jdk-24/src/hotspot/cpu/arm/nativeInst_arm_32.hpp
Vladimir Kozlov bf04926d72 8005088: remove unused NativeInstruction::test methods
Reviewed-by: iignatyev
2020-07-01 15:37:56 -07:00

436 lines
15 KiB
C++

/*
* Copyright (c) 2008, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_ARM_NATIVEINST_ARM_32_HPP
#define CPU_ARM_NATIVEINST_ARM_32_HPP
#include "asm/macroAssembler.hpp"
#include "code/codeCache.hpp"
#include "runtime/icache.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/os.hpp"
#include "runtime/thread.hpp"
#include "register_arm.hpp"
// -------------------------------------------------------------------
// Some experimental projects extend the ARM back-end by implementing
// what the front-end usually assumes is a single native instruction
// with a sequence of instructions.
//
// The 'Raw' variants are the low level initial code (usually one
// instruction wide but some of them were already composed
// instructions). They should be used only by the back-end.
//
// The non-raw classes are the front-end entry point, hiding potential
// back-end extensions or the actual instructions size.
class NativeInstruction;
class NativeCall;
class RawNativeInstruction {
public:
enum ARM_specific {
instruction_size = Assembler::InstructionSize
};
enum InstructionKind {
instr_ldr_str = 0x50,
instr_ldrh_strh = 0x10,
instr_fld_fst = 0xd0
};
// illegal instruction used by NativeJump::patch_verified_entry
// permanently undefined (UDF): 0xe << 28 | 0b1111111 << 20 | 0b1111 << 4
static const int zombie_illegal_instruction = 0xe7f000f0;
static int decode_rotated_imm12(int encoding) {
int base = encoding & 0xff;
int right_rotation = (encoding & 0xf00) >> 7;
int left_rotation = 32 - right_rotation;
int val = (base >> right_rotation) | (base << left_rotation);
return val;
}
address addr_at(int offset) const { return (address)this + offset; }
address instruction_address() const { return addr_at(0); }
address next_raw_instruction_address() const { return addr_at(instruction_size); }
static RawNativeInstruction* at(address address) {
return (RawNativeInstruction*)address;
}
RawNativeInstruction* next_raw() const {
return at(next_raw_instruction_address());
}
public:
int encoding() const { return *(int*)this; }
void set_encoding(int value) {
int old = *(int*)this;
if (old != value) {
*(int*)this = value;
ICache::invalidate_word((address)this);
}
}
InstructionKind kind() const {
return (InstructionKind) ((encoding() >> 20) & 0xf2);
}
bool is_nop() const { return encoding() == (int)0xe1a00000; }
bool is_b() const { return (encoding() & 0x0f000000) == 0x0a000000; }
bool is_bx() const { return (encoding() & 0x0ffffff0) == 0x012fff10; }
bool is_bl() const { return (encoding() & 0x0f000000) == 0x0b000000; }
bool is_blx() const { return (encoding() & 0x0ffffff0) == 0x012fff30; }
bool is_fat_call() const {
return (is_add_lr() && next_raw()->is_jump());
}
bool is_ldr_call() const {
return (is_add_lr() && next_raw()->is_ldr_pc());
}
bool is_jump() const { return is_b() || is_ldr_pc(); }
bool is_call() const { return is_bl() || is_fat_call(); }
bool is_branch() const { return is_b() || is_bl(); }
bool is_far_branch() const { return is_movw() || is_ldr_literal(); }
bool is_ldr_literal() const {
// ldr Rx, [PC, #offset] for positive or negative offsets
return (encoding() & 0x0f7f0000) == 0x051f0000;
}
bool is_ldr() const {
// ldr Rd, [Rn, #offset] for positive or negative offsets
return (encoding() & 0x0f700000) == 0x05100000;
}
int ldr_offset() const {
assert(is_ldr(), "must be");
int offset = encoding() & 0xfff;
if (encoding() & (1 << 23)) {
// positive offset
} else {
// negative offset
offset = -offset;
}
return offset;
}
// is_ldr_pc: ldr PC, PC, #offset
bool is_ldr_pc() const { return (encoding() & 0x0f7ff000) == 0x051ff000; }
// is_setting_pc(): ldr PC, Rxx, #offset
bool is_setting_pc() const { return (encoding() & 0x0f70f000) == 0x0510f000; }
bool is_add_lr() const { return (encoding() & 0x0ffff000) == 0x028fe000; }
bool is_add_pc() const { return (encoding() & 0x0fff0000) == 0x028f0000; }
bool is_sub_pc() const { return (encoding() & 0x0fff0000) == 0x024f0000; }
bool is_pc_rel() const { return is_add_pc() || is_sub_pc(); }
bool is_movw() const { return (encoding() & 0x0ff00000) == 0x03000000; }
bool is_movt() const { return (encoding() & 0x0ff00000) == 0x03400000; }
// c2 doesn't use fixed registers for safepoint poll address
bool is_safepoint_poll() const { return (encoding() & 0xfff0ffff) == 0xe590c000; }
};
inline RawNativeInstruction* rawNativeInstruction_at(address address) {
return (RawNativeInstruction*)address;
}
// Base class exported to the front-end
class NativeInstruction: public RawNativeInstruction {
public:
static NativeInstruction* at(address address) {
return (NativeInstruction*)address;
}
public:
// No need to consider indirections while parsing NativeInstruction
address next_instruction_address() const {
return next_raw_instruction_address();
}
// next() is no longer defined to avoid confusion.
//
// The front end and most classes except for those defined in nativeInst_arm
// or relocInfo_arm should only use next_instruction_address(), skipping
// over composed instruction and ignoring back-end extensions.
//
// The back-end can use next_raw() when it knows the instruction sequence
// and only wants to skip a single native instruction.
};
inline NativeInstruction* nativeInstruction_at(address address) {
return (NativeInstruction*)address;
}
// -------------------------------------------------------------------
// Raw b() or bl() instructions, not used by the front-end.
class RawNativeBranch: public RawNativeInstruction {
public:
address destination(int adj = 0) const {
return instruction_address() + (encoding() << 8 >> 6) + 8 + adj;
}
void set_destination(address dest) {
int new_offset = (int)(dest - instruction_address() - 8);
assert(new_offset < 0x2000000 && new_offset > -0x2000000, "encoding constraint");
set_encoding((encoding() & 0xff000000) | ((unsigned int)new_offset << 6 >> 8));
}
};
inline RawNativeBranch* rawNativeBranch_at(address address) {
assert(rawNativeInstruction_at(address)->is_branch(), "must be");
return (RawNativeBranch*)address;
}
class NativeBranch: public RawNativeBranch {
};
inline NativeBranch* nativeBranch_at(address address) {
return (NativeBranch *) rawNativeBranch_at(address);
}
// -------------------------------------------------------------------
// NativeGeneralJump is for patchable internal (near) jumps
// It is used directly by the front-end and must be a single instruction wide
// (to support patching to other kind of instructions).
class NativeGeneralJump: public RawNativeInstruction {
public:
address jump_destination() const {
return rawNativeBranch_at(instruction_address())->destination();
}
void set_jump_destination(address dest) {
return rawNativeBranch_at(instruction_address())->set_destination(dest);
}
static void insert_unconditional(address code_pos, address entry);
static void replace_mt_safe(address instr_addr, address code_buffer) {
assert(((int)instr_addr & 3) == 0 && ((int)code_buffer & 3) == 0, "must be aligned");
// Writing a word is atomic on ARM, so no MT-safe tricks are needed
rawNativeInstruction_at(instr_addr)->set_encoding(*(int*)code_buffer);
}
};
inline NativeGeneralJump* nativeGeneralJump_at(address address) {
assert(rawNativeInstruction_at(address)->is_jump(), "must be");
return (NativeGeneralJump*)address;
}
// -------------------------------------------------------------------
class RawNativeJump: public NativeInstruction {
public:
address jump_destination(int adj = 0) const {
address a;
if (is_b()) {
a = rawNativeBranch_at(instruction_address())->destination(adj);
// Jump destination -1 is encoded as a jump to self
if (a == instruction_address()) {
return (address)-1;
}
} else {
assert(is_ldr_pc(), "must be");
int offset = this->ldr_offset();
a = *(address*)(instruction_address() + 8 + offset);
}
return a;
}
void set_jump_destination(address dest) {
address a;
if (is_b()) {
// Jump destination -1 is encoded as a jump to self
if (dest == (address)-1) {
dest = instruction_address();
}
rawNativeBranch_at(instruction_address())->set_destination(dest);
} else {
assert(is_ldr_pc(), "must be");
int offset = this->ldr_offset();
*(address*)(instruction_address() + 8 + offset) = dest;
OrderAccess::storeload(); // overkill if caller holds lock?
}
}
static void check_verified_entry_alignment(address entry, address verified_entry);
static void patch_verified_entry(address entry, address verified_entry, address dest);
};
inline RawNativeJump* rawNativeJump_at(address address) {
assert(rawNativeInstruction_at(address)->is_jump(), "must be");
return (RawNativeJump*)address;
}
// -------------------------------------------------------------------
class RawNativeCall: public NativeInstruction {
// See IC calls in LIR_Assembler::ic_call(): ARM v5/v6 doesn't use a
// single bl for IC calls.
public:
address return_address() const {
if (is_bl()) {
return addr_at(instruction_size);
} else {
assert(is_fat_call(), "must be");
int offset = encoding() & 0xff;
return addr_at(offset + 8);
}
}
address destination(int adj = 0) const {
if (is_bl()) {
return rawNativeBranch_at(instruction_address())->destination(adj);
} else {
assert(is_add_lr(), "must be"); // fat_call
RawNativeJump *next = rawNativeJump_at(next_raw_instruction_address());
return next->jump_destination(adj);
}
}
void set_destination(address dest) {
if (is_bl()) {
return rawNativeBranch_at(instruction_address())->set_destination(dest);
} else {
assert(is_add_lr(), "must be"); // fat_call
RawNativeJump *next = rawNativeJump_at(next_raw_instruction_address());
return next->set_jump_destination(dest);
}
}
void set_destination_mt_safe(address dest) {
assert(CodeCache::contains(dest), "external destination might be too far");
set_destination(dest);
}
void verify() {
assert(RawNativeInstruction::is_call() || (!VM_Version::supports_movw() && RawNativeInstruction::is_jump()), "must be");
}
void verify_alignment() {
// Nothing to do on ARM
}
static bool is_call_before(address return_address);
};
inline RawNativeCall* rawNativeCall_at(address address) {
assert(rawNativeInstruction_at(address)->is_call(), "must be");
return (RawNativeCall*)address;
}
NativeCall* rawNativeCall_before(address return_address);
// -------------------------------------------------------------------
// NativeMovRegMem need not be extended with indirection support.
// (field access patching is handled differently in that case)
class NativeMovRegMem: public NativeInstruction {
public:
enum arm_specific_constants {
instruction_size = 8
};
int num_bytes_to_end_of_patch() const { return instruction_size; }
int offset() const;
void set_offset(int x);
void add_offset_in_bytes(int add_offset) {
set_offset(offset() + add_offset);
}
};
inline NativeMovRegMem* nativeMovRegMem_at(address address) {
NativeMovRegMem* instr = (NativeMovRegMem*)address;
assert(instr->kind() == NativeInstruction::instr_ldr_str ||
instr->kind() == NativeInstruction::instr_ldrh_strh ||
instr->kind() == NativeInstruction::instr_fld_fst, "must be");
return instr;
}
// -------------------------------------------------------------------
// NativeMovConstReg is primarily for loading oops and metadata
class NativeMovConstReg: public NativeInstruction {
public:
intptr_t data() const;
void set_data(intptr_t x, address pc = 0);
bool is_pc_relative() {
return !is_movw();
}
void set_pc_relative_offset(address addr, address pc);
address next_instruction_address() const {
// NOTE: CompiledStaticCall::set_to_interpreted() calls this but
// are restricted to single-instruction ldr. No need to jump over
// several instructions.
assert(is_ldr_literal(), "Should only use single-instructions load");
return next_raw_instruction_address();
}
};
inline NativeMovConstReg* nativeMovConstReg_at(address address) {
NativeInstruction* ni = nativeInstruction_at(address);
assert(ni->is_ldr_literal() || ni->is_pc_rel() ||
ni->is_movw() && VM_Version::supports_movw(), "must be");
return (NativeMovConstReg*)address;
}
// -------------------------------------------------------------------
// Front end classes, hiding experimental back-end extensions.
// Extension to support indirections
class NativeJump: public RawNativeJump {
public:
};
inline NativeJump* nativeJump_at(address address) {
assert(nativeInstruction_at(address)->is_jump(), "must be");
return (NativeJump*)address;
}
class NativeCall: public RawNativeCall {
public:
// NativeCall::next_instruction_address() is used only to define the
// range where to look for the relocation information. We need not
// walk over composed instructions (as long as the relocation information
// is associated to the first instruction).
address next_instruction_address() const {
return next_raw_instruction_address();
}
};
inline NativeCall* nativeCall_at(address address) {
assert(nativeInstruction_at(address)->is_call() ||
(!VM_Version::supports_movw() && nativeInstruction_at(address)->is_jump()), "must be");
return (NativeCall*)address;
}
inline NativeCall* nativeCall_before(address return_address) {
return (NativeCall *) rawNativeCall_before(return_address);
}
#endif // CPU_ARM_NATIVEINST_ARM_32_HPP