_exception_cache_purge_list, purge_list_head) == purge_list_head) {
break;
}
}
}
}
// Delete exception caches that have been concurrently unlinked,
// followed by a global handshake operation.
void CodeCache::purge_exception_caches() {
ExceptionCache* curr = _exception_cache_purge_list;
while (curr != NULL) {
ExceptionCache* next = curr->purge_list_next();
delete curr;
curr = next;
}
_exception_cache_purge_list = NULL;
}
void CodeCache::gc_prologue() { }
void CodeCache::gc_epilogue() {
prune_scavenge_root_nmethods();
}
uint8_t CodeCache::_unloading_cycle = 1;
void CodeCache::increment_unloading_cycle() {
if (_unloading_cycle == 1) {
_unloading_cycle = 2;
} else {
_unloading_cycle = 1;
}
}
CodeCache::UnloadingScope::UnloadingScope(BoolObjectClosure* is_alive)
: _is_unloading_behaviour(is_alive)
{
IsUnloadingBehaviour::set_current(&_is_unloading_behaviour);
increment_unloading_cycle();
DependencyContext::cleaning_start();
}
CodeCache::UnloadingScope::~UnloadingScope() {
IsUnloadingBehaviour::set_current(NULL);
DependencyContext::cleaning_end();
}
void CodeCache::verify_oops() {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
VerifyOopClosure voc;
NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
nmethod* nm = iter.method();
nm->oops_do(&voc);
nm->verify_oop_relocations();
}
}
int CodeCache::blob_count(int code_blob_type) {
CodeHeap* heap = get_code_heap(code_blob_type);
return (heap != NULL) ? heap->blob_count() : 0;
}
int CodeCache::blob_count() {
int count = 0;
FOR_ALL_HEAPS(heap) {
count += (*heap)->blob_count();
}
return count;
}
int CodeCache::nmethod_count(int code_blob_type) {
CodeHeap* heap = get_code_heap(code_blob_type);
return (heap != NULL) ? heap->nmethod_count() : 0;
}
int CodeCache::nmethod_count() {
int count = 0;
FOR_ALL_NMETHOD_HEAPS(heap) {
count += (*heap)->nmethod_count();
}
return count;
}
int CodeCache::adapter_count(int code_blob_type) {
CodeHeap* heap = get_code_heap(code_blob_type);
return (heap != NULL) ? heap->adapter_count() : 0;
}
int CodeCache::adapter_count() {
int count = 0;
FOR_ALL_HEAPS(heap) {
count += (*heap)->adapter_count();
}
return count;
}
address CodeCache::low_bound(int code_blob_type) {
CodeHeap* heap = get_code_heap(code_blob_type);
return (heap != NULL) ? (address)heap->low_boundary() : NULL;
}
address CodeCache::high_bound(int code_blob_type) {
CodeHeap* heap = get_code_heap(code_blob_type);
return (heap != NULL) ? (address)heap->high_boundary() : NULL;
}
size_t CodeCache::capacity() {
size_t cap = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
cap += (*heap)->capacity();
}
return cap;
}
size_t CodeCache::unallocated_capacity(int code_blob_type) {
CodeHeap* heap = get_code_heap(code_blob_type);
return (heap != NULL) ? heap->unallocated_capacity() : 0;
}
size_t CodeCache::unallocated_capacity() {
size_t unallocated_cap = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
unallocated_cap += (*heap)->unallocated_capacity();
}
return unallocated_cap;
}
size_t CodeCache::max_capacity() {
size_t max_cap = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
max_cap += (*heap)->max_capacity();
}
return max_cap;
}
/**
* Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
* is free, reverse_free_ratio() returns 4.
*/
double CodeCache::reverse_free_ratio(int code_blob_type) {
CodeHeap* heap = get_code_heap(code_blob_type);
if (heap == NULL) {
return 0;
}
double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
double max_capacity = (double)heap->max_capacity();
double result = max_capacity / unallocated_capacity;
assert (max_capacity >= unallocated_capacity, "Must be");
assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
return result;
}
size_t CodeCache::bytes_allocated_in_freelists() {
size_t allocated_bytes = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
allocated_bytes += (*heap)->allocated_in_freelist();
}
return allocated_bytes;
}
int CodeCache::allocated_segments() {
int number_of_segments = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
number_of_segments += (*heap)->allocated_segments();
}
return number_of_segments;
}
size_t CodeCache::freelists_length() {
size_t length = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
length += (*heap)->freelist_length();
}
return length;
}
void icache_init();
void CodeCache::initialize() {
assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
#ifdef COMPILER2
assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment, "CodeCacheSegmentSize must be large enough to align inner loops");
#endif
assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants");
// This was originally just a check of the alignment, causing failure, instead, round
// the code cache to the page size. In particular, Solaris is moving to a larger
// default page size.
CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
if (SegmentedCodeCache) {
// Use multiple code heaps
initialize_heaps();
} else {
// Use a single code heap
FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
add_heap(rs, "CodeCache", CodeBlobType::All);
}
// Initialize ICache flush mechanism
// This service is needed for os::register_code_area
icache_init();
// Give OS a chance to register generated code area.
// This is used on Windows 64 bit platforms to register
// Structured Exception Handlers for our generated code.
os::register_code_area((char*)low_bound(), (char*)high_bound());
}
void codeCache_init() {
CodeCache::initialize();
// Load AOT libraries and add AOT code heaps.
AOTLoader::initialize();
}
//------------------------------------------------------------------------------------------------
int CodeCache::number_of_nmethods_with_dependencies() {
return _number_of_nmethods_with_dependencies;
}
void CodeCache::clear_inline_caches() {
assert_locked_or_safepoint(CodeCache_lock);
CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
iter.method()->clear_inline_caches();
}
}
void CodeCache::cleanup_inline_caches() {
assert_locked_or_safepoint(CodeCache_lock);
NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
iter.method()->cleanup_inline_caches(/*clean_all=*/true);
}
}
// Keeps track of time spent for checking dependencies
NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int number_of_marked_CodeBlobs = 0;
// search the hierarchy looking for nmethods which are affected by the loading of this class
// then search the interfaces this class implements looking for nmethods
// which might be dependent of the fact that an interface only had one
// implementor.
// nmethod::check_all_dependencies works only correctly, if no safepoint
// can happen
NoSafepointVerifier nsv;
for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
Klass* d = str.klass();
number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
}
#ifndef PRODUCT
if (VerifyDependencies) {
// Object pointers are used as unique identifiers for dependency arguments. This
// is only possible if no safepoint, i.e., GC occurs during the verification code.
dependentCheckTime.start();
nmethod::check_all_dependencies(changes);
dependentCheckTime.stop();
}
#endif
return number_of_marked_CodeBlobs;
}
CompiledMethod* CodeCache::find_compiled(void* start) {
CodeBlob *cb = find_blob(start);
assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
return (CompiledMethod*)cb;
}
bool CodeCache::is_far_target(address target) {
#if INCLUDE_AOT
return NativeCall::is_far_call(_low_bound, target) ||
NativeCall::is_far_call(_high_bound, target);
#else
return false;
#endif
}
#ifdef HOTSWAP
int CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int number_of_marked_CodeBlobs = 0;
// Deoptimize all methods of the evolving class itself
Array<Method*>* old_methods = dependee->methods();
for (int i = 0; i < old_methods->length(); i++) {
ResourceMark rm;
Method* old_method = old_methods->at(i);
CompiledMethod* nm = old_method->code();
if (nm != NULL) {
nm->mark_for_deoptimization();
number_of_marked_CodeBlobs++;
}
}
CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
CompiledMethod* nm = iter.method();
if (nm->is_marked_for_deoptimization()) {
// ...Already marked in the previous pass; don't count it again.
} else if (nm->is_evol_dependent_on(dependee)) {
ResourceMark rm;
nm->mark_for_deoptimization();
number_of_marked_CodeBlobs++;
} else {
// flush caches in case they refer to a redefined Method*
nm->clear_inline_caches();
}
}
return number_of_marked_CodeBlobs;
}
#endif // HOTSWAP
// Deoptimize all methods
void CodeCache::mark_all_nmethods_for_deoptimization() {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
CompiledMethod* nm = iter.method();
if (!nm->method()->is_method_handle_intrinsic()) {
nm->mark_for_deoptimization();
}
}
}
int CodeCache::mark_for_deoptimization(Method* dependee) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int number_of_marked_CodeBlobs = 0;
CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
CompiledMethod* nm = iter.method();
if (nm->is_dependent_on_method(dependee)) {
ResourceMark rm;
nm->mark_for_deoptimization();
number_of_marked_CodeBlobs++;
}
}
return number_of_marked_CodeBlobs;
}
void CodeCache::make_marked_nmethods_not_entrant() {
assert_locked_or_safepoint(CodeCache_lock);
CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
while(iter.next()) {
CompiledMethod* nm = iter.method();
if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
nm->make_not_entrant();
}
}
}
// Flushes compiled methods dependent on dependee.
void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
assert_lock_strong(Compile_lock);
if (number_of_nmethods_with_dependencies() == 0) return;
// CodeCache can only be updated by a thread_in_VM and they will all be
// stopped during the safepoint so CodeCache will be safe to update without
// holding the CodeCache_lock.
KlassDepChange changes(dependee);
// Compute the dependent nmethods
if (mark_for_deoptimization(changes) > 0) {
// At least one nmethod has been marked for deoptimization
VM_Deoptimize op;
VMThread::execute(&op);
}
}
#ifdef HOTSWAP
// Flushes compiled methods dependent on dependee in the evolutionary sense
void CodeCache::flush_evol_dependents_on(InstanceKlass* ev_k) {
// --- Compile_lock is not held. However we are at a safepoint.
assert_locked_or_safepoint(Compile_lock);
if (number_of_nmethods_with_dependencies() == 0 && !UseAOT) return;
// CodeCache can only be updated by a thread_in_VM and they will all be
// stopped during the safepoint so CodeCache will be safe to update without
// holding the CodeCache_lock.
// Compute the dependent nmethods
if (mark_for_evol_deoptimization(ev_k) > 0) {
// At least one nmethod has been marked for deoptimization
// All this already happens inside a VM_Operation, so we'll do all the work here.
// Stuff copied from VM_Deoptimize and modified slightly.
// We do not want any GCs to happen while we are in the middle of this VM operation
ResourceMark rm;
DeoptimizationMarker dm;
// Deoptimize all activations depending on marked nmethods
Deoptimization::deoptimize_dependents();
// Make the dependent methods not entrant
make_marked_nmethods_not_entrant();
}
}
#endif // HOTSWAP
// Flushes compiled methods dependent on dependee
void CodeCache::flush_dependents_on_method(const methodHandle& m_h) {
// --- Compile_lock is not held. However we are at a safepoint.
assert_locked_or_safepoint(Compile_lock);
// CodeCache can only be updated by a thread_in_VM and they will all be
// stopped dring the safepoint so CodeCache will be safe to update without
// holding the CodeCache_lock.
// Compute the dependent nmethods
if (mark_for_deoptimization(m_h()) > 0) {
// At least one nmethod has been marked for deoptimization
// All this already happens inside a VM_Operation, so we'll do all the work here.
// Stuff copied from VM_Deoptimize and modified slightly.
// We do not want any GCs to happen while we are in the middle of this VM operation
ResourceMark rm;
DeoptimizationMarker dm;
// Deoptimize all activations depending on marked nmethods
Deoptimization::deoptimize_dependents();
// Make the dependent methods not entrant
make_marked_nmethods_not_entrant();
}
}
void CodeCache::verify() {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_HEAPS(heap) {
(*heap)->verify();
FOR_ALL_BLOBS(cb, *heap) {
if (cb->is_alive()) {
cb->verify();
}
}
}
}
// A CodeHeap is full. Print out warning and report event.
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED
void CodeCache::report_codemem_full(int code_blob_type, bool print) {
// Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
CodeHeap* heap = get_code_heap(code_blob_type);
assert(heap != NULL, "heap is null");
if ((heap->full_count() == 0) || print) {
// Not yet reported for this heap, report
if (SegmentedCodeCache) {
ResourceMark rm;
stringStream msg1_stream, msg2_stream;
msg1_stream.print("%s is full. Compiler has been disabled.",
get_code_heap_name(code_blob_type));
msg2_stream.print("Try increasing the code heap size using -XX:%s=",
get_code_heap_flag_name(code_blob_type));
const char *msg1 = msg1_stream.as_string();
const char *msg2 = msg2_stream.as_string();
log_warning(codecache)("%s", msg1);
log_warning(codecache)("%s", msg2);
warning("%s", msg1);
warning("%s", msg2);
} else {
const char *msg1 = "CodeCache is full. Compiler has been disabled.";
const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
log_warning(codecache)("%s", msg1);
log_warning(codecache)("%s", msg2);
warning("%s", msg1);
warning("%s", msg2);
}
ResourceMark rm;
stringStream s;
// Dump code cache into a buffer before locking the tty.
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
print_summary(&s);
}
{
ttyLocker ttyl;
tty->print("%s", s.as_string());
}
if (heap->full_count() == 0) {
if (PrintCodeHeapAnalytics) {
CompileBroker::print_heapinfo(tty, "all", "4096"); // details, may be a lot!
}
}
}
heap->report_full();
EventCodeCacheFull event;
if (event.should_commit()) {
event.set_codeBlobType((u1)code_blob_type);
event.set_startAddress((u8)heap->low_boundary());
event.set_commitedTopAddress((u8)heap->high());
event.set_reservedTopAddress((u8)heap->high_boundary());
event.set_entryCount(heap->blob_count());
event.set_methodCount(heap->nmethod_count());
event.set_adaptorCount(heap->adapter_count());
event.set_unallocatedCapacity(heap->unallocated_capacity());
event.set_fullCount(heap->full_count());
event.commit();
}
}
PRAGMA_DIAG_POP
void CodeCache::print_memory_overhead() {
size_t wasted_bytes = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeap* curr_heap = *heap;
for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
}
}
// Print bytes that are allocated in the freelist
ttyLocker ttl;
tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT, freelists_length());
tty->print_cr("Allocated in freelist: " SSIZE_FORMAT "kB", bytes_allocated_in_freelists()/K);
tty->print_cr("Unused bytes in CodeBlobs: " SSIZE_FORMAT "kB", (wasted_bytes/K));
tty->print_cr("Segment map size: " SSIZE_FORMAT "kB", allocated_segments()/K); // 1 byte per segment
}
//------------------------------------------------------------------------------------------------
// Non-product version
#ifndef PRODUCT
void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
if (PrintCodeCache2) { // Need to add a new flag
ResourceMark rm;
if (size == 0) size = cb->size();
tty->print_cr("CodeCache %s: addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
}
}
void CodeCache::print_internals() {
int nmethodCount = 0;
int runtimeStubCount = 0;
int adapterCount = 0;
int deoptimizationStubCount = 0;
int uncommonTrapStubCount = 0;
int bufferBlobCount = 0;
int total = 0;
int nmethodAlive = 0;
int nmethodNotEntrant = 0;
int nmethodZombie = 0;
int nmethodUnloaded = 0;
int nmethodJava = 0;
int nmethodNative = 0;
int max_nm_size = 0;
ResourceMark rm;
int i = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
if ((_nmethod_heaps->length() >= 1) && Verbose) {
tty->print_cr("-- %s --", (*heap)->name());
}
FOR_ALL_BLOBS(cb, *heap) {
total++;
if (cb->is_nmethod()) {
nmethod* nm = (nmethod*)cb;
if (Verbose && nm->method() != NULL) {
ResourceMark rm;
char *method_name = nm->method()->name_and_sig_as_C_string();
tty->print("%s", method_name);
if(nm->is_alive()) { tty->print_cr(" alive"); }
if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
if(nm->is_zombie()) { tty->print_cr(" zombie"); }
}
nmethodCount++;
if(nm->is_alive()) { nmethodAlive++; }
if(nm->is_not_entrant()) { nmethodNotEntrant++; }
if(nm->is_zombie()) { nmethodZombie++; }
if(nm->is_unloaded()) { nmethodUnloaded++; }
if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
if(nm->method() != NULL && nm->is_java_method()) {
nmethodJava++;
max_nm_size = MAX2(max_nm_size, nm->size());
}
} else if (cb->is_runtime_stub()) {
runtimeStubCount++;
} else if (cb->is_deoptimization_stub()) {
deoptimizationStubCount++;
} else if (cb->is_uncommon_trap_stub()) {
uncommonTrapStubCount++;
} else if (cb->is_adapter_blob()) {
adapterCount++;
} else if (cb->is_buffer_blob()) {
bufferBlobCount++;
}
}
}
int bucketSize = 512;
int bucketLimit = max_nm_size / bucketSize + 1;
int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
memset(buckets, 0, sizeof(int) * bucketLimit);
NMethodIterator iter(NMethodIterator::all_blobs);
while(iter.next()) {
nmethod* nm = iter.method();
if(nm->method() != NULL && nm->is_java_method()) {
buckets[nm->size() / bucketSize]++;
}
}
tty->print_cr("Code Cache Entries (total of %d)",total);
tty->print_cr("-------------------------------------------------");
tty->print_cr("nmethods: %d",nmethodCount);
tty->print_cr("\talive: %d",nmethodAlive);
tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
tty->print_cr("\tzombie: %d",nmethodZombie);
tty->print_cr("\tunloaded: %d",nmethodUnloaded);
tty->print_cr("\tjava: %d",nmethodJava);
tty->print_cr("\tnative: %d",nmethodNative);
tty->print_cr("runtime_stubs: %d",runtimeStubCount);
tty->print_cr("adapters: %d",adapterCount);
tty->print_cr("buffer blobs: %d",bufferBlobCount);
tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
tty->print_cr("\nnmethod size distribution (non-zombie java)");
tty->print_cr("-------------------------------------------------");
for(int i=0; i<bucketLimit; i++) {
if(buckets[i] != 0) {
tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
tty->fill_to(40);
tty->print_cr("%d",buckets[i]);
}
}
FREE_C_HEAP_ARRAY(int, buckets);
print_memory_overhead();
}
#endif // !PRODUCT
void CodeCache::print() {
print_summary(tty);
#ifndef PRODUCT
if (!Verbose) return;
CodeBlob_sizes live;
CodeBlob_sizes dead;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
FOR_ALL_BLOBS(cb, *heap) {
if (!cb->is_alive()) {
dead.add(cb);
} else {
live.add(cb);
}
}
}
tty->print_cr("CodeCache:");
tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
if (!live.is_empty()) {
live.print("live");
}
if (!dead.is_empty()) {
dead.print("dead");
}
if (WizardMode) {
// print the oop_map usage
int code_size = 0;
int number_of_blobs = 0;
int number_of_oop_maps = 0;
int map_size = 0;
FOR_ALL_ALLOCABLE_HEAPS(heap) {
FOR_ALL_BLOBS(cb, *heap) {
if (cb->is_alive()) {
number_of_blobs++;
code_size += cb->code_size();
ImmutableOopMapSet* set = cb->oop_maps();
if (set != NULL) {
number_of_oop_maps += set->count();
map_size += set->nr_of_bytes();
}
}
}
}
tty->print_cr("OopMaps");
tty->print_cr(" #blobs = %d", number_of_blobs);
tty->print_cr(" code size = %d", code_size);
tty->print_cr(" #oop_maps = %d", number_of_oop_maps);
tty->print_cr(" map size = %d", map_size);
}
#endif // !PRODUCT
}
void CodeCache::print_summary(outputStream* st, bool detailed) {
int full_count = 0;
FOR_ALL_HEAPS(heap_iterator) {
CodeHeap* heap = (*heap_iterator);
size_t total = (heap->high_boundary() - heap->low_boundary());
if (_heaps->length() >= 1) {
st->print("%s:", heap->name());
} else {
st->print("CodeCache:");
}
st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
"Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
total/K, (total - heap->unallocated_capacity())/K,
heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
if (detailed) {
st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
p2i(heap->low_boundary()),
p2i(heap->high()),
p2i(heap->high_boundary()));
full_count += get_codemem_full_count(heap->code_blob_type());
}
}
if (detailed) {
st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
" adapters=" UINT32_FORMAT,
blob_count(), nmethod_count(), adapter_count());
st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
"enabled" : Arguments::mode() == Arguments::_int ?
"disabled (interpreter mode)" :
"disabled (not enough contiguous free space left)");
st->print_cr(" stopped_count=%d, restarted_count=%d",
CompileBroker::get_total_compiler_stopped_count(),
CompileBroker::get_total_compiler_restarted_count());
st->print_cr(" full_count=%d", full_count);
}
}
void CodeCache::print_codelist(outputStream* st) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
while (iter.next()) {
CompiledMethod* cm = iter.method();
ResourceMark rm;
char* method_name = cm->method()->name_and_sig_as_C_string();
st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
cm->compile_id(), cm->comp_level(), cm->get_state(),
method_name,
(intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
}
}
void CodeCache::print_layout(outputStream* st) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
ResourceMark rm;
print_summary(st, true);
}
void CodeCache::log_state(outputStream* st) {
st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
" adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
blob_count(), nmethod_count(), adapter_count(),
unallocated_capacity());
}
//---< BEGIN >--- CodeHeap State Analytics.
void CodeCache::aggregate(outputStream *out, const char* granularity) {
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeapState::aggregate(out, (*heap), granularity);
}
}
void CodeCache::discard(outputStream *out) {
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeapState::discard(out, (*heap));
}
}
void CodeCache::print_usedSpace(outputStream *out) {
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeapState::print_usedSpace(out, (*heap));
}
}
void CodeCache::print_freeSpace(outputStream *out) {
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeapState::print_freeSpace(out, (*heap));
}
}
void CodeCache::print_count(outputStream *out) {
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeapState::print_count(out, (*heap));
}
}
void CodeCache::print_space(outputStream *out) {
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeapState::print_space(out, (*heap));
}
}
void CodeCache::print_age(outputStream *out) {
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeapState::print_age(out, (*heap));
}
}
void CodeCache::print_names(outputStream *out) {
FOR_ALL_ALLOCABLE_HEAPS(heap) {
CodeHeapState::print_names(out, (*heap));
}
}
//---< END >--- CodeHeap State Analytics.