1163c0a2cb
Reviewed-by: cjplummer, coleenp, dnsimon
4547 lines
168 KiB
C++
4547 lines
168 KiB
C++
/*
|
|
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2012, 2015 SAP AG. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "gc/shared/cardTableModRefBS.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "nativeInst_ppc.hpp"
|
|
#include "prims/methodHandles.hpp"
|
|
#include "runtime/biasedLocking.hpp"
|
|
#include "runtime/icache.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#if INCLUDE_ALL_GCS
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
|
|
#include "gc/g1/heapRegion.hpp"
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
#ifdef PRODUCT
|
|
#define BLOCK_COMMENT(str) // nothing
|
|
#else
|
|
#define BLOCK_COMMENT(str) block_comment(str)
|
|
#endif
|
|
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
|
|
|
|
#ifdef ASSERT
|
|
// On RISC, there's no benefit to verifying instruction boundaries.
|
|
bool AbstractAssembler::pd_check_instruction_mark() { return false; }
|
|
#endif
|
|
|
|
void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
|
|
assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
|
|
if (Assembler::is_simm(si31, 16)) {
|
|
ld(d, si31, a);
|
|
if (emit_filler_nop) nop();
|
|
} else {
|
|
const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
|
|
const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
|
|
addis(d, a, hi);
|
|
ld(d, lo, d);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
|
|
assert_different_registers(d, a);
|
|
ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
|
|
}
|
|
|
|
void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
|
|
size_t size_in_bytes, bool is_signed) {
|
|
switch (size_in_bytes) {
|
|
case 8: ld(dst, offs, base); break;
|
|
case 4: is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
|
|
case 2: is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
|
|
case 1: lbz(dst, offs, base); if (is_signed) extsb(dst, dst); break; // lba doesn't exist :(
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
|
|
size_t size_in_bytes) {
|
|
switch (size_in_bytes) {
|
|
case 8: std(dst, offs, base); break;
|
|
case 4: stw(dst, offs, base); break;
|
|
case 2: sth(dst, offs, base); break;
|
|
case 1: stb(dst, offs, base); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::align(int modulus, int max, int rem) {
|
|
int padding = (rem + modulus - (offset() % modulus)) % modulus;
|
|
if (padding > max) return;
|
|
for (int c = (padding >> 2); c > 0; --c) { nop(); }
|
|
}
|
|
|
|
// Issue instructions that calculate given TOC from global TOC.
|
|
void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
|
|
bool add_relocation, bool emit_dummy_addr) {
|
|
int offset = -1;
|
|
if (emit_dummy_addr) {
|
|
offset = -128; // dummy address
|
|
} else if (addr != (address)(intptr_t)-1) {
|
|
offset = MacroAssembler::offset_to_global_toc(addr);
|
|
}
|
|
|
|
if (hi16) {
|
|
addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
|
|
}
|
|
if (lo16) {
|
|
if (add_relocation) {
|
|
// Relocate at the addi to avoid confusion with a load from the method's TOC.
|
|
relocate(internal_word_Relocation::spec(addr));
|
|
}
|
|
addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
|
|
}
|
|
}
|
|
|
|
int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
|
|
const int offset = MacroAssembler::offset_to_global_toc(addr);
|
|
|
|
const address inst2_addr = a;
|
|
const int inst2 = *(int *)inst2_addr;
|
|
|
|
// The relocation points to the second instruction, the addi,
|
|
// and the addi reads and writes the same register dst.
|
|
const int dst = inv_rt_field(inst2);
|
|
assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
|
|
|
|
// Now, find the preceding addis which writes to dst.
|
|
int inst1 = 0;
|
|
address inst1_addr = inst2_addr - BytesPerInstWord;
|
|
while (inst1_addr >= bound) {
|
|
inst1 = *(int *) inst1_addr;
|
|
if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
|
|
// Stop, found the addis which writes dst.
|
|
break;
|
|
}
|
|
inst1_addr -= BytesPerInstWord;
|
|
}
|
|
|
|
assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
|
|
set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
|
|
set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
|
|
return (int)((intptr_t)addr - (intptr_t)inst1_addr);
|
|
}
|
|
|
|
address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
|
|
const address inst2_addr = a;
|
|
const int inst2 = *(int *)inst2_addr;
|
|
|
|
// The relocation points to the second instruction, the addi,
|
|
// and the addi reads and writes the same register dst.
|
|
const int dst = inv_rt_field(inst2);
|
|
assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
|
|
|
|
// Now, find the preceding addis which writes to dst.
|
|
int inst1 = 0;
|
|
address inst1_addr = inst2_addr - BytesPerInstWord;
|
|
while (inst1_addr >= bound) {
|
|
inst1 = *(int *) inst1_addr;
|
|
if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
|
|
// stop, found the addis which writes dst
|
|
break;
|
|
}
|
|
inst1_addr -= BytesPerInstWord;
|
|
}
|
|
|
|
assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
|
|
|
|
int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
|
|
// -1 is a special case
|
|
if (offset == -1) {
|
|
return (address)(intptr_t)-1;
|
|
} else {
|
|
return global_toc() + offset;
|
|
}
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// Patch compressed oops or klass constants.
|
|
// Assembler sequence is
|
|
// 1) compressed oops:
|
|
// lis rx = const.hi
|
|
// ori rx = rx | const.lo
|
|
// 2) compressed klass:
|
|
// lis rx = const.hi
|
|
// clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
|
|
// ori rx = rx | const.lo
|
|
// Clrldi will be passed by.
|
|
int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
|
|
assert(UseCompressedOops, "Should only patch compressed oops");
|
|
|
|
const address inst2_addr = a;
|
|
const int inst2 = *(int *)inst2_addr;
|
|
|
|
// The relocation points to the second instruction, the ori,
|
|
// and the ori reads and writes the same register dst.
|
|
const int dst = inv_rta_field(inst2);
|
|
assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
|
|
// Now, find the preceding addis which writes to dst.
|
|
int inst1 = 0;
|
|
address inst1_addr = inst2_addr - BytesPerInstWord;
|
|
bool inst1_found = false;
|
|
while (inst1_addr >= bound) {
|
|
inst1 = *(int *)inst1_addr;
|
|
if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
|
|
inst1_addr -= BytesPerInstWord;
|
|
}
|
|
assert(inst1_found, "inst is not lis");
|
|
|
|
int xc = (data >> 16) & 0xffff;
|
|
int xd = (data >> 0) & 0xffff;
|
|
|
|
set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
|
|
set_imm((int *)inst2_addr, (xd)); // unsigned int
|
|
return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr);
|
|
}
|
|
|
|
// Get compressed oop or klass constant.
|
|
narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
|
|
assert(UseCompressedOops, "Should only patch compressed oops");
|
|
|
|
const address inst2_addr = a;
|
|
const int inst2 = *(int *)inst2_addr;
|
|
|
|
// The relocation points to the second instruction, the ori,
|
|
// and the ori reads and writes the same register dst.
|
|
const int dst = inv_rta_field(inst2);
|
|
assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
|
|
// Now, find the preceding lis which writes to dst.
|
|
int inst1 = 0;
|
|
address inst1_addr = inst2_addr - BytesPerInstWord;
|
|
bool inst1_found = false;
|
|
|
|
while (inst1_addr >= bound) {
|
|
inst1 = *(int *) inst1_addr;
|
|
if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
|
|
inst1_addr -= BytesPerInstWord;
|
|
}
|
|
assert(inst1_found, "inst is not lis");
|
|
|
|
uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
|
|
uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
|
|
|
|
return (int) (xl | xh);
|
|
}
|
|
#endif // _LP64
|
|
|
|
// Returns true if successful.
|
|
bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
|
|
Register toc, bool fixed_size) {
|
|
int toc_offset = 0;
|
|
// Use RelocationHolder::none for the constant pool entry, otherwise
|
|
// we will end up with a failing NativeCall::verify(x) where x is
|
|
// the address of the constant pool entry.
|
|
// FIXME: We should insert relocation information for oops at the constant
|
|
// pool entries instead of inserting it at the loads; patching of a constant
|
|
// pool entry should be less expensive.
|
|
address const_address = address_constant((address)a.value(), RelocationHolder::none);
|
|
if (const_address == NULL) { return false; } // allocation failure
|
|
// Relocate at the pc of the load.
|
|
relocate(a.rspec());
|
|
toc_offset = (int)(const_address - code()->consts()->start());
|
|
ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
|
|
return true;
|
|
}
|
|
|
|
bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
|
|
const address inst1_addr = a;
|
|
const int inst1 = *(int *)inst1_addr;
|
|
|
|
// The relocation points to the ld or the addis.
|
|
return (is_ld(inst1)) ||
|
|
(is_addis(inst1) && inv_ra_field(inst1) != 0);
|
|
}
|
|
|
|
int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
|
|
assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
|
|
|
|
const address inst1_addr = a;
|
|
const int inst1 = *(int *)inst1_addr;
|
|
|
|
if (is_ld(inst1)) {
|
|
return inv_d1_field(inst1);
|
|
} else if (is_addis(inst1)) {
|
|
const int dst = inv_rt_field(inst1);
|
|
|
|
// Now, find the succeeding ld which reads and writes to dst.
|
|
address inst2_addr = inst1_addr + BytesPerInstWord;
|
|
int inst2 = 0;
|
|
while (true) {
|
|
inst2 = *(int *) inst2_addr;
|
|
if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
|
|
// Stop, found the ld which reads and writes dst.
|
|
break;
|
|
}
|
|
inst2_addr += BytesPerInstWord;
|
|
}
|
|
return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
|
|
}
|
|
ShouldNotReachHere();
|
|
return 0;
|
|
}
|
|
|
|
// Get the constant from a `load_const' sequence.
|
|
long MacroAssembler::get_const(address a) {
|
|
assert(is_load_const_at(a), "not a load of a constant");
|
|
const int *p = (const int*) a;
|
|
unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
|
|
if (is_ori(*(p+1))) {
|
|
x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
|
|
x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
|
|
x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
|
|
} else if (is_lis(*(p+1))) {
|
|
x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
|
|
x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
|
|
x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return (long) 0;
|
|
}
|
|
return (long) x;
|
|
}
|
|
|
|
// Patch the 64 bit constant of a `load_const' sequence. This is a low
|
|
// level procedure. It neither flushes the instruction cache nor is it
|
|
// mt safe.
|
|
void MacroAssembler::patch_const(address a, long x) {
|
|
assert(is_load_const_at(a), "not a load of a constant");
|
|
int *p = (int*) a;
|
|
if (is_ori(*(p+1))) {
|
|
set_imm(0 + p, (x >> 48) & 0xffff);
|
|
set_imm(1 + p, (x >> 32) & 0xffff);
|
|
set_imm(3 + p, (x >> 16) & 0xffff);
|
|
set_imm(4 + p, x & 0xffff);
|
|
} else if (is_lis(*(p+1))) {
|
|
set_imm(0 + p, (x >> 48) & 0xffff);
|
|
set_imm(2 + p, (x >> 32) & 0xffff);
|
|
set_imm(1 + p, (x >> 16) & 0xffff);
|
|
set_imm(3 + p, x & 0xffff);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
|
|
assert(oop_recorder() != NULL, "this assembler needs a Recorder");
|
|
int index = oop_recorder()->allocate_metadata_index(obj);
|
|
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
return AddressLiteral((address)obj, rspec);
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
|
|
assert(oop_recorder() != NULL, "this assembler needs a Recorder");
|
|
int index = oop_recorder()->find_index(obj);
|
|
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
return AddressLiteral((address)obj, rspec);
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
|
|
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
int oop_index = oop_recorder()->allocate_oop_index(obj);
|
|
return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
|
|
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
int oop_index = oop_recorder()->find_index(obj);
|
|
return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
|
|
}
|
|
|
|
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
|
|
Register tmp, int offset) {
|
|
intptr_t value = *delayed_value_addr;
|
|
if (value != 0) {
|
|
return RegisterOrConstant(value + offset);
|
|
}
|
|
|
|
// Load indirectly to solve generation ordering problem.
|
|
// static address, no relocation
|
|
int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
|
|
ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
|
|
|
|
if (offset != 0) {
|
|
addi(tmp, tmp, offset);
|
|
}
|
|
|
|
return RegisterOrConstant(tmp);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void MacroAssembler::pd_print_patched_instruction(address branch) {
|
|
Unimplemented(); // TODO: PPC port
|
|
}
|
|
#endif // ndef PRODUCT
|
|
|
|
// Conditional far branch for destinations encodable in 24+2 bits.
|
|
void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
|
|
|
|
// If requested by flag optimize, relocate the bc_far as a
|
|
// runtime_call and prepare for optimizing it when the code gets
|
|
// relocated.
|
|
if (optimize == bc_far_optimize_on_relocate) {
|
|
relocate(relocInfo::runtime_call_type);
|
|
}
|
|
|
|
// variant 2:
|
|
//
|
|
// b!cxx SKIP
|
|
// bxx DEST
|
|
// SKIP:
|
|
//
|
|
|
|
const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
|
|
opposite_bcond(inv_boint_bcond(boint)));
|
|
|
|
// We emit two branches.
|
|
// First, a conditional branch which jumps around the far branch.
|
|
const address not_taken_pc = pc() + 2 * BytesPerInstWord;
|
|
const address bc_pc = pc();
|
|
bc(opposite_boint, biint, not_taken_pc);
|
|
|
|
const int bc_instr = *(int*)bc_pc;
|
|
assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
|
|
assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
|
|
assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
|
|
opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
|
|
"postcondition");
|
|
assert(biint == inv_bi_field(bc_instr), "postcondition");
|
|
|
|
// Second, an unconditional far branch which jumps to dest.
|
|
// Note: target(dest) remembers the current pc (see CodeSection::target)
|
|
// and returns the current pc if the label is not bound yet; when
|
|
// the label gets bound, the unconditional far branch will be patched.
|
|
const address target_pc = target(dest);
|
|
const address b_pc = pc();
|
|
b(target_pc);
|
|
|
|
assert(not_taken_pc == pc(), "postcondition");
|
|
assert(dest.is_bound() || target_pc == b_pc, "postcondition");
|
|
}
|
|
|
|
// 1 or 2 instructions
|
|
void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
|
|
if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
|
|
bc(boint, biint, dest);
|
|
} else {
|
|
bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
|
|
}
|
|
}
|
|
|
|
bool MacroAssembler::is_bc_far_at(address instruction_addr) {
|
|
return is_bc_far_variant1_at(instruction_addr) ||
|
|
is_bc_far_variant2_at(instruction_addr) ||
|
|
is_bc_far_variant3_at(instruction_addr);
|
|
}
|
|
|
|
address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
|
|
if (is_bc_far_variant1_at(instruction_addr)) {
|
|
const address instruction_1_addr = instruction_addr;
|
|
const int instruction_1 = *(int*)instruction_1_addr;
|
|
return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
|
|
} else if (is_bc_far_variant2_at(instruction_addr)) {
|
|
const address instruction_2_addr = instruction_addr + 4;
|
|
return bxx_destination(instruction_2_addr);
|
|
} else if (is_bc_far_variant3_at(instruction_addr)) {
|
|
return instruction_addr + 8;
|
|
}
|
|
// variant 4 ???
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
|
|
|
|
if (is_bc_far_variant3_at(instruction_addr)) {
|
|
// variant 3, far cond branch to the next instruction, already patched to nops:
|
|
//
|
|
// nop
|
|
// endgroup
|
|
// SKIP/DEST:
|
|
//
|
|
return;
|
|
}
|
|
|
|
// first, extract boint and biint from the current branch
|
|
int boint = 0;
|
|
int biint = 0;
|
|
|
|
ResourceMark rm;
|
|
const int code_size = 2 * BytesPerInstWord;
|
|
CodeBuffer buf(instruction_addr, code_size);
|
|
MacroAssembler masm(&buf);
|
|
if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
|
|
// Far branch to next instruction: Optimize it by patching nops (produce variant 3).
|
|
masm.nop();
|
|
masm.endgroup();
|
|
} else {
|
|
if (is_bc_far_variant1_at(instruction_addr)) {
|
|
// variant 1, the 1st instruction contains the destination address:
|
|
//
|
|
// bcxx DEST
|
|
// nop
|
|
//
|
|
const int instruction_1 = *(int*)(instruction_addr);
|
|
boint = inv_bo_field(instruction_1);
|
|
biint = inv_bi_field(instruction_1);
|
|
} else if (is_bc_far_variant2_at(instruction_addr)) {
|
|
// variant 2, the 2nd instruction contains the destination address:
|
|
//
|
|
// b!cxx SKIP
|
|
// bxx DEST
|
|
// SKIP:
|
|
//
|
|
const int instruction_1 = *(int*)(instruction_addr);
|
|
boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
|
|
opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
|
|
biint = inv_bi_field(instruction_1);
|
|
} else {
|
|
// variant 4???
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// second, set the new branch destination and optimize the code
|
|
if (dest != instruction_addr + 4 && // the bc_far is still unbound!
|
|
masm.is_within_range_of_bcxx(dest, instruction_addr)) {
|
|
// variant 1:
|
|
//
|
|
// bcxx DEST
|
|
// nop
|
|
//
|
|
masm.bc(boint, biint, dest);
|
|
masm.nop();
|
|
} else {
|
|
// variant 2:
|
|
//
|
|
// b!cxx SKIP
|
|
// bxx DEST
|
|
// SKIP:
|
|
//
|
|
const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
|
|
opposite_bcond(inv_boint_bcond(boint)));
|
|
const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
|
|
masm.bc(opposite_boint, biint, not_taken_pc);
|
|
masm.b(dest);
|
|
}
|
|
}
|
|
ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
|
|
}
|
|
|
|
// Emit a NOT mt-safe patchable 64 bit absolute call/jump.
|
|
void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
|
|
// get current pc
|
|
uint64_t start_pc = (uint64_t) pc();
|
|
|
|
const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
|
|
const address pc_of_b = (address) (start_pc + (0*BytesPerInstWord)); // b is first
|
|
|
|
// relocate here
|
|
if (rt != relocInfo::none) {
|
|
relocate(rt);
|
|
}
|
|
|
|
if ( ReoptimizeCallSequences &&
|
|
(( link && is_within_range_of_b(dest, pc_of_bl)) ||
|
|
(!link && is_within_range_of_b(dest, pc_of_b)))) {
|
|
// variant 2:
|
|
// Emit an optimized, pc-relative call/jump.
|
|
|
|
if (link) {
|
|
// some padding
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
|
|
// do the call
|
|
assert(pc() == pc_of_bl, "just checking");
|
|
bl(dest, relocInfo::none);
|
|
} else {
|
|
// do the jump
|
|
assert(pc() == pc_of_b, "just checking");
|
|
b(dest, relocInfo::none);
|
|
|
|
// some padding
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
nop();
|
|
}
|
|
|
|
// Assert that we can identify the emitted call/jump.
|
|
assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
|
|
"can't identify emitted call");
|
|
} else {
|
|
// variant 1:
|
|
mr(R0, R11); // spill R11 -> R0.
|
|
|
|
// Load the destination address into CTR,
|
|
// calculate destination relative to global toc.
|
|
calculate_address_from_global_toc(R11, dest, true, true, false);
|
|
|
|
mtctr(R11);
|
|
mr(R11, R0); // spill R11 <- R0.
|
|
nop();
|
|
|
|
// do the call/jump
|
|
if (link) {
|
|
bctrl();
|
|
} else{
|
|
bctr();
|
|
}
|
|
// Assert that we can identify the emitted call/jump.
|
|
assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
|
|
"can't identify emitted call");
|
|
}
|
|
|
|
// Assert that we can identify the emitted call/jump.
|
|
assert(is_bxx64_patchable_at((address)start_pc, link),
|
|
"can't identify emitted call");
|
|
assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
|
|
"wrong encoding of dest address");
|
|
}
|
|
|
|
// Identify a bxx64_patchable instruction.
|
|
bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
|
|
return is_bxx64_patchable_variant1b_at(instruction_addr, link)
|
|
//|| is_bxx64_patchable_variant1_at(instruction_addr, link)
|
|
|| is_bxx64_patchable_variant2_at(instruction_addr, link);
|
|
}
|
|
|
|
// Does the call64_patchable instruction use a pc-relative encoding of
|
|
// the call destination?
|
|
bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
|
|
// variant 2 is pc-relative
|
|
return is_bxx64_patchable_variant2_at(instruction_addr, link);
|
|
}
|
|
|
|
// Identify variant 1.
|
|
bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
|
|
unsigned int* instr = (unsigned int*) instruction_addr;
|
|
return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
|
|
&& is_mtctr(instr[5]) // mtctr
|
|
&& is_load_const_at(instruction_addr);
|
|
}
|
|
|
|
// Identify variant 1b: load destination relative to global toc.
|
|
bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
|
|
unsigned int* instr = (unsigned int*) instruction_addr;
|
|
return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
|
|
&& is_mtctr(instr[3]) // mtctr
|
|
&& is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
|
|
}
|
|
|
|
// Identify variant 2.
|
|
bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
|
|
unsigned int* instr = (unsigned int*) instruction_addr;
|
|
if (link) {
|
|
return is_bl (instr[6]) // bl dest is last
|
|
&& is_nop(instr[0]) // nop
|
|
&& is_nop(instr[1]) // nop
|
|
&& is_nop(instr[2]) // nop
|
|
&& is_nop(instr[3]) // nop
|
|
&& is_nop(instr[4]) // nop
|
|
&& is_nop(instr[5]); // nop
|
|
} else {
|
|
return is_b (instr[0]) // b dest is first
|
|
&& is_nop(instr[1]) // nop
|
|
&& is_nop(instr[2]) // nop
|
|
&& is_nop(instr[3]) // nop
|
|
&& is_nop(instr[4]) // nop
|
|
&& is_nop(instr[5]) // nop
|
|
&& is_nop(instr[6]); // nop
|
|
}
|
|
}
|
|
|
|
// Set dest address of a bxx64_patchable instruction.
|
|
void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
|
|
ResourceMark rm;
|
|
int code_size = MacroAssembler::bxx64_patchable_size;
|
|
CodeBuffer buf(instruction_addr, code_size);
|
|
MacroAssembler masm(&buf);
|
|
masm.bxx64_patchable(dest, relocInfo::none, link);
|
|
ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
|
|
}
|
|
|
|
// Get dest address of a bxx64_patchable instruction.
|
|
address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
|
|
if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
|
|
return (address) (unsigned long) get_const(instruction_addr);
|
|
} else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
|
|
unsigned int* instr = (unsigned int*) instruction_addr;
|
|
if (link) {
|
|
const int instr_idx = 6; // bl is last
|
|
int branchoffset = branch_destination(instr[instr_idx], 0);
|
|
return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
|
|
} else {
|
|
const int instr_idx = 0; // b is first
|
|
int branchoffset = branch_destination(instr[instr_idx], 0);
|
|
return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
|
|
}
|
|
// Load dest relative to global toc.
|
|
} else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
|
|
return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
|
|
instruction_addr);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Uses ordering which corresponds to ABI:
|
|
// _savegpr0_14: std r14,-144(r1)
|
|
// _savegpr0_15: std r15,-136(r1)
|
|
// _savegpr0_16: std r16,-128(r1)
|
|
void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
|
|
std(R14, offset, dst); offset += 8;
|
|
std(R15, offset, dst); offset += 8;
|
|
std(R16, offset, dst); offset += 8;
|
|
std(R17, offset, dst); offset += 8;
|
|
std(R18, offset, dst); offset += 8;
|
|
std(R19, offset, dst); offset += 8;
|
|
std(R20, offset, dst); offset += 8;
|
|
std(R21, offset, dst); offset += 8;
|
|
std(R22, offset, dst); offset += 8;
|
|
std(R23, offset, dst); offset += 8;
|
|
std(R24, offset, dst); offset += 8;
|
|
std(R25, offset, dst); offset += 8;
|
|
std(R26, offset, dst); offset += 8;
|
|
std(R27, offset, dst); offset += 8;
|
|
std(R28, offset, dst); offset += 8;
|
|
std(R29, offset, dst); offset += 8;
|
|
std(R30, offset, dst); offset += 8;
|
|
std(R31, offset, dst); offset += 8;
|
|
|
|
stfd(F14, offset, dst); offset += 8;
|
|
stfd(F15, offset, dst); offset += 8;
|
|
stfd(F16, offset, dst); offset += 8;
|
|
stfd(F17, offset, dst); offset += 8;
|
|
stfd(F18, offset, dst); offset += 8;
|
|
stfd(F19, offset, dst); offset += 8;
|
|
stfd(F20, offset, dst); offset += 8;
|
|
stfd(F21, offset, dst); offset += 8;
|
|
stfd(F22, offset, dst); offset += 8;
|
|
stfd(F23, offset, dst); offset += 8;
|
|
stfd(F24, offset, dst); offset += 8;
|
|
stfd(F25, offset, dst); offset += 8;
|
|
stfd(F26, offset, dst); offset += 8;
|
|
stfd(F27, offset, dst); offset += 8;
|
|
stfd(F28, offset, dst); offset += 8;
|
|
stfd(F29, offset, dst); offset += 8;
|
|
stfd(F30, offset, dst); offset += 8;
|
|
stfd(F31, offset, dst);
|
|
}
|
|
|
|
// Uses ordering which corresponds to ABI:
|
|
// _restgpr0_14: ld r14,-144(r1)
|
|
// _restgpr0_15: ld r15,-136(r1)
|
|
// _restgpr0_16: ld r16,-128(r1)
|
|
void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
|
|
ld(R14, offset, src); offset += 8;
|
|
ld(R15, offset, src); offset += 8;
|
|
ld(R16, offset, src); offset += 8;
|
|
ld(R17, offset, src); offset += 8;
|
|
ld(R18, offset, src); offset += 8;
|
|
ld(R19, offset, src); offset += 8;
|
|
ld(R20, offset, src); offset += 8;
|
|
ld(R21, offset, src); offset += 8;
|
|
ld(R22, offset, src); offset += 8;
|
|
ld(R23, offset, src); offset += 8;
|
|
ld(R24, offset, src); offset += 8;
|
|
ld(R25, offset, src); offset += 8;
|
|
ld(R26, offset, src); offset += 8;
|
|
ld(R27, offset, src); offset += 8;
|
|
ld(R28, offset, src); offset += 8;
|
|
ld(R29, offset, src); offset += 8;
|
|
ld(R30, offset, src); offset += 8;
|
|
ld(R31, offset, src); offset += 8;
|
|
|
|
// FP registers
|
|
lfd(F14, offset, src); offset += 8;
|
|
lfd(F15, offset, src); offset += 8;
|
|
lfd(F16, offset, src); offset += 8;
|
|
lfd(F17, offset, src); offset += 8;
|
|
lfd(F18, offset, src); offset += 8;
|
|
lfd(F19, offset, src); offset += 8;
|
|
lfd(F20, offset, src); offset += 8;
|
|
lfd(F21, offset, src); offset += 8;
|
|
lfd(F22, offset, src); offset += 8;
|
|
lfd(F23, offset, src); offset += 8;
|
|
lfd(F24, offset, src); offset += 8;
|
|
lfd(F25, offset, src); offset += 8;
|
|
lfd(F26, offset, src); offset += 8;
|
|
lfd(F27, offset, src); offset += 8;
|
|
lfd(F28, offset, src); offset += 8;
|
|
lfd(F29, offset, src); offset += 8;
|
|
lfd(F30, offset, src); offset += 8;
|
|
lfd(F31, offset, src);
|
|
}
|
|
|
|
// For verify_oops.
|
|
void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
|
|
std(R2, offset, dst); offset += 8;
|
|
std(R3, offset, dst); offset += 8;
|
|
std(R4, offset, dst); offset += 8;
|
|
std(R5, offset, dst); offset += 8;
|
|
std(R6, offset, dst); offset += 8;
|
|
std(R7, offset, dst); offset += 8;
|
|
std(R8, offset, dst); offset += 8;
|
|
std(R9, offset, dst); offset += 8;
|
|
std(R10, offset, dst); offset += 8;
|
|
std(R11, offset, dst); offset += 8;
|
|
std(R12, offset, dst); offset += 8;
|
|
|
|
stfd(F0, offset, dst); offset += 8;
|
|
stfd(F1, offset, dst); offset += 8;
|
|
stfd(F2, offset, dst); offset += 8;
|
|
stfd(F3, offset, dst); offset += 8;
|
|
stfd(F4, offset, dst); offset += 8;
|
|
stfd(F5, offset, dst); offset += 8;
|
|
stfd(F6, offset, dst); offset += 8;
|
|
stfd(F7, offset, dst); offset += 8;
|
|
stfd(F8, offset, dst); offset += 8;
|
|
stfd(F9, offset, dst); offset += 8;
|
|
stfd(F10, offset, dst); offset += 8;
|
|
stfd(F11, offset, dst); offset += 8;
|
|
stfd(F12, offset, dst); offset += 8;
|
|
stfd(F13, offset, dst);
|
|
}
|
|
|
|
// For verify_oops.
|
|
void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
|
|
ld(R2, offset, src); offset += 8;
|
|
ld(R3, offset, src); offset += 8;
|
|
ld(R4, offset, src); offset += 8;
|
|
ld(R5, offset, src); offset += 8;
|
|
ld(R6, offset, src); offset += 8;
|
|
ld(R7, offset, src); offset += 8;
|
|
ld(R8, offset, src); offset += 8;
|
|
ld(R9, offset, src); offset += 8;
|
|
ld(R10, offset, src); offset += 8;
|
|
ld(R11, offset, src); offset += 8;
|
|
ld(R12, offset, src); offset += 8;
|
|
|
|
lfd(F0, offset, src); offset += 8;
|
|
lfd(F1, offset, src); offset += 8;
|
|
lfd(F2, offset, src); offset += 8;
|
|
lfd(F3, offset, src); offset += 8;
|
|
lfd(F4, offset, src); offset += 8;
|
|
lfd(F5, offset, src); offset += 8;
|
|
lfd(F6, offset, src); offset += 8;
|
|
lfd(F7, offset, src); offset += 8;
|
|
lfd(F8, offset, src); offset += 8;
|
|
lfd(F9, offset, src); offset += 8;
|
|
lfd(F10, offset, src); offset += 8;
|
|
lfd(F11, offset, src); offset += 8;
|
|
lfd(F12, offset, src); offset += 8;
|
|
lfd(F13, offset, src);
|
|
}
|
|
|
|
void MacroAssembler::save_LR_CR(Register tmp) {
|
|
mfcr(tmp);
|
|
std(tmp, _abi(cr), R1_SP);
|
|
mflr(tmp);
|
|
std(tmp, _abi(lr), R1_SP);
|
|
// Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
|
|
}
|
|
|
|
void MacroAssembler::restore_LR_CR(Register tmp) {
|
|
assert(tmp != R1_SP, "must be distinct");
|
|
ld(tmp, _abi(lr), R1_SP);
|
|
mtlr(tmp);
|
|
ld(tmp, _abi(cr), R1_SP);
|
|
mtcr(tmp);
|
|
}
|
|
|
|
address MacroAssembler::get_PC_trash_LR(Register result) {
|
|
Label L;
|
|
bl(L);
|
|
bind(L);
|
|
address lr_pc = pc();
|
|
mflr(result);
|
|
return lr_pc;
|
|
}
|
|
|
|
void MacroAssembler::resize_frame(Register offset, Register tmp) {
|
|
#ifdef ASSERT
|
|
assert_different_registers(offset, tmp, R1_SP);
|
|
andi_(tmp, offset, frame::alignment_in_bytes-1);
|
|
asm_assert_eq("resize_frame: unaligned", 0x204);
|
|
#endif
|
|
|
|
// tmp <- *(SP)
|
|
ld(tmp, _abi(callers_sp), R1_SP);
|
|
// addr <- SP + offset;
|
|
// *(addr) <- tmp;
|
|
// SP <- addr
|
|
stdux(tmp, R1_SP, offset);
|
|
}
|
|
|
|
void MacroAssembler::resize_frame(int offset, Register tmp) {
|
|
assert(is_simm(offset, 16), "too big an offset");
|
|
assert_different_registers(tmp, R1_SP);
|
|
assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
|
|
// tmp <- *(SP)
|
|
ld(tmp, _abi(callers_sp), R1_SP);
|
|
// addr <- SP + offset;
|
|
// *(addr) <- tmp;
|
|
// SP <- addr
|
|
stdu(tmp, offset, R1_SP);
|
|
}
|
|
|
|
void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
|
|
// (addr == tmp1) || (addr == tmp2) is allowed here!
|
|
assert(tmp1 != tmp2, "must be distinct");
|
|
|
|
// compute offset w.r.t. current stack pointer
|
|
// tmp_1 <- addr - SP (!)
|
|
subf(tmp1, R1_SP, addr);
|
|
|
|
// atomically update SP keeping back link.
|
|
resize_frame(tmp1/* offset */, tmp2/* tmp */);
|
|
}
|
|
|
|
void MacroAssembler::push_frame(Register bytes, Register tmp) {
|
|
#ifdef ASSERT
|
|
assert(bytes != R0, "r0 not allowed here");
|
|
andi_(R0, bytes, frame::alignment_in_bytes-1);
|
|
asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
|
|
#endif
|
|
neg(tmp, bytes);
|
|
stdux(R1_SP, R1_SP, tmp);
|
|
}
|
|
|
|
// Push a frame of size `bytes'.
|
|
void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
|
|
long offset = align_addr(bytes, frame::alignment_in_bytes);
|
|
if (is_simm(-offset, 16)) {
|
|
stdu(R1_SP, -offset, R1_SP);
|
|
} else {
|
|
load_const_optimized(tmp, -offset);
|
|
stdux(R1_SP, R1_SP, tmp);
|
|
}
|
|
}
|
|
|
|
// Push a frame of size `bytes' plus abi_reg_args on top.
|
|
void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
|
|
push_frame(bytes + frame::abi_reg_args_size, tmp);
|
|
}
|
|
|
|
// Setup up a new C frame with a spill area for non-volatile GPRs and
|
|
// additional space for local variables.
|
|
void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
|
|
Register tmp) {
|
|
push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
|
|
}
|
|
|
|
// Pop current C frame.
|
|
void MacroAssembler::pop_frame() {
|
|
ld(R1_SP, _abi(callers_sp), R1_SP);
|
|
}
|
|
|
|
#if defined(ABI_ELFv2)
|
|
address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
|
|
// TODO(asmundak): make sure the caller uses R12 as function descriptor
|
|
// most of the times.
|
|
if (R12 != r_function_entry) {
|
|
mr(R12, r_function_entry);
|
|
}
|
|
mtctr(R12);
|
|
// Do a call or a branch.
|
|
if (and_link) {
|
|
bctrl();
|
|
} else {
|
|
bctr();
|
|
}
|
|
_last_calls_return_pc = pc();
|
|
|
|
return _last_calls_return_pc;
|
|
}
|
|
|
|
// Call a C function via a function descriptor and use full C
|
|
// calling conventions. Updates and returns _last_calls_return_pc.
|
|
address MacroAssembler::call_c(Register r_function_entry) {
|
|
return branch_to(r_function_entry, /*and_link=*/true);
|
|
}
|
|
|
|
// For tail calls: only branch, don't link, so callee returns to caller of this function.
|
|
address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
|
|
return branch_to(r_function_entry, /*and_link=*/false);
|
|
}
|
|
|
|
address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
|
|
load_const(R12, function_entry, R0);
|
|
return branch_to(R12, /*and_link=*/true);
|
|
}
|
|
|
|
#else
|
|
// Generic version of a call to C function via a function descriptor
|
|
// with variable support for C calling conventions (TOC, ENV, etc.).
|
|
// Updates and returns _last_calls_return_pc.
|
|
address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
|
|
bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
|
|
// we emit standard ptrgl glue code here
|
|
assert((function_descriptor != R0), "function_descriptor cannot be R0");
|
|
|
|
// retrieve necessary entries from the function descriptor
|
|
ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
|
|
mtctr(R0);
|
|
|
|
if (load_toc_of_callee) {
|
|
ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
|
|
}
|
|
if (load_env_of_callee) {
|
|
ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
|
|
} else if (load_toc_of_callee) {
|
|
li(R11, 0);
|
|
}
|
|
|
|
// do a call or a branch
|
|
if (and_link) {
|
|
bctrl();
|
|
} else {
|
|
bctr();
|
|
}
|
|
_last_calls_return_pc = pc();
|
|
|
|
return _last_calls_return_pc;
|
|
}
|
|
|
|
// Call a C function via a function descriptor and use full C calling
|
|
// conventions.
|
|
// We don't use the TOC in generated code, so there is no need to save
|
|
// and restore its value.
|
|
address MacroAssembler::call_c(Register fd) {
|
|
return branch_to(fd, /*and_link=*/true,
|
|
/*save toc=*/false,
|
|
/*restore toc=*/false,
|
|
/*load toc=*/true,
|
|
/*load env=*/true);
|
|
}
|
|
|
|
address MacroAssembler::call_c_and_return_to_caller(Register fd) {
|
|
return branch_to(fd, /*and_link=*/false,
|
|
/*save toc=*/false,
|
|
/*restore toc=*/false,
|
|
/*load toc=*/true,
|
|
/*load env=*/true);
|
|
}
|
|
|
|
address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
|
|
if (rt != relocInfo::none) {
|
|
// this call needs to be relocatable
|
|
if (!ReoptimizeCallSequences
|
|
|| (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
|
|
|| fd == NULL // support code-size estimation
|
|
|| !fd->is_friend_function()
|
|
|| fd->entry() == NULL) {
|
|
// it's not a friend function as defined by class FunctionDescriptor,
|
|
// so do a full call-c here.
|
|
load_const(R11, (address)fd, R0);
|
|
|
|
bool has_env = (fd != NULL && fd->env() != NULL);
|
|
return branch_to(R11, /*and_link=*/true,
|
|
/*save toc=*/false,
|
|
/*restore toc=*/false,
|
|
/*load toc=*/true,
|
|
/*load env=*/has_env);
|
|
} else {
|
|
// It's a friend function. Load the entry point and don't care about
|
|
// toc and env. Use an optimizable call instruction, but ensure the
|
|
// same code-size as in the case of a non-friend function.
|
|
nop();
|
|
nop();
|
|
nop();
|
|
bl64_patchable(fd->entry(), rt);
|
|
_last_calls_return_pc = pc();
|
|
return _last_calls_return_pc;
|
|
}
|
|
} else {
|
|
// This call does not need to be relocatable, do more aggressive
|
|
// optimizations.
|
|
if (!ReoptimizeCallSequences
|
|
|| !fd->is_friend_function()) {
|
|
// It's not a friend function as defined by class FunctionDescriptor,
|
|
// so do a full call-c here.
|
|
load_const(R11, (address)fd, R0);
|
|
return branch_to(R11, /*and_link=*/true,
|
|
/*save toc=*/false,
|
|
/*restore toc=*/false,
|
|
/*load toc=*/true,
|
|
/*load env=*/true);
|
|
} else {
|
|
// it's a friend function, load the entry point and don't care about
|
|
// toc and env.
|
|
address dest = fd->entry();
|
|
if (is_within_range_of_b(dest, pc())) {
|
|
bl(dest);
|
|
} else {
|
|
bl64_patchable(dest, rt);
|
|
}
|
|
_last_calls_return_pc = pc();
|
|
return _last_calls_return_pc;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Call a C function. All constants needed reside in TOC.
|
|
//
|
|
// Read the address to call from the TOC.
|
|
// Read env from TOC, if fd specifies an env.
|
|
// Read new TOC from TOC.
|
|
address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
|
|
relocInfo::relocType rt, Register toc) {
|
|
if (!ReoptimizeCallSequences
|
|
|| (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
|
|
|| !fd->is_friend_function()) {
|
|
// It's not a friend function as defined by class FunctionDescriptor,
|
|
// so do a full call-c here.
|
|
assert(fd->entry() != NULL, "function must be linked");
|
|
|
|
AddressLiteral fd_entry(fd->entry());
|
|
bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
|
|
mtctr(R11);
|
|
if (fd->env() == NULL) {
|
|
li(R11, 0);
|
|
nop();
|
|
} else {
|
|
AddressLiteral fd_env(fd->env());
|
|
success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
|
|
}
|
|
AddressLiteral fd_toc(fd->toc());
|
|
// Set R2_TOC (load from toc)
|
|
success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
|
|
bctrl();
|
|
_last_calls_return_pc = pc();
|
|
if (!success) { return NULL; }
|
|
} else {
|
|
// It's a friend function, load the entry point and don't care about
|
|
// toc and env. Use an optimizable call instruction, but ensure the
|
|
// same code-size as in the case of a non-friend function.
|
|
nop();
|
|
bl64_patchable(fd->entry(), rt);
|
|
_last_calls_return_pc = pc();
|
|
}
|
|
return _last_calls_return_pc;
|
|
}
|
|
#endif // ABI_ELFv2
|
|
|
|
void MacroAssembler::call_VM_base(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
bool check_exceptions) {
|
|
BLOCK_COMMENT("call_VM {");
|
|
// Determine last_java_sp register.
|
|
if (!last_java_sp->is_valid()) {
|
|
last_java_sp = R1_SP;
|
|
}
|
|
set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
|
|
|
|
// ARG1 must hold thread address.
|
|
mr(R3_ARG1, R16_thread);
|
|
#if defined(ABI_ELFv2)
|
|
address return_pc = call_c(entry_point, relocInfo::none);
|
|
#else
|
|
address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
|
|
#endif
|
|
|
|
reset_last_Java_frame();
|
|
|
|
// Check for pending exceptions.
|
|
if (check_exceptions) {
|
|
// We don't check for exceptions here.
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
// Get oop result if there is one and reset the value in the thread.
|
|
if (oop_result->is_valid()) {
|
|
get_vm_result(oop_result);
|
|
}
|
|
|
|
_last_calls_return_pc = return_pc;
|
|
BLOCK_COMMENT("} call_VM");
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf_base(address entry_point) {
|
|
BLOCK_COMMENT("call_VM_leaf {");
|
|
#if defined(ABI_ELFv2)
|
|
call_c(entry_point, relocInfo::none);
|
|
#else
|
|
call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
|
|
#endif
|
|
BLOCK_COMMENT("} call_VM_leaf");
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
|
|
call_VM_base(oop_result, noreg, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
|
|
bool check_exceptions) {
|
|
// R3_ARG1 is reserved for the thread.
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
|
|
bool check_exceptions) {
|
|
// R3_ARG1 is reserved for the thread
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
assert(arg_2 != R4_ARG2, "smashed argument");
|
|
mr_if_needed(R5_ARG3, arg_2);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions) {
|
|
// R3_ARG1 is reserved for the thread
|
|
mr_if_needed(R4_ARG2, arg_1);
|
|
assert(arg_2 != R4_ARG2, "smashed argument");
|
|
mr_if_needed(R5_ARG3, arg_2);
|
|
mr_if_needed(R6_ARG4, arg_3);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point) {
|
|
call_VM_leaf_base(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
|
|
mr_if_needed(R3_ARG1, arg_1);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
|
|
mr_if_needed(R3_ARG1, arg_1);
|
|
assert(arg_2 != R3_ARG1, "smashed argument");
|
|
mr_if_needed(R4_ARG2, arg_2);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
|
|
mr_if_needed(R3_ARG1, arg_1);
|
|
assert(arg_2 != R3_ARG1, "smashed argument");
|
|
mr_if_needed(R4_ARG2, arg_2);
|
|
assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
|
|
mr_if_needed(R5_ARG3, arg_3);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
// Check whether instruction is a read access to the polling page
|
|
// which was emitted by load_from_polling_page(..).
|
|
bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
|
|
address* polling_address_ptr) {
|
|
if (!is_ld(instruction))
|
|
return false; // It's not a ld. Fail.
|
|
|
|
int rt = inv_rt_field(instruction);
|
|
int ra = inv_ra_field(instruction);
|
|
int ds = inv_ds_field(instruction);
|
|
if (!(ds == 0 && ra != 0 && rt == 0)) {
|
|
return false; // It's not a ld(r0, X, ra). Fail.
|
|
}
|
|
|
|
if (!ucontext) {
|
|
// Set polling address.
|
|
if (polling_address_ptr != NULL) {
|
|
*polling_address_ptr = NULL;
|
|
}
|
|
return true; // No ucontext given. Can't check value of ra. Assume true.
|
|
}
|
|
|
|
#ifdef LINUX
|
|
// Ucontext given. Check that register ra contains the address of
|
|
// the safepoing polling page.
|
|
ucontext_t* uc = (ucontext_t*) ucontext;
|
|
// Set polling address.
|
|
address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
|
|
if (polling_address_ptr != NULL) {
|
|
*polling_address_ptr = addr;
|
|
}
|
|
return os::is_poll_address(addr);
|
|
#else
|
|
// Not on Linux, ucontext must be NULL.
|
|
ShouldNotReachHere();
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
|
|
#ifdef LINUX
|
|
ucontext_t* uc = (ucontext_t*) ucontext;
|
|
|
|
if (is_stwx(instruction) || is_stwux(instruction)) {
|
|
int ra = inv_ra_field(instruction);
|
|
int rb = inv_rb_field(instruction);
|
|
|
|
// look up content of ra and rb in ucontext
|
|
address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
|
|
long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
|
|
return os::is_memory_serialize_page(thread, ra_val+rb_val);
|
|
} else if (is_stw(instruction) || is_stwu(instruction)) {
|
|
int ra = inv_ra_field(instruction);
|
|
int d1 = inv_d1_field(instruction);
|
|
|
|
// look up content of ra in ucontext
|
|
address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
|
|
return os::is_memory_serialize_page(thread, ra_val+d1);
|
|
} else {
|
|
return false;
|
|
}
|
|
#else
|
|
// workaround not needed on !LINUX :-)
|
|
ShouldNotCallThis();
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void MacroAssembler::bang_stack_with_offset(int offset) {
|
|
// When increasing the stack, the old stack pointer will be written
|
|
// to the new top of stack according to the PPC64 abi.
|
|
// Therefore, stack banging is not necessary when increasing
|
|
// the stack by <= os::vm_page_size() bytes.
|
|
// When increasing the stack by a larger amount, this method is
|
|
// called repeatedly to bang the intermediate pages.
|
|
|
|
// Stack grows down, caller passes positive offset.
|
|
assert(offset > 0, "must bang with positive offset");
|
|
|
|
long stdoffset = -offset;
|
|
|
|
if (is_simm(stdoffset, 16)) {
|
|
// Signed 16 bit offset, a simple std is ok.
|
|
if (UseLoadInstructionsForStackBangingPPC64) {
|
|
ld(R0, (int)(signed short)stdoffset, R1_SP);
|
|
} else {
|
|
std(R0,(int)(signed short)stdoffset, R1_SP);
|
|
}
|
|
} else if (is_simm(stdoffset, 31)) {
|
|
const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
|
|
const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
|
|
|
|
Register tmp = R11;
|
|
addis(tmp, R1_SP, hi);
|
|
if (UseLoadInstructionsForStackBangingPPC64) {
|
|
ld(R0, lo, tmp);
|
|
} else {
|
|
std(R0, lo, tmp);
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// If instruction is a stack bang of the form
|
|
// std R0, x(Ry), (see bang_stack_with_offset())
|
|
// stdu R1_SP, x(R1_SP), (see push_frame(), resize_frame())
|
|
// or stdux R1_SP, Rx, R1_SP (see push_frame(), resize_frame())
|
|
// return the banged address. Otherwise, return 0.
|
|
address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
|
|
#ifdef LINUX
|
|
ucontext_t* uc = (ucontext_t*) ucontext;
|
|
int rs = inv_rs_field(instruction);
|
|
int ra = inv_ra_field(instruction);
|
|
if ( (is_ld(instruction) && rs == 0 && UseLoadInstructionsForStackBangingPPC64)
|
|
|| (is_std(instruction) && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
|
|
|| (is_stdu(instruction) && rs == 1)) {
|
|
int ds = inv_ds_field(instruction);
|
|
// return banged address
|
|
return ds+(address)uc->uc_mcontext.regs->gpr[ra];
|
|
} else if (is_stdux(instruction) && rs == 1) {
|
|
int rb = inv_rb_field(instruction);
|
|
address sp = (address)uc->uc_mcontext.regs->gpr[1];
|
|
long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
|
|
return ra != 1 || rb_val >= 0 ? NULL // not a stack bang
|
|
: sp + rb_val; // banged address
|
|
}
|
|
return NULL; // not a stack bang
|
|
#else
|
|
// workaround not needed on !LINUX :-)
|
|
ShouldNotCallThis();
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
// CmpxchgX sets condition register to cmpX(current, compare).
|
|
void MacroAssembler::cmpxchgw(ConditionRegister flag, Register dest_current_value,
|
|
Register compare_value, Register exchange_value,
|
|
Register addr_base, int semantics, bool cmpxchgx_hint,
|
|
Register int_flag_success, bool contention_hint) {
|
|
Label retry;
|
|
Label failed;
|
|
Label done;
|
|
|
|
// Save one branch if result is returned via register and
|
|
// result register is different from the other ones.
|
|
bool use_result_reg = (int_flag_success != noreg);
|
|
bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
|
|
int_flag_success != exchange_value && int_flag_success != addr_base);
|
|
|
|
if (use_result_reg && preset_result_reg) {
|
|
li(int_flag_success, 0); // preset (assume cas failed)
|
|
}
|
|
|
|
// Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
|
|
if (contention_hint) { // Don't try to reserve if cmp fails.
|
|
lwz(dest_current_value, 0, addr_base);
|
|
cmpw(flag, dest_current_value, compare_value);
|
|
bne(flag, failed);
|
|
}
|
|
|
|
// release/fence semantics
|
|
if (semantics & MemBarRel) {
|
|
release();
|
|
}
|
|
|
|
// atomic emulation loop
|
|
bind(retry);
|
|
|
|
lwarx(dest_current_value, addr_base, cmpxchgx_hint);
|
|
cmpw(flag, dest_current_value, compare_value);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(flag, failed);
|
|
} else {
|
|
bne( flag, failed);
|
|
}
|
|
// branch to done => (flag == ne), (dest_current_value != compare_value)
|
|
// fall through => (flag == eq), (dest_current_value == compare_value)
|
|
|
|
stwcx_(exchange_value, addr_base);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
|
|
} else {
|
|
bne( CCR0, retry); // StXcx_ sets CCR0.
|
|
}
|
|
// fall through => (flag == eq), (dest_current_value == compare_value), (swapped)
|
|
|
|
// Result in register (must do this at the end because int_flag_success can be the
|
|
// same register as one above).
|
|
if (use_result_reg) {
|
|
li(int_flag_success, 1);
|
|
}
|
|
|
|
if (semantics & MemBarFenceAfter) {
|
|
fence();
|
|
} else if (semantics & MemBarAcq) {
|
|
isync();
|
|
}
|
|
|
|
if (use_result_reg && !preset_result_reg) {
|
|
b(done);
|
|
}
|
|
|
|
bind(failed);
|
|
if (use_result_reg && !preset_result_reg) {
|
|
li(int_flag_success, 0);
|
|
}
|
|
|
|
bind(done);
|
|
// (flag == ne) => (dest_current_value != compare_value), (!swapped)
|
|
// (flag == eq) => (dest_current_value == compare_value), ( swapped)
|
|
}
|
|
|
|
// Preforms atomic compare exchange:
|
|
// if (compare_value == *addr_base)
|
|
// *addr_base = exchange_value
|
|
// int_flag_success = 1;
|
|
// else
|
|
// int_flag_success = 0;
|
|
//
|
|
// ConditionRegister flag = cmp(compare_value, *addr_base)
|
|
// Register dest_current_value = *addr_base
|
|
// Register compare_value Used to compare with value in memory
|
|
// Register exchange_value Written to memory if compare_value == *addr_base
|
|
// Register addr_base The memory location to compareXChange
|
|
// Register int_flag_success Set to 1 if exchange_value was written to *addr_base
|
|
//
|
|
// To avoid the costly compare exchange the value is tested beforehand.
|
|
// Several special cases exist to avoid that unnecessary information is generated.
|
|
//
|
|
void MacroAssembler::cmpxchgd(ConditionRegister flag,
|
|
Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
|
|
Register addr_base, int semantics, bool cmpxchgx_hint,
|
|
Register int_flag_success, Label* failed_ext, bool contention_hint) {
|
|
Label retry;
|
|
Label failed_int;
|
|
Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
|
|
Label done;
|
|
|
|
// Save one branch if result is returned via register and result register is different from the other ones.
|
|
bool use_result_reg = (int_flag_success!=noreg);
|
|
bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
|
|
int_flag_success!=exchange_value && int_flag_success!=addr_base);
|
|
assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
|
|
|
|
if (use_result_reg && preset_result_reg) {
|
|
li(int_flag_success, 0); // preset (assume cas failed)
|
|
}
|
|
|
|
// Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
|
|
if (contention_hint) { // Don't try to reserve if cmp fails.
|
|
ld(dest_current_value, 0, addr_base);
|
|
cmpd(flag, compare_value, dest_current_value);
|
|
bne(flag, failed);
|
|
}
|
|
|
|
// release/fence semantics
|
|
if (semantics & MemBarRel) {
|
|
release();
|
|
}
|
|
|
|
// atomic emulation loop
|
|
bind(retry);
|
|
|
|
ldarx(dest_current_value, addr_base, cmpxchgx_hint);
|
|
cmpd(flag, compare_value, dest_current_value);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(flag, failed);
|
|
} else {
|
|
bne( flag, failed);
|
|
}
|
|
|
|
stdcx_(exchange_value, addr_base);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
|
|
} else {
|
|
bne( CCR0, retry); // stXcx_ sets CCR0
|
|
}
|
|
|
|
// result in register (must do this at the end because int_flag_success can be the same register as one above)
|
|
if (use_result_reg) {
|
|
li(int_flag_success, 1);
|
|
}
|
|
|
|
if (semantics & MemBarFenceAfter) {
|
|
fence();
|
|
} else if (semantics & MemBarAcq) {
|
|
isync();
|
|
}
|
|
|
|
if (use_result_reg && !preset_result_reg) {
|
|
b(done);
|
|
}
|
|
|
|
bind(failed_int);
|
|
if (use_result_reg && !preset_result_reg) {
|
|
li(int_flag_success, 0);
|
|
}
|
|
|
|
bind(done);
|
|
// (flag == ne) => (dest_current_value != compare_value), (!swapped)
|
|
// (flag == eq) => (dest_current_value == compare_value), ( swapped)
|
|
}
|
|
|
|
// Look up the method for a megamorphic invokeinterface call.
|
|
// The target method is determined by <intf_klass, itable_index>.
|
|
// The receiver klass is in recv_klass.
|
|
// On success, the result will be in method_result, and execution falls through.
|
|
// On failure, execution transfers to the given label.
|
|
void MacroAssembler::lookup_interface_method(Register recv_klass,
|
|
Register intf_klass,
|
|
RegisterOrConstant itable_index,
|
|
Register method_result,
|
|
Register scan_temp,
|
|
Register sethi_temp,
|
|
Label& L_no_such_interface) {
|
|
assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
|
|
assert(itable_index.is_constant() || itable_index.as_register() == method_result,
|
|
"caller must use same register for non-constant itable index as for method");
|
|
|
|
// Compute start of first itableOffsetEntry (which is at the end of the vtable).
|
|
int vtable_base = in_bytes(InstanceKlass::vtable_start_offset());
|
|
int itentry_off = itableMethodEntry::method_offset_in_bytes();
|
|
int logMEsize = exact_log2(itableMethodEntry::size() * wordSize);
|
|
int scan_step = itableOffsetEntry::size() * wordSize;
|
|
int log_vte_size= exact_log2(vtableEntry::size_in_bytes());
|
|
|
|
lwz(scan_temp, in_bytes(InstanceKlass::vtable_length_offset()), recv_klass);
|
|
// %%% We should store the aligned, prescaled offset in the klassoop.
|
|
// Then the next several instructions would fold away.
|
|
|
|
sldi(scan_temp, scan_temp, log_vte_size);
|
|
addi(scan_temp, scan_temp, vtable_base);
|
|
add(scan_temp, recv_klass, scan_temp);
|
|
|
|
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
|
|
if (itable_index.is_register()) {
|
|
Register itable_offset = itable_index.as_register();
|
|
sldi(itable_offset, itable_offset, logMEsize);
|
|
if (itentry_off) addi(itable_offset, itable_offset, itentry_off);
|
|
add(recv_klass, itable_offset, recv_klass);
|
|
} else {
|
|
long itable_offset = (long)itable_index.as_constant();
|
|
load_const_optimized(sethi_temp, (itable_offset<<logMEsize)+itentry_off); // static address, no relocation
|
|
add(recv_klass, sethi_temp, recv_klass);
|
|
}
|
|
|
|
// for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
|
|
// if (scan->interface() == intf) {
|
|
// result = (klass + scan->offset() + itable_index);
|
|
// }
|
|
// }
|
|
Label search, found_method;
|
|
|
|
for (int peel = 1; peel >= 0; peel--) {
|
|
// %%%% Could load both offset and interface in one ldx, if they were
|
|
// in the opposite order. This would save a load.
|
|
ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
|
|
|
|
// Check that this entry is non-null. A null entry means that
|
|
// the receiver class doesn't implement the interface, and wasn't the
|
|
// same as when the caller was compiled.
|
|
cmpd(CCR0, method_result, intf_klass);
|
|
|
|
if (peel) {
|
|
beq(CCR0, found_method);
|
|
} else {
|
|
bne(CCR0, search);
|
|
// (invert the test to fall through to found_method...)
|
|
}
|
|
|
|
if (!peel) break;
|
|
|
|
bind(search);
|
|
|
|
cmpdi(CCR0, method_result, 0);
|
|
beq(CCR0, L_no_such_interface);
|
|
addi(scan_temp, scan_temp, scan_step);
|
|
}
|
|
|
|
bind(found_method);
|
|
|
|
// Got a hit.
|
|
int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
|
|
lwz(scan_temp, ito_offset, scan_temp);
|
|
ldx(method_result, scan_temp, recv_klass);
|
|
}
|
|
|
|
// virtual method calling
|
|
void MacroAssembler::lookup_virtual_method(Register recv_klass,
|
|
RegisterOrConstant vtable_index,
|
|
Register method_result) {
|
|
|
|
assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
|
|
|
|
const int base = in_bytes(InstanceKlass::vtable_start_offset());
|
|
assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
|
|
|
|
if (vtable_index.is_register()) {
|
|
sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
|
|
add(recv_klass, vtable_index.as_register(), recv_klass);
|
|
} else {
|
|
addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
|
|
}
|
|
ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
|
|
}
|
|
|
|
/////////////////////////////////////////// subtype checking ////////////////////////////////////////////
|
|
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp1_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
Label* L_slow_path,
|
|
RegisterOrConstant super_check_offset) {
|
|
|
|
const Register check_cache_offset = temp1_reg;
|
|
const Register cached_super = temp2_reg;
|
|
|
|
assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
|
|
|
|
int sco_offset = in_bytes(Klass::super_check_offset_offset());
|
|
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
|
|
bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
|
|
bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);
|
|
|
|
Label L_fallthrough;
|
|
int label_nulls = 0;
|
|
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
|
|
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
|
|
if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
|
|
assert(label_nulls <= 1 ||
|
|
(L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
|
|
"at most one NULL in the batch, usually");
|
|
|
|
// If the pointers are equal, we are done (e.g., String[] elements).
|
|
// This self-check enables sharing of secondary supertype arrays among
|
|
// non-primary types such as array-of-interface. Otherwise, each such
|
|
// type would need its own customized SSA.
|
|
// We move this check to the front of the fast path because many
|
|
// type checks are in fact trivially successful in this manner,
|
|
// so we get a nicely predicted branch right at the start of the check.
|
|
cmpd(CCR0, sub_klass, super_klass);
|
|
beq(CCR0, *L_success);
|
|
|
|
// Check the supertype display:
|
|
if (must_load_sco) {
|
|
// The super check offset is always positive...
|
|
lwz(check_cache_offset, sco_offset, super_klass);
|
|
super_check_offset = RegisterOrConstant(check_cache_offset);
|
|
// super_check_offset is register.
|
|
assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
|
|
}
|
|
// The loaded value is the offset from KlassOopDesc.
|
|
|
|
ld(cached_super, super_check_offset, sub_klass);
|
|
cmpd(CCR0, cached_super, super_klass);
|
|
|
|
// This check has worked decisively for primary supers.
|
|
// Secondary supers are sought in the super_cache ('super_cache_addr').
|
|
// (Secondary supers are interfaces and very deeply nested subtypes.)
|
|
// This works in the same check above because of a tricky aliasing
|
|
// between the super_cache and the primary super display elements.
|
|
// (The 'super_check_addr' can address either, as the case requires.)
|
|
// Note that the cache is updated below if it does not help us find
|
|
// what we need immediately.
|
|
// So if it was a primary super, we can just fail immediately.
|
|
// Otherwise, it's the slow path for us (no success at this point).
|
|
|
|
#define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }
|
|
|
|
if (super_check_offset.is_register()) {
|
|
beq(CCR0, *L_success);
|
|
cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
|
|
if (L_failure == &L_fallthrough) {
|
|
beq(CCR0, *L_slow_path);
|
|
} else {
|
|
bne(CCR0, *L_failure);
|
|
FINAL_JUMP(*L_slow_path);
|
|
}
|
|
} else {
|
|
if (super_check_offset.as_constant() == sc_offset) {
|
|
// Need a slow path; fast failure is impossible.
|
|
if (L_slow_path == &L_fallthrough) {
|
|
beq(CCR0, *L_success);
|
|
} else {
|
|
bne(CCR0, *L_slow_path);
|
|
FINAL_JUMP(*L_success);
|
|
}
|
|
} else {
|
|
// No slow path; it's a fast decision.
|
|
if (L_failure == &L_fallthrough) {
|
|
beq(CCR0, *L_success);
|
|
} else {
|
|
bne(CCR0, *L_failure);
|
|
FINAL_JUMP(*L_success);
|
|
}
|
|
}
|
|
}
|
|
|
|
bind(L_fallthrough);
|
|
#undef FINAL_JUMP
|
|
}
|
|
|
|
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp1_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Register result_reg) {
|
|
const Register array_ptr = temp1_reg; // current value from cache array
|
|
const Register temp = temp2_reg;
|
|
|
|
assert_different_registers(sub_klass, super_klass, array_ptr, temp);
|
|
|
|
int source_offset = in_bytes(Klass::secondary_supers_offset());
|
|
int target_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
|
|
int length_offset = Array<Klass*>::length_offset_in_bytes();
|
|
int base_offset = Array<Klass*>::base_offset_in_bytes();
|
|
|
|
Label hit, loop, failure, fallthru;
|
|
|
|
ld(array_ptr, source_offset, sub_klass);
|
|
|
|
// TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
|
|
lwz(temp, length_offset, array_ptr);
|
|
cmpwi(CCR0, temp, 0);
|
|
beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
|
|
|
|
mtctr(temp); // load ctr
|
|
|
|
bind(loop);
|
|
// Oops in table are NO MORE compressed.
|
|
ld(temp, base_offset, array_ptr);
|
|
cmpd(CCR0, temp, super_klass);
|
|
beq(CCR0, hit);
|
|
addi(array_ptr, array_ptr, BytesPerWord);
|
|
bdnz(loop);
|
|
|
|
bind(failure);
|
|
if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
|
|
b(fallthru);
|
|
|
|
bind(hit);
|
|
std(super_klass, target_offset, sub_klass); // save result to cache
|
|
if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
|
|
if (L_success != NULL) { b(*L_success); }
|
|
else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided
|
|
|
|
bind(fallthru);
|
|
}
|
|
|
|
// Try fast path, then go to slow one if not successful
|
|
void MacroAssembler::check_klass_subtype(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp1_reg,
|
|
Register temp2_reg,
|
|
Label& L_success) {
|
|
Label L_failure;
|
|
check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
|
|
check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
|
|
bind(L_failure); // Fallthru if not successful.
|
|
}
|
|
|
|
void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
|
|
Register temp_reg,
|
|
Label& wrong_method_type) {
|
|
assert_different_registers(mtype_reg, mh_reg, temp_reg);
|
|
// Compare method type against that of the receiver.
|
|
load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg);
|
|
cmpd(CCR0, temp_reg, mtype_reg);
|
|
bne(CCR0, wrong_method_type);
|
|
}
|
|
|
|
RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
|
|
Register temp_reg,
|
|
int extra_slot_offset) {
|
|
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
|
|
int stackElementSize = Interpreter::stackElementSize;
|
|
int offset = extra_slot_offset * stackElementSize;
|
|
if (arg_slot.is_constant()) {
|
|
offset += arg_slot.as_constant() * stackElementSize;
|
|
return offset;
|
|
} else {
|
|
assert(temp_reg != noreg, "must specify");
|
|
sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
|
|
if (offset != 0)
|
|
addi(temp_reg, temp_reg, offset);
|
|
return temp_reg;
|
|
}
|
|
}
|
|
|
|
// Supports temp2_reg = R0.
|
|
void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
|
|
Register mark_reg, Register temp_reg,
|
|
Register temp2_reg, Label& done, Label* slow_case) {
|
|
assert(UseBiasedLocking, "why call this otherwise?");
|
|
|
|
#ifdef ASSERT
|
|
assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
|
|
#endif
|
|
|
|
Label cas_label;
|
|
|
|
// Branch to done if fast path fails and no slow_case provided.
|
|
Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
|
|
|
|
// Biased locking
|
|
// See whether the lock is currently biased toward our thread and
|
|
// whether the epoch is still valid
|
|
// Note that the runtime guarantees sufficient alignment of JavaThread
|
|
// pointers to allow age to be placed into low bits
|
|
assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
|
|
"biased locking makes assumptions about bit layout");
|
|
|
|
if (PrintBiasedLockingStatistics) {
|
|
load_const(temp2_reg, (address) BiasedLocking::total_entry_count_addr(), temp_reg);
|
|
lwzx(temp_reg, temp2_reg);
|
|
addi(temp_reg, temp_reg, 1);
|
|
stwx(temp_reg, temp2_reg);
|
|
}
|
|
|
|
andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
|
|
cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
|
|
bne(cr_reg, cas_label);
|
|
|
|
load_klass(temp_reg, obj_reg);
|
|
|
|
load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
|
|
ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
|
|
orr(temp_reg, R16_thread, temp_reg);
|
|
xorr(temp_reg, mark_reg, temp_reg);
|
|
andr(temp_reg, temp_reg, temp2_reg);
|
|
cmpdi(cr_reg, temp_reg, 0);
|
|
if (PrintBiasedLockingStatistics) {
|
|
Label l;
|
|
bne(cr_reg, l);
|
|
load_const(temp2_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
|
|
lwzx(mark_reg, temp2_reg);
|
|
addi(mark_reg, mark_reg, 1);
|
|
stwx(mark_reg, temp2_reg);
|
|
// restore mark_reg
|
|
ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
|
|
bind(l);
|
|
}
|
|
beq(cr_reg, done);
|
|
|
|
Label try_revoke_bias;
|
|
Label try_rebias;
|
|
|
|
// At this point we know that the header has the bias pattern and
|
|
// that we are not the bias owner in the current epoch. We need to
|
|
// figure out more details about the state of the header in order to
|
|
// know what operations can be legally performed on the object's
|
|
// header.
|
|
|
|
// If the low three bits in the xor result aren't clear, that means
|
|
// the prototype header is no longer biased and we have to revoke
|
|
// the bias on this object.
|
|
andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
|
|
cmpwi(cr_reg, temp2_reg, 0);
|
|
bne(cr_reg, try_revoke_bias);
|
|
|
|
// Biasing is still enabled for this data type. See whether the
|
|
// epoch of the current bias is still valid, meaning that the epoch
|
|
// bits of the mark word are equal to the epoch bits of the
|
|
// prototype header. (Note that the prototype header's epoch bits
|
|
// only change at a safepoint.) If not, attempt to rebias the object
|
|
// toward the current thread. Note that we must be absolutely sure
|
|
// that the current epoch is invalid in order to do this because
|
|
// otherwise the manipulations it performs on the mark word are
|
|
// illegal.
|
|
|
|
int shift_amount = 64 - markOopDesc::epoch_shift;
|
|
// rotate epoch bits to right (little) end and set other bits to 0
|
|
// [ big part | epoch | little part ] -> [ 0..0 | epoch ]
|
|
rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
|
|
// branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
|
|
bne(CCR0, try_rebias);
|
|
|
|
// The epoch of the current bias is still valid but we know nothing
|
|
// about the owner; it might be set or it might be clear. Try to
|
|
// acquire the bias of the object using an atomic operation. If this
|
|
// fails we will go in to the runtime to revoke the object's bias.
|
|
// Note that we first construct the presumed unbiased header so we
|
|
// don't accidentally blow away another thread's valid bias.
|
|
andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
|
|
markOopDesc::age_mask_in_place |
|
|
markOopDesc::epoch_mask_in_place));
|
|
orr(temp_reg, R16_thread, mark_reg);
|
|
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
|
|
// CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
|
|
cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
|
|
/*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
|
|
/*where=*/obj_reg,
|
|
MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock(),
|
|
noreg, slow_case_int); // bail out if failed
|
|
|
|
// If the biasing toward our thread failed, this means that
|
|
// another thread succeeded in biasing it toward itself and we
|
|
// need to revoke that bias. The revocation will occur in the
|
|
// interpreter runtime in the slow case.
|
|
if (PrintBiasedLockingStatistics) {
|
|
load_const(temp2_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp_reg);
|
|
lwzx(temp_reg, temp2_reg);
|
|
addi(temp_reg, temp_reg, 1);
|
|
stwx(temp_reg, temp2_reg);
|
|
}
|
|
b(done);
|
|
|
|
bind(try_rebias);
|
|
// At this point we know the epoch has expired, meaning that the
|
|
// current "bias owner", if any, is actually invalid. Under these
|
|
// circumstances _only_, we are allowed to use the current header's
|
|
// value as the comparison value when doing the cas to acquire the
|
|
// bias in the current epoch. In other words, we allow transfer of
|
|
// the bias from one thread to another directly in this situation.
|
|
load_klass(temp_reg, obj_reg);
|
|
andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
|
|
orr(temp2_reg, R16_thread, temp2_reg);
|
|
ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
|
|
orr(temp_reg, temp2_reg, temp_reg);
|
|
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
|
|
cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
|
|
/*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
|
|
/*where=*/obj_reg,
|
|
MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock(),
|
|
noreg, slow_case_int); // bail out if failed
|
|
|
|
// If the biasing toward our thread failed, this means that
|
|
// another thread succeeded in biasing it toward itself and we
|
|
// need to revoke that bias. The revocation will occur in the
|
|
// interpreter runtime in the slow case.
|
|
if (PrintBiasedLockingStatistics) {
|
|
load_const(temp2_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg);
|
|
lwzx(temp_reg, temp2_reg);
|
|
addi(temp_reg, temp_reg, 1);
|
|
stwx(temp_reg, temp2_reg);
|
|
}
|
|
b(done);
|
|
|
|
bind(try_revoke_bias);
|
|
// The prototype mark in the klass doesn't have the bias bit set any
|
|
// more, indicating that objects of this data type are not supposed
|
|
// to be biased any more. We are going to try to reset the mark of
|
|
// this object to the prototype value and fall through to the
|
|
// CAS-based locking scheme. Note that if our CAS fails, it means
|
|
// that another thread raced us for the privilege of revoking the
|
|
// bias of this particular object, so it's okay to continue in the
|
|
// normal locking code.
|
|
load_klass(temp_reg, obj_reg);
|
|
ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
|
|
andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
|
|
orr(temp_reg, temp_reg, temp2_reg);
|
|
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
|
|
// CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
|
|
cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
|
|
/*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
|
|
/*where=*/obj_reg,
|
|
MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock());
|
|
|
|
// reload markOop in mark_reg before continuing with lightweight locking
|
|
ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
|
|
|
|
// Fall through to the normal CAS-based lock, because no matter what
|
|
// the result of the above CAS, some thread must have succeeded in
|
|
// removing the bias bit from the object's header.
|
|
if (PrintBiasedLockingStatistics) {
|
|
Label l;
|
|
bne(cr_reg, l);
|
|
load_const(temp2_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg);
|
|
lwzx(temp_reg, temp2_reg);
|
|
addi(temp_reg, temp_reg, 1);
|
|
stwx(temp_reg, temp2_reg);
|
|
bind(l);
|
|
}
|
|
|
|
bind(cas_label);
|
|
}
|
|
|
|
void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
|
|
// Check for biased locking unlock case, which is a no-op
|
|
// Note: we do not have to check the thread ID for two reasons.
|
|
// First, the interpreter checks for IllegalMonitorStateException at
|
|
// a higher level. Second, if the bias was revoked while we held the
|
|
// lock, the object could not be rebiased toward another thread, so
|
|
// the bias bit would be clear.
|
|
|
|
ld(temp_reg, 0, mark_addr);
|
|
andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
|
|
|
|
cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
|
|
beq(cr_reg, done);
|
|
}
|
|
|
|
// allocation (for C1)
|
|
void MacroAssembler::eden_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Register t2, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
) {
|
|
b(slow_case);
|
|
}
|
|
|
|
void MacroAssembler::tlab_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
) {
|
|
// make sure arguments make sense
|
|
assert_different_registers(obj, var_size_in_bytes, t1);
|
|
assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
|
|
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
|
|
|
|
const Register new_top = t1;
|
|
//verify_tlab(); not implemented
|
|
|
|
ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
|
|
ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
|
|
if (var_size_in_bytes == noreg) {
|
|
addi(new_top, obj, con_size_in_bytes);
|
|
} else {
|
|
add(new_top, obj, var_size_in_bytes);
|
|
}
|
|
cmpld(CCR0, new_top, R0);
|
|
bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
|
|
|
|
#ifdef ASSERT
|
|
// make sure new free pointer is properly aligned
|
|
{
|
|
Label L;
|
|
andi_(R0, new_top, MinObjAlignmentInBytesMask);
|
|
beq(CCR0, L);
|
|
stop("updated TLAB free is not properly aligned", 0x934);
|
|
bind(L);
|
|
}
|
|
#endif // ASSERT
|
|
|
|
// update the tlab top pointer
|
|
std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
|
|
//verify_tlab(); not implemented
|
|
}
|
|
void MacroAssembler::tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case) {
|
|
unimplemented("tlab_refill");
|
|
}
|
|
void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2) {
|
|
unimplemented("incr_allocated_bytes");
|
|
}
|
|
|
|
address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
|
|
int insts_call_instruction_offset, Register Rtoc) {
|
|
// Start the stub.
|
|
address stub = start_a_stub(64);
|
|
if (stub == NULL) { return NULL; } // CodeCache full: bail out
|
|
|
|
// Create a trampoline stub relocation which relates this trampoline stub
|
|
// with the call instruction at insts_call_instruction_offset in the
|
|
// instructions code-section.
|
|
relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
|
|
const int stub_start_offset = offset();
|
|
|
|
// For java_to_interp stubs we use R11_scratch1 as scratch register
|
|
// and in call trampoline stubs we use R12_scratch2. This way we
|
|
// can distinguish them (see is_NativeCallTrampolineStub_at()).
|
|
Register reg_scratch = R12_scratch2;
|
|
|
|
// Now, create the trampoline stub's code:
|
|
// - load the TOC
|
|
// - load the call target from the constant pool
|
|
// - call
|
|
if (Rtoc == noreg) {
|
|
calculate_address_from_global_toc(reg_scratch, method_toc());
|
|
Rtoc = reg_scratch;
|
|
}
|
|
|
|
ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
|
|
mtctr(reg_scratch);
|
|
bctr();
|
|
|
|
const address stub_start_addr = addr_at(stub_start_offset);
|
|
|
|
// Assert that the encoded destination_toc_offset can be identified and that it is correct.
|
|
assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
|
|
"encoded offset into the constant pool must match");
|
|
// Trampoline_stub_size should be good.
|
|
assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
|
|
assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
|
|
|
|
// End the stub.
|
|
end_a_stub();
|
|
return stub;
|
|
}
|
|
|
|
// TM on PPC64.
|
|
void MacroAssembler::atomic_inc_ptr(Register addr, Register result, int simm16) {
|
|
Label retry;
|
|
bind(retry);
|
|
ldarx(result, addr, /*hint*/ false);
|
|
addi(result, result, simm16);
|
|
stdcx_(result, addr);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
|
|
} else {
|
|
bne( CCR0, retry); // stXcx_ sets CCR0
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::atomic_ori_int(Register addr, Register result, int uimm16) {
|
|
Label retry;
|
|
bind(retry);
|
|
lwarx(result, addr, /*hint*/ false);
|
|
ori(result, result, uimm16);
|
|
stwcx_(result, addr);
|
|
if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
|
|
bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
|
|
} else {
|
|
bne( CCR0, retry); // stXcx_ sets CCR0
|
|
}
|
|
}
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
|
|
// Update rtm_counters based on abort status
|
|
// input: abort_status
|
|
// rtm_counters (RTMLockingCounters*)
|
|
void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters_Reg) {
|
|
// Mapping to keep PreciseRTMLockingStatistics similar to x86.
|
|
// x86 ppc (! means inverted, ? means not the same)
|
|
// 0 31 Set if abort caused by XABORT instruction.
|
|
// 1 ! 7 If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set.
|
|
// 2 13 Set if another logical processor conflicted with a memory address that was part of the transaction that aborted.
|
|
// 3 10 Set if an internal buffer overflowed.
|
|
// 4 ?12 Set if a debug breakpoint was hit.
|
|
// 5 ?32 Set if an abort occurred during execution of a nested transaction.
|
|
const int tm_failure_bit[] = {Assembler::tm_tabort, // Note: Seems like signal handler sets this, too.
|
|
Assembler::tm_failure_persistent, // inverted: transient
|
|
Assembler::tm_trans_cf,
|
|
Assembler::tm_footprint_of,
|
|
Assembler::tm_non_trans_cf,
|
|
Assembler::tm_suspended};
|
|
const bool tm_failure_inv[] = {false, true, false, false, false, false};
|
|
assert(sizeof(tm_failure_bit)/sizeof(int) == RTMLockingCounters::ABORT_STATUS_LIMIT, "adapt mapping!");
|
|
|
|
const Register addr_Reg = R0;
|
|
// Keep track of offset to where rtm_counters_Reg had pointed to.
|
|
int counters_offs = RTMLockingCounters::abort_count_offset();
|
|
addi(addr_Reg, rtm_counters_Reg, counters_offs);
|
|
const Register temp_Reg = rtm_counters_Reg;
|
|
|
|
//atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
|
|
ldx(temp_Reg, addr_Reg);
|
|
addi(temp_Reg, temp_Reg, 1);
|
|
stdx(temp_Reg, addr_Reg);
|
|
|
|
if (PrintPreciseRTMLockingStatistics) {
|
|
int counters_offs_delta = RTMLockingCounters::abortX_count_offset() - counters_offs;
|
|
|
|
//mftexasr(abort_status); done by caller
|
|
for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
|
|
counters_offs += counters_offs_delta;
|
|
li(temp_Reg, counters_offs_delta); // can't use addi with R0
|
|
add(addr_Reg, addr_Reg, temp_Reg); // point to next counter
|
|
counters_offs_delta = sizeof(uintx);
|
|
|
|
Label check_abort;
|
|
rldicr_(temp_Reg, abort_status, tm_failure_bit[i], 0);
|
|
if (tm_failure_inv[i]) {
|
|
bne(CCR0, check_abort);
|
|
} else {
|
|
beq(CCR0, check_abort);
|
|
}
|
|
//atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
|
|
ldx(temp_Reg, addr_Reg);
|
|
addi(temp_Reg, temp_Reg, 1);
|
|
stdx(temp_Reg, addr_Reg);
|
|
bind(check_abort);
|
|
}
|
|
}
|
|
li(temp_Reg, -counters_offs); // can't use addi with R0
|
|
add(rtm_counters_Reg, addr_Reg, temp_Reg); // restore
|
|
}
|
|
|
|
// Branch if (random & (count-1) != 0), count is 2^n
|
|
// tmp and CR0 are killed
|
|
void MacroAssembler::branch_on_random_using_tb(Register tmp, int count, Label& brLabel) {
|
|
mftb(tmp);
|
|
andi_(tmp, tmp, count-1);
|
|
bne(CCR0, brLabel);
|
|
}
|
|
|
|
// Perform abort ratio calculation, set no_rtm bit if high ratio.
|
|
// input: rtm_counters_Reg (RTMLockingCounters* address) - KILLED
|
|
void MacroAssembler::rtm_abort_ratio_calculation(Register rtm_counters_Reg,
|
|
RTMLockingCounters* rtm_counters,
|
|
Metadata* method_data) {
|
|
Label L_done, L_check_always_rtm1, L_check_always_rtm2;
|
|
|
|
if (RTMLockingCalculationDelay > 0) {
|
|
// Delay calculation.
|
|
ld(rtm_counters_Reg, (RegisterOrConstant)(intptr_t)RTMLockingCounters::rtm_calculation_flag_addr());
|
|
cmpdi(CCR0, rtm_counters_Reg, 0);
|
|
beq(CCR0, L_done);
|
|
load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
|
|
}
|
|
// Abort ratio calculation only if abort_count > RTMAbortThreshold.
|
|
// Aborted transactions = abort_count * 100
|
|
// All transactions = total_count * RTMTotalCountIncrRate
|
|
// Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
|
|
ld(R0, RTMLockingCounters::abort_count_offset(), rtm_counters_Reg);
|
|
cmpdi(CCR0, R0, RTMAbortThreshold);
|
|
blt(CCR0, L_check_always_rtm2);
|
|
mulli(R0, R0, 100);
|
|
|
|
const Register tmpReg = rtm_counters_Reg;
|
|
ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
|
|
mulli(tmpReg, tmpReg, RTMTotalCountIncrRate);
|
|
mulli(tmpReg, tmpReg, RTMAbortRatio);
|
|
cmpd(CCR0, R0, tmpReg);
|
|
blt(CCR0, L_check_always_rtm1); // jump to reload
|
|
if (method_data != NULL) {
|
|
// Set rtm_state to "no rtm" in MDO.
|
|
// Not using a metadata relocation. Method and Class Loader are kept alive anyway.
|
|
// (See nmethod::metadata_do and CodeBuffer::finalize_oop_references.)
|
|
load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
|
|
atomic_ori_int(R0, tmpReg, NoRTM);
|
|
}
|
|
b(L_done);
|
|
|
|
bind(L_check_always_rtm1);
|
|
load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
|
|
bind(L_check_always_rtm2);
|
|
ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
|
|
cmpdi(CCR0, tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
|
|
blt(CCR0, L_done);
|
|
if (method_data != NULL) {
|
|
// Set rtm_state to "always rtm" in MDO.
|
|
// Not using a metadata relocation. See above.
|
|
load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
|
|
atomic_ori_int(R0, tmpReg, UseRTM);
|
|
}
|
|
bind(L_done);
|
|
}
|
|
|
|
// Update counters and perform abort ratio calculation.
|
|
// input: abort_status_Reg
|
|
void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register temp_Reg,
|
|
RTMLockingCounters* rtm_counters,
|
|
Metadata* method_data,
|
|
bool profile_rtm) {
|
|
|
|
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
|
|
// Update rtm counters based on state at abort.
|
|
// Reads abort_status_Reg, updates flags.
|
|
assert_different_registers(abort_status_Reg, temp_Reg);
|
|
load_const_optimized(temp_Reg, (address)rtm_counters, R0);
|
|
rtm_counters_update(abort_status_Reg, temp_Reg);
|
|
if (profile_rtm) {
|
|
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
|
|
rtm_abort_ratio_calculation(temp_Reg, rtm_counters, method_data);
|
|
}
|
|
}
|
|
|
|
// Retry on abort if abort's status indicates non-persistent failure.
|
|
// inputs: retry_count_Reg
|
|
// : abort_status_Reg
|
|
// output: retry_count_Reg decremented by 1
|
|
void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg,
|
|
Label& retryLabel, Label* checkRetry) {
|
|
Label doneRetry;
|
|
rldicr_(R0, abort_status_Reg, tm_failure_persistent, 0);
|
|
bne(CCR0, doneRetry);
|
|
if (checkRetry) { bind(*checkRetry); }
|
|
addic_(retry_count_Reg, retry_count_Reg, -1);
|
|
blt(CCR0, doneRetry);
|
|
smt_yield(); // Can't use wait(). No permission (SIGILL).
|
|
b(retryLabel);
|
|
bind(doneRetry);
|
|
}
|
|
|
|
// Spin and retry if lock is busy.
|
|
// inputs: box_Reg (monitor address)
|
|
// : retry_count_Reg
|
|
// output: retry_count_Reg decremented by 1
|
|
// CTR is killed
|
|
void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) {
|
|
Label SpinLoop, doneRetry;
|
|
addic_(retry_count_Reg, retry_count_Reg, -1);
|
|
blt(CCR0, doneRetry);
|
|
li(R0, RTMSpinLoopCount);
|
|
mtctr(R0);
|
|
|
|
bind(SpinLoop);
|
|
smt_yield(); // Can't use waitrsv(). No permission (SIGILL).
|
|
bdz(retryLabel);
|
|
ld(R0, 0, owner_addr_Reg);
|
|
cmpdi(CCR0, R0, 0);
|
|
bne(CCR0, SpinLoop);
|
|
b(retryLabel);
|
|
|
|
bind(doneRetry);
|
|
}
|
|
|
|
// Use RTM for normal stack locks.
|
|
// Input: objReg (object to lock)
|
|
void MacroAssembler::rtm_stack_locking(ConditionRegister flag,
|
|
Register obj, Register mark_word, Register tmp,
|
|
Register retry_on_abort_count_Reg,
|
|
RTMLockingCounters* stack_rtm_counters,
|
|
Metadata* method_data, bool profile_rtm,
|
|
Label& DONE_LABEL, Label& IsInflated) {
|
|
assert(UseRTMForStackLocks, "why call this otherwise?");
|
|
assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
|
|
Label L_rtm_retry, L_decrement_retry, L_on_abort;
|
|
|
|
if (RTMRetryCount > 0) {
|
|
load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
|
|
bind(L_rtm_retry);
|
|
}
|
|
andi_(R0, mark_word, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
|
|
bne(CCR0, IsInflated);
|
|
|
|
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
|
|
Label L_noincrement;
|
|
if (RTMTotalCountIncrRate > 1) {
|
|
branch_on_random_using_tb(tmp, (int)RTMTotalCountIncrRate, L_noincrement);
|
|
}
|
|
assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
|
|
load_const_optimized(tmp, (address)stack_rtm_counters->total_count_addr(), R0);
|
|
//atomic_inc_ptr(tmp, /*temp, will be reloaded*/mark_word); We don't increment atomically
|
|
ldx(mark_word, tmp);
|
|
addi(mark_word, mark_word, 1);
|
|
stdx(mark_word, tmp);
|
|
bind(L_noincrement);
|
|
}
|
|
tbegin_();
|
|
beq(CCR0, L_on_abort);
|
|
ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // Reload in transaction, conflicts need to be tracked.
|
|
andi(R0, mark_word, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
|
|
cmpwi(flag, R0, markOopDesc::unlocked_value); // bits = 001 unlocked
|
|
beq(flag, DONE_LABEL); // all done if unlocked
|
|
|
|
if (UseRTMXendForLockBusy) {
|
|
tend_();
|
|
b(L_decrement_retry);
|
|
} else {
|
|
tabort_();
|
|
}
|
|
bind(L_on_abort);
|
|
const Register abort_status_Reg = tmp;
|
|
mftexasr(abort_status_Reg);
|
|
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
|
|
rtm_profiling(abort_status_Reg, /*temp*/mark_word, stack_rtm_counters, method_data, profile_rtm);
|
|
}
|
|
ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // reload
|
|
if (RTMRetryCount > 0) {
|
|
// Retry on lock abort if abort status is not permanent.
|
|
rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry, &L_decrement_retry);
|
|
} else {
|
|
bind(L_decrement_retry);
|
|
}
|
|
}
|
|
|
|
// Use RTM for inflating locks
|
|
// inputs: obj (object to lock)
|
|
// mark_word (current header - KILLED)
|
|
// boxReg (on-stack box address (displaced header location) - KILLED)
|
|
void MacroAssembler::rtm_inflated_locking(ConditionRegister flag,
|
|
Register obj, Register mark_word, Register boxReg,
|
|
Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg,
|
|
RTMLockingCounters* rtm_counters,
|
|
Metadata* method_data, bool profile_rtm,
|
|
Label& DONE_LABEL) {
|
|
assert(UseRTMLocking, "why call this otherwise?");
|
|
Label L_rtm_retry, L_decrement_retry, L_on_abort;
|
|
// Clean monitor_value bit to get valid pointer.
|
|
int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
|
|
|
|
// Store non-null, using boxReg instead of (intptr_t)markOopDesc::unused_mark().
|
|
std(boxReg, BasicLock::displaced_header_offset_in_bytes(), boxReg);
|
|
const Register tmpReg = boxReg;
|
|
const Register owner_addr_Reg = mark_word;
|
|
addi(owner_addr_Reg, mark_word, owner_offset);
|
|
|
|
if (RTMRetryCount > 0) {
|
|
load_const_optimized(retry_on_busy_count_Reg, RTMRetryCount); // Retry on lock busy.
|
|
load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort.
|
|
bind(L_rtm_retry);
|
|
}
|
|
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
|
|
Label L_noincrement;
|
|
if (RTMTotalCountIncrRate > 1) {
|
|
branch_on_random_using_tb(R0, (int)RTMTotalCountIncrRate, L_noincrement);
|
|
}
|
|
assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
|
|
load_const(R0, (address)rtm_counters->total_count_addr(), tmpReg);
|
|
//atomic_inc_ptr(R0, tmpReg); We don't increment atomically
|
|
ldx(tmpReg, R0);
|
|
addi(tmpReg, tmpReg, 1);
|
|
stdx(tmpReg, R0);
|
|
bind(L_noincrement);
|
|
}
|
|
tbegin_();
|
|
beq(CCR0, L_on_abort);
|
|
// We don't reload mark word. Will only be reset at safepoint.
|
|
ld(R0, 0, owner_addr_Reg); // Load in transaction, conflicts need to be tracked.
|
|
cmpdi(flag, R0, 0);
|
|
beq(flag, DONE_LABEL);
|
|
|
|
if (UseRTMXendForLockBusy) {
|
|
tend_();
|
|
b(L_decrement_retry);
|
|
} else {
|
|
tabort_();
|
|
}
|
|
bind(L_on_abort);
|
|
const Register abort_status_Reg = tmpReg;
|
|
mftexasr(abort_status_Reg);
|
|
if (PrintPreciseRTMLockingStatistics || profile_rtm) {
|
|
rtm_profiling(abort_status_Reg, /*temp*/ owner_addr_Reg, rtm_counters, method_data, profile_rtm);
|
|
// Restore owner_addr_Reg
|
|
ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);
|
|
#ifdef ASSERT
|
|
andi_(R0, mark_word, markOopDesc::monitor_value);
|
|
asm_assert_ne("must be inflated", 0xa754); // Deflating only allowed at safepoint.
|
|
#endif
|
|
addi(owner_addr_Reg, mark_word, owner_offset);
|
|
}
|
|
if (RTMRetryCount > 0) {
|
|
// Retry on lock abort if abort status is not permanent.
|
|
rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
|
|
}
|
|
|
|
// Appears unlocked - try to swing _owner from null to non-null.
|
|
cmpxchgd(flag, /*current val*/ R0, (intptr_t)0, /*new val*/ R16_thread, owner_addr_Reg,
|
|
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &L_decrement_retry, true);
|
|
|
|
if (RTMRetryCount > 0) {
|
|
// success done else retry
|
|
b(DONE_LABEL);
|
|
bind(L_decrement_retry);
|
|
// Spin and retry if lock is busy.
|
|
rtm_retry_lock_on_busy(retry_on_busy_count_Reg, owner_addr_Reg, L_rtm_retry);
|
|
} else {
|
|
bind(L_decrement_retry);
|
|
}
|
|
}
|
|
|
|
#endif // INCLUDE_RTM_OPT
|
|
|
|
// "The box" is the space on the stack where we copy the object mark.
|
|
void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
|
|
Register temp, Register displaced_header, Register current_header,
|
|
bool try_bias,
|
|
RTMLockingCounters* rtm_counters,
|
|
RTMLockingCounters* stack_rtm_counters,
|
|
Metadata* method_data,
|
|
bool use_rtm, bool profile_rtm) {
|
|
assert_different_registers(oop, box, temp, displaced_header, current_header);
|
|
assert(flag != CCR0, "bad condition register");
|
|
Label cont;
|
|
Label object_has_monitor;
|
|
Label cas_failed;
|
|
|
|
// Load markOop from object into displaced_header.
|
|
ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
|
|
|
|
|
|
// Always do locking in runtime.
|
|
if (EmitSync & 0x01) {
|
|
cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
|
|
return;
|
|
}
|
|
|
|
if (try_bias) {
|
|
biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
|
|
}
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
if (UseRTMForStackLocks && use_rtm) {
|
|
rtm_stack_locking(flag, oop, displaced_header, temp, /*temp*/ current_header,
|
|
stack_rtm_counters, method_data, profile_rtm,
|
|
cont, object_has_monitor);
|
|
}
|
|
#endif // INCLUDE_RTM_OPT
|
|
|
|
// Handle existing monitor.
|
|
if ((EmitSync & 0x02) == 0) {
|
|
// The object has an existing monitor iff (mark & monitor_value) != 0.
|
|
andi_(temp, displaced_header, markOopDesc::monitor_value);
|
|
bne(CCR0, object_has_monitor);
|
|
}
|
|
|
|
// Set displaced_header to be (markOop of object | UNLOCK_VALUE).
|
|
ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
|
|
|
|
// Load Compare Value application register.
|
|
|
|
// Initialize the box. (Must happen before we update the object mark!)
|
|
std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
// Must fence, otherwise, preceding store(s) may float below cmpxchg.
|
|
// Compare object markOop with mark and if equal exchange scratch1 with object markOop.
|
|
cmpxchgd(/*flag=*/flag,
|
|
/*current_value=*/current_header,
|
|
/*compare_value=*/displaced_header,
|
|
/*exchange_value=*/box,
|
|
/*where=*/oop,
|
|
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock(),
|
|
noreg,
|
|
&cas_failed,
|
|
/*check without membar and ldarx first*/true);
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
|
|
// If the compare-and-exchange succeeded, then we found an unlocked
|
|
// object and we have now locked it.
|
|
b(cont);
|
|
|
|
bind(cas_failed);
|
|
// We did not see an unlocked object so try the fast recursive case.
|
|
|
|
// Check if the owner is self by comparing the value in the markOop of object
|
|
// (current_header) with the stack pointer.
|
|
sub(current_header, current_header, R1_SP);
|
|
load_const_optimized(temp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
|
|
|
|
and_(R0/*==0?*/, current_header, temp);
|
|
// If condition is true we are cont and hence we can store 0 as the
|
|
// displaced header in the box, which indicates that it is a recursive lock.
|
|
mcrf(flag,CCR0);
|
|
std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
// Handle existing monitor.
|
|
if ((EmitSync & 0x02) == 0) {
|
|
b(cont);
|
|
|
|
bind(object_has_monitor);
|
|
// The object's monitor m is unlocked iff m->owner == NULL,
|
|
// otherwise m->owner may contain a thread or a stack address.
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
// Use the same RTM locking code in 32- and 64-bit VM.
|
|
if (use_rtm) {
|
|
rtm_inflated_locking(flag, oop, displaced_header, box, temp, /*temp*/ current_header,
|
|
rtm_counters, method_data, profile_rtm, cont);
|
|
} else {
|
|
#endif // INCLUDE_RTM_OPT
|
|
|
|
// Try to CAS m->owner from NULL to current thread.
|
|
addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
|
|
cmpxchgd(/*flag=*/flag,
|
|
/*current_value=*/current_header,
|
|
/*compare_value=*/(intptr_t)0,
|
|
/*exchange_value=*/R16_thread,
|
|
/*where=*/temp,
|
|
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
|
|
MacroAssembler::cmpxchgx_hint_acquire_lock());
|
|
|
|
// Store a non-null value into the box.
|
|
std(box, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
# ifdef ASSERT
|
|
bne(flag, cont);
|
|
// We have acquired the monitor, check some invariants.
|
|
addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
|
|
// Invariant 1: _recursions should be 0.
|
|
//assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
|
|
asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
|
|
"monitor->_recursions should be 0", -1);
|
|
// Invariant 2: OwnerIsThread shouldn't be 0.
|
|
//assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size");
|
|
//asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp,
|
|
// "monitor->OwnerIsThread shouldn't be 0", -1);
|
|
# endif
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
} // use_rtm()
|
|
#endif
|
|
}
|
|
|
|
bind(cont);
|
|
// flag == EQ indicates success
|
|
// flag == NE indicates failure
|
|
}
|
|
|
|
void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
|
|
Register temp, Register displaced_header, Register current_header,
|
|
bool try_bias, bool use_rtm) {
|
|
assert_different_registers(oop, box, temp, displaced_header, current_header);
|
|
assert(flag != CCR0, "bad condition register");
|
|
Label cont;
|
|
Label object_has_monitor;
|
|
|
|
// Always do locking in runtime.
|
|
if (EmitSync & 0x01) {
|
|
cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
|
|
return;
|
|
}
|
|
|
|
if (try_bias) {
|
|
biased_locking_exit(flag, oop, current_header, cont);
|
|
}
|
|
|
|
#if INCLUDE_RTM_OPT
|
|
if (UseRTMForStackLocks && use_rtm) {
|
|
assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
|
|
Label L_regular_unlock;
|
|
ld(current_header, oopDesc::mark_offset_in_bytes(), oop); // fetch markword
|
|
andi(R0, current_header, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
|
|
cmpwi(flag, R0, markOopDesc::unlocked_value); // bits = 001 unlocked
|
|
bne(flag, L_regular_unlock); // else RegularLock
|
|
tend_(); // otherwise end...
|
|
b(cont); // ... and we're done
|
|
bind(L_regular_unlock);
|
|
}
|
|
#endif
|
|
|
|
// Find the lock address and load the displaced header from the stack.
|
|
ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
// If the displaced header is 0, we have a recursive unlock.
|
|
cmpdi(flag, displaced_header, 0);
|
|
beq(flag, cont);
|
|
|
|
// Handle existing monitor.
|
|
if ((EmitSync & 0x02) == 0) {
|
|
// The object has an existing monitor iff (mark & monitor_value) != 0.
|
|
RTM_OPT_ONLY( if (!(UseRTMForStackLocks && use_rtm)) ) // skip load if already done
|
|
ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
|
|
andi_(R0, current_header, markOopDesc::monitor_value);
|
|
bne(CCR0, object_has_monitor);
|
|
}
|
|
|
|
// Check if it is still a light weight lock, this is is true if we see
|
|
// the stack address of the basicLock in the markOop of the object.
|
|
// Cmpxchg sets flag to cmpd(current_header, box).
|
|
cmpxchgd(/*flag=*/flag,
|
|
/*current_value=*/current_header,
|
|
/*compare_value=*/box,
|
|
/*exchange_value=*/displaced_header,
|
|
/*where=*/oop,
|
|
MacroAssembler::MemBarRel,
|
|
MacroAssembler::cmpxchgx_hint_release_lock(),
|
|
noreg,
|
|
&cont);
|
|
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
|
|
// Handle existing monitor.
|
|
if ((EmitSync & 0x02) == 0) {
|
|
b(cont);
|
|
|
|
bind(object_has_monitor);
|
|
addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
|
|
ld(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
|
|
|
|
// It's inflated.
|
|
#if INCLUDE_RTM_OPT
|
|
if (use_rtm) {
|
|
Label L_regular_inflated_unlock;
|
|
// Clean monitor_value bit to get valid pointer
|
|
cmpdi(flag, temp, 0);
|
|
bne(flag, L_regular_inflated_unlock);
|
|
tend_();
|
|
b(cont);
|
|
bind(L_regular_inflated_unlock);
|
|
}
|
|
#endif
|
|
|
|
ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
|
|
xorr(temp, R16_thread, temp); // Will be 0 if we are the owner.
|
|
orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
|
|
cmpdi(flag, temp, 0);
|
|
bne(flag, cont);
|
|
|
|
ld(temp, ObjectMonitor::EntryList_offset_in_bytes(), current_header);
|
|
ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
|
|
orr(temp, temp, displaced_header); // Will be 0 if both are 0.
|
|
cmpdi(flag, temp, 0);
|
|
bne(flag, cont);
|
|
release();
|
|
std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
|
|
}
|
|
|
|
bind(cont);
|
|
// flag == EQ indicates success
|
|
// flag == NE indicates failure
|
|
}
|
|
|
|
// Write serialization page so VM thread can do a pseudo remote membar.
|
|
// We use the current thread pointer to calculate a thread specific
|
|
// offset to write to within the page. This minimizes bus traffic
|
|
// due to cache line collision.
|
|
void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
|
|
srdi(tmp2, thread, os::get_serialize_page_shift_count());
|
|
|
|
int mask = os::vm_page_size() - sizeof(int);
|
|
if (Assembler::is_simm(mask, 16)) {
|
|
andi(tmp2, tmp2, mask);
|
|
} else {
|
|
lis(tmp1, (int)((signed short) (mask >> 16)));
|
|
ori(tmp1, tmp1, mask & 0x0000ffff);
|
|
andr(tmp2, tmp2, tmp1);
|
|
}
|
|
|
|
load_const(tmp1, (long) os::get_memory_serialize_page());
|
|
release();
|
|
stwx(R0, tmp1, tmp2);
|
|
}
|
|
|
|
|
|
// GC barrier helper macros
|
|
|
|
// Write the card table byte if needed.
|
|
void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) {
|
|
CardTableModRefBS* bs =
|
|
barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
|
|
assert(bs->kind() == BarrierSet::CardTableForRS ||
|
|
bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
|
|
#ifdef ASSERT
|
|
cmpdi(CCR0, Rnew_val, 0);
|
|
asm_assert_ne("null oop not allowed", 0x321);
|
|
#endif
|
|
card_table_write(bs->byte_map_base, Rtmp, Rstore_addr);
|
|
}
|
|
|
|
// Write the card table byte.
|
|
void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) {
|
|
assert_different_registers(Robj, Rtmp, R0);
|
|
load_const_optimized(Rtmp, (address)byte_map_base, R0);
|
|
srdi(Robj, Robj, CardTableModRefBS::card_shift);
|
|
li(R0, 0); // dirty
|
|
if (UseConcMarkSweepGC) membar(Assembler::StoreStore);
|
|
stbx(R0, Rtmp, Robj);
|
|
}
|
|
|
|
#if INCLUDE_ALL_GCS
|
|
// General G1 pre-barrier generator.
|
|
// Goal: record the previous value if it is not null.
|
|
void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
|
|
Register Rtmp1, Register Rtmp2, bool needs_frame) {
|
|
Label runtime, filtered;
|
|
|
|
// Is marking active?
|
|
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
|
|
lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
|
|
} else {
|
|
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
|
|
lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
|
|
}
|
|
cmpdi(CCR0, Rtmp1, 0);
|
|
beq(CCR0, filtered);
|
|
|
|
// Do we need to load the previous value?
|
|
if (Robj != noreg) {
|
|
// Load the previous value...
|
|
if (UseCompressedOops) {
|
|
lwz(Rpre_val, offset, Robj);
|
|
} else {
|
|
ld(Rpre_val, offset, Robj);
|
|
}
|
|
// Previous value has been loaded into Rpre_val.
|
|
}
|
|
assert(Rpre_val != noreg, "must have a real register");
|
|
|
|
// Is the previous value null?
|
|
cmpdi(CCR0, Rpre_val, 0);
|
|
beq(CCR0, filtered);
|
|
|
|
if (Robj != noreg && UseCompressedOops) {
|
|
decode_heap_oop_not_null(Rpre_val);
|
|
}
|
|
|
|
// OK, it's not filtered, so we'll need to call enqueue. In the normal
|
|
// case, pre_val will be a scratch G-reg, but there are some cases in
|
|
// which it's an O-reg. In the first case, do a normal call. In the
|
|
// latter, do a save here and call the frameless version.
|
|
|
|
// Can we store original value in the thread's buffer?
|
|
// Is index == 0?
|
|
// (The index field is typed as size_t.)
|
|
const Register Rbuffer = Rtmp1, Rindex = Rtmp2;
|
|
|
|
ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
|
|
cmpdi(CCR0, Rindex, 0);
|
|
beq(CCR0, runtime); // If index == 0, goto runtime.
|
|
ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_buf()), R16_thread);
|
|
|
|
addi(Rindex, Rindex, -wordSize); // Decrement index.
|
|
std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
|
|
|
|
// Record the previous value.
|
|
stdx(Rpre_val, Rbuffer, Rindex);
|
|
b(filtered);
|
|
|
|
bind(runtime);
|
|
|
|
// VM call need frame to access(write) O register.
|
|
if (needs_frame) {
|
|
save_LR_CR(Rtmp1);
|
|
push_frame_reg_args(0, Rtmp2);
|
|
}
|
|
|
|
if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread);
|
|
if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore
|
|
|
|
if (needs_frame) {
|
|
pop_frame();
|
|
restore_LR_CR(Rtmp1);
|
|
}
|
|
|
|
bind(filtered);
|
|
}
|
|
|
|
// General G1 post-barrier generator
|
|
// Store cross-region card.
|
|
void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) {
|
|
Label runtime, filtered_int;
|
|
Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int;
|
|
assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2);
|
|
|
|
G1SATBCardTableLoggingModRefBS* bs =
|
|
barrier_set_cast<G1SATBCardTableLoggingModRefBS>(Universe::heap()->barrier_set());
|
|
|
|
// Does store cross heap regions?
|
|
if (G1RSBarrierRegionFilter) {
|
|
xorr(Rtmp1, Rstore_addr, Rnew_val);
|
|
srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
|
|
beq(CCR0, filtered);
|
|
}
|
|
|
|
// Crosses regions, storing NULL?
|
|
#ifdef ASSERT
|
|
cmpdi(CCR0, Rnew_val, 0);
|
|
asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete:
|
|
//beq(CCR0, filtered);
|
|
#endif
|
|
|
|
// Storing region crossing non-NULL, is card already dirty?
|
|
assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code");
|
|
const Register Rcard_addr = Rtmp1;
|
|
Register Rbase = Rtmp2;
|
|
load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3);
|
|
|
|
srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift);
|
|
|
|
// Get the address of the card.
|
|
lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
|
|
cmpwi(CCR0, Rtmp3, (int)G1SATBCardTableModRefBS::g1_young_card_val());
|
|
beq(CCR0, filtered);
|
|
|
|
membar(Assembler::StoreLoad);
|
|
lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr); // Reload after membar.
|
|
cmpwi(CCR0, Rtmp3 /* card value */, CardTableModRefBS::dirty_card_val());
|
|
beq(CCR0, filtered);
|
|
|
|
// Storing a region crossing, non-NULL oop, card is clean.
|
|
// Dirty card and log.
|
|
li(Rtmp3, CardTableModRefBS::dirty_card_val());
|
|
//release(); // G1: oops are allowed to get visible after dirty marking.
|
|
stbx(Rtmp3, Rbase, Rcard_addr);
|
|
|
|
add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
|
|
Rbase = noreg; // end of lifetime
|
|
|
|
const Register Rqueue_index = Rtmp2,
|
|
Rqueue_buf = Rtmp3;
|
|
ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
|
|
cmpdi(CCR0, Rqueue_index, 0);
|
|
beq(CCR0, runtime); // index == 0 then jump to runtime
|
|
ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_buf()), R16_thread);
|
|
|
|
addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
|
|
std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
|
|
|
|
stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
|
|
b(filtered);
|
|
|
|
bind(runtime);
|
|
|
|
// Save the live input values.
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
|
|
|
|
bind(filtered_int);
|
|
}
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
// Values for last_Java_pc, and last_Java_sp must comply to the rules
|
|
// in frame_ppc.hpp.
|
|
void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
|
|
// Always set last_Java_pc and flags first because once last_Java_sp
|
|
// is visible has_last_Java_frame is true and users will look at the
|
|
// rest of the fields. (Note: flags should always be zero before we
|
|
// get here so doesn't need to be set.)
|
|
|
|
// Verify that last_Java_pc was zeroed on return to Java
|
|
asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
|
|
"last_Java_pc not zeroed before leaving Java", 0x200);
|
|
|
|
// When returning from calling out from Java mode the frame anchor's
|
|
// last_Java_pc will always be set to NULL. It is set here so that
|
|
// if we are doing a call to native (not VM) that we capture the
|
|
// known pc and don't have to rely on the native call having a
|
|
// standard frame linkage where we can find the pc.
|
|
if (last_Java_pc != noreg)
|
|
std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
|
|
|
|
// Set last_Java_sp last.
|
|
std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
|
|
}
|
|
|
|
void MacroAssembler::reset_last_Java_frame(void) {
|
|
asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
|
|
R16_thread, "SP was not set, still zero", 0x202);
|
|
|
|
BLOCK_COMMENT("reset_last_Java_frame {");
|
|
li(R0, 0);
|
|
|
|
// _last_Java_sp = 0
|
|
std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
|
|
|
|
// _last_Java_pc = 0
|
|
std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
|
|
BLOCK_COMMENT("} reset_last_Java_frame");
|
|
}
|
|
|
|
void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
|
|
assert_different_registers(sp, tmp1);
|
|
|
|
// sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
|
|
// TOP_IJAVA_FRAME_ABI.
|
|
// FIXME: assert that we really have a TOP_IJAVA_FRAME here!
|
|
address entry = pc();
|
|
load_const_optimized(tmp1, entry);
|
|
|
|
set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
|
|
}
|
|
|
|
void MacroAssembler::get_vm_result(Register oop_result) {
|
|
// Read:
|
|
// R16_thread
|
|
// R16_thread->in_bytes(JavaThread::vm_result_offset())
|
|
//
|
|
// Updated:
|
|
// oop_result
|
|
// R16_thread->in_bytes(JavaThread::vm_result_offset())
|
|
|
|
verify_thread();
|
|
|
|
ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
|
|
li(R0, 0);
|
|
std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
|
|
|
|
verify_oop(oop_result);
|
|
}
|
|
|
|
void MacroAssembler::get_vm_result_2(Register metadata_result) {
|
|
// Read:
|
|
// R16_thread
|
|
// R16_thread->in_bytes(JavaThread::vm_result_2_offset())
|
|
//
|
|
// Updated:
|
|
// metadata_result
|
|
// R16_thread->in_bytes(JavaThread::vm_result_2_offset())
|
|
|
|
ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
|
|
li(R0, 0);
|
|
std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
|
|
}
|
|
|
|
Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
|
|
Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
|
|
if (Universe::narrow_klass_base() != 0) {
|
|
// Use dst as temp if it is free.
|
|
sub_const_optimized(dst, current, Universe::narrow_klass_base(), R0);
|
|
current = dst;
|
|
}
|
|
if (Universe::narrow_klass_shift() != 0) {
|
|
srdi(dst, current, Universe::narrow_klass_shift());
|
|
current = dst;
|
|
}
|
|
return current;
|
|
}
|
|
|
|
void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
|
|
if (UseCompressedClassPointers) {
|
|
Register compressedKlass = encode_klass_not_null(ck, klass);
|
|
stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
|
|
} else {
|
|
std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
|
|
if (UseCompressedClassPointers) {
|
|
if (val == noreg) {
|
|
val = R0;
|
|
li(val, 0);
|
|
}
|
|
stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
|
|
}
|
|
}
|
|
|
|
int MacroAssembler::instr_size_for_decode_klass_not_null() {
|
|
if (!UseCompressedClassPointers) return 0;
|
|
int num_instrs = 1; // shift or move
|
|
if (Universe::narrow_klass_base() != 0) num_instrs = 7; // shift + load const + add
|
|
return num_instrs * BytesPerInstWord;
|
|
}
|
|
|
|
void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
|
|
assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
|
|
if (src == noreg) src = dst;
|
|
Register shifted_src = src;
|
|
if (Universe::narrow_klass_shift() != 0 ||
|
|
Universe::narrow_klass_base() == 0 && src != dst) { // Move required.
|
|
shifted_src = dst;
|
|
sldi(shifted_src, src, Universe::narrow_klass_shift());
|
|
}
|
|
if (Universe::narrow_klass_base() != 0) {
|
|
add_const_optimized(dst, shifted_src, Universe::narrow_klass_base(), R0);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::load_klass(Register dst, Register src) {
|
|
if (UseCompressedClassPointers) {
|
|
lwz(dst, oopDesc::klass_offset_in_bytes(), src);
|
|
// Attention: no null check here!
|
|
decode_klass_not_null(dst, dst);
|
|
} else {
|
|
ld(dst, oopDesc::klass_offset_in_bytes(), src);
|
|
}
|
|
}
|
|
|
|
// Clear Array
|
|
// Kills both input registers. tmp == R0 is allowed.
|
|
void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp) {
|
|
// Procedure for large arrays (uses data cache block zero instruction).
|
|
Label startloop, fast, fastloop, small_rest, restloop, done;
|
|
const int cl_size = VM_Version::L1_data_cache_line_size(),
|
|
cl_dwords = cl_size>>3,
|
|
cl_dw_addr_bits = exact_log2(cl_dwords),
|
|
dcbz_min = 1; // Min count of dcbz executions, needs to be >0.
|
|
|
|
//2:
|
|
cmpdi(CCR1, cnt_dwords, ((dcbz_min+1)<<cl_dw_addr_bits)-1); // Big enough? (ensure >=dcbz_min lines included).
|
|
blt(CCR1, small_rest); // Too small.
|
|
rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
|
|
beq(CCR0, fast); // Already 128byte aligned.
|
|
|
|
subfic(tmp, tmp, cl_dwords);
|
|
mtctr(tmp); // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
|
|
subf(cnt_dwords, tmp, cnt_dwords); // rest.
|
|
li(tmp, 0);
|
|
//10:
|
|
bind(startloop); // Clear at the beginning to reach 128byte boundary.
|
|
std(tmp, 0, base_ptr); // Clear 8byte aligned block.
|
|
addi(base_ptr, base_ptr, 8);
|
|
bdnz(startloop);
|
|
//13:
|
|
bind(fast); // Clear 128byte blocks.
|
|
srdi(tmp, cnt_dwords, cl_dw_addr_bits); // Loop count for 128byte loop (>0).
|
|
andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
|
|
mtctr(tmp); // Load counter.
|
|
//16:
|
|
bind(fastloop);
|
|
dcbz(base_ptr); // Clear 128byte aligned block.
|
|
addi(base_ptr, base_ptr, cl_size);
|
|
bdnz(fastloop);
|
|
if (InsertEndGroupPPC64) { endgroup(); } else { nop(); }
|
|
//20:
|
|
bind(small_rest);
|
|
cmpdi(CCR0, cnt_dwords, 0); // size 0?
|
|
beq(CCR0, done); // rest == 0
|
|
li(tmp, 0);
|
|
mtctr(cnt_dwords); // Load counter.
|
|
//24:
|
|
bind(restloop); // Clear rest.
|
|
std(tmp, 0, base_ptr); // Clear 8byte aligned block.
|
|
addi(base_ptr, base_ptr, 8);
|
|
bdnz(restloop);
|
|
//27:
|
|
bind(done);
|
|
}
|
|
|
|
/////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
|
|
|
|
// Search for a single jchar in an jchar[].
|
|
//
|
|
// Assumes that result differs from all other registers.
|
|
//
|
|
// Haystack, needle are the addresses of jchar-arrays.
|
|
// NeedleChar is needle[0] if it is known at compile time.
|
|
// Haycnt is the length of the haystack. We assume haycnt >=1.
|
|
//
|
|
// Preserves haystack, haycnt, kills all other registers.
|
|
//
|
|
// If needle == R0, we search for the constant needleChar.
|
|
void MacroAssembler::string_indexof_1(Register result, Register haystack, Register haycnt,
|
|
Register needle, jchar needleChar,
|
|
Register tmp1, Register tmp2) {
|
|
|
|
assert_different_registers(result, haystack, haycnt, needle, tmp1, tmp2);
|
|
|
|
Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_Found3, L_NotFound, L_End;
|
|
Register needle0 = needle, // Contains needle[0].
|
|
addr = tmp1,
|
|
ch1 = tmp2,
|
|
ch2 = R0;
|
|
|
|
//2 (variable) or 3 (const):
|
|
if (needle != R0) lhz(needle0, 0, needle); // Preload needle character, needle has len==1.
|
|
dcbtct(haystack, 0x00); // Indicate R/O access to haystack.
|
|
|
|
srwi_(tmp2, haycnt, 1); // Shift right by exact_log2(UNROLL_FACTOR).
|
|
mr(addr, haystack);
|
|
beq(CCR0, L_FinalCheck);
|
|
mtctr(tmp2); // Move to count register.
|
|
//8:
|
|
bind(L_InnerLoop); // Main work horse (2x unrolled search loop).
|
|
lhz(ch1, 0, addr); // Load characters from haystack.
|
|
lhz(ch2, 2, addr);
|
|
(needle != R0) ? cmpw(CCR0, ch1, needle0) : cmplwi(CCR0, ch1, needleChar);
|
|
(needle != R0) ? cmpw(CCR1, ch2, needle0) : cmplwi(CCR1, ch2, needleChar);
|
|
beq(CCR0, L_Found1); // Did we find the needle?
|
|
beq(CCR1, L_Found2);
|
|
addi(addr, addr, 4);
|
|
bdnz(L_InnerLoop);
|
|
//16:
|
|
bind(L_FinalCheck);
|
|
andi_(R0, haycnt, 1);
|
|
beq(CCR0, L_NotFound);
|
|
lhz(ch1, 0, addr); // One position left at which we have to compare.
|
|
(needle != R0) ? cmpw(CCR1, ch1, needle0) : cmplwi(CCR1, ch1, needleChar);
|
|
beq(CCR1, L_Found3);
|
|
//21:
|
|
bind(L_NotFound);
|
|
li(result, -1); // Not found.
|
|
b(L_End);
|
|
|
|
bind(L_Found2);
|
|
addi(addr, addr, 2);
|
|
//24:
|
|
bind(L_Found1);
|
|
bind(L_Found3); // Return index ...
|
|
subf(addr, haystack, addr); // relative to haystack,
|
|
srdi(result, addr, 1); // in characters.
|
|
bind(L_End);
|
|
}
|
|
|
|
|
|
// Implementation of IndexOf for jchar arrays.
|
|
//
|
|
// The length of haystack and needle are not constant, i.e. passed in a register.
|
|
//
|
|
// Preserves registers haystack, needle.
|
|
// Kills registers haycnt, needlecnt.
|
|
// Assumes that result differs from all other registers.
|
|
// Haystack, needle are the addresses of jchar-arrays.
|
|
// Haycnt, needlecnt are the lengths of them, respectively.
|
|
//
|
|
// Needlecntval must be zero or 15-bit unsigned immediate and > 1.
|
|
void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
|
|
Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
|
|
Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
|
|
|
|
// Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
|
|
Label L_TooShort, L_Found, L_NotFound, L_End;
|
|
Register last_addr = haycnt, // Kill haycnt at the beginning.
|
|
addr = tmp1,
|
|
n_start = tmp2,
|
|
ch1 = tmp3,
|
|
ch2 = R0;
|
|
|
|
// **************************************************************************************************
|
|
// Prepare for main loop: optimized for needle count >=2, bail out otherwise.
|
|
// **************************************************************************************************
|
|
|
|
//1 (variable) or 3 (const):
|
|
dcbtct(needle, 0x00); // Indicate R/O access to str1.
|
|
dcbtct(haystack, 0x00); // Indicate R/O access to str2.
|
|
|
|
// Compute last haystack addr to use if no match gets found.
|
|
if (needlecntval == 0) { // variable needlecnt
|
|
//3:
|
|
subf(ch1, needlecnt, haycnt); // Last character index to compare is haycnt-needlecnt.
|
|
addi(addr, haystack, -2); // Accesses use pre-increment.
|
|
cmpwi(CCR6, needlecnt, 2);
|
|
blt(CCR6, L_TooShort); // Variable needlecnt: handle short needle separately.
|
|
slwi(ch1, ch1, 1); // Scale to number of bytes.
|
|
lwz(n_start, 0, needle); // Load first 2 characters of needle.
|
|
add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
|
|
addi(needlecnt, needlecnt, -2); // Rest of needle.
|
|
} else { // constant needlecnt
|
|
guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
|
|
assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
|
|
//5:
|
|
addi(ch1, haycnt, -needlecntval); // Last character index to compare is haycnt-needlecnt.
|
|
lwz(n_start, 0, needle); // Load first 2 characters of needle.
|
|
addi(addr, haystack, -2); // Accesses use pre-increment.
|
|
slwi(ch1, ch1, 1); // Scale to number of bytes.
|
|
add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
|
|
li(needlecnt, needlecntval-2); // Rest of needle.
|
|
}
|
|
|
|
// Main Loop (now we have at least 3 characters).
|
|
//11:
|
|
Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2, L_Comp3;
|
|
bind(L_OuterLoop); // Search for 1st 2 characters.
|
|
Register addr_diff = tmp4;
|
|
subf(addr_diff, addr, last_addr); // Difference between already checked address and last address to check.
|
|
addi(addr, addr, 2); // This is the new address we want to use for comparing.
|
|
srdi_(ch2, addr_diff, 2);
|
|
beq(CCR0, L_FinalCheck); // 2 characters left?
|
|
mtctr(ch2); // addr_diff/4
|
|
//16:
|
|
bind(L_InnerLoop); // Main work horse (2x unrolled search loop)
|
|
lwz(ch1, 0, addr); // Load 2 characters of haystack (ignore alignment).
|
|
lwz(ch2, 2, addr);
|
|
cmpw(CCR0, ch1, n_start); // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
|
|
cmpw(CCR1, ch2, n_start);
|
|
beq(CCR0, L_Comp1); // Did we find the needle start?
|
|
beq(CCR1, L_Comp2);
|
|
addi(addr, addr, 4);
|
|
bdnz(L_InnerLoop);
|
|
//24:
|
|
bind(L_FinalCheck);
|
|
rldicl_(addr_diff, addr_diff, 64-1, 63); // Remaining characters not covered by InnerLoop: (addr_diff>>1)&1.
|
|
beq(CCR0, L_NotFound);
|
|
lwz(ch1, 0, addr); // One position left at which we have to compare.
|
|
cmpw(CCR1, ch1, n_start);
|
|
beq(CCR1, L_Comp3);
|
|
//29:
|
|
bind(L_NotFound);
|
|
li(result, -1); // not found
|
|
b(L_End);
|
|
|
|
|
|
// **************************************************************************************************
|
|
// Special Case: unfortunately, the variable needle case can be called with needlecnt<2
|
|
// **************************************************************************************************
|
|
//31:
|
|
if ((needlecntval>>1) !=1 ) { // Const needlecnt is 2 or 3? Reduce code size.
|
|
int nopcnt = 5;
|
|
if (needlecntval !=0 ) ++nopcnt; // Balance alignment (other case: see below).
|
|
if (needlecntval == 0) { // We have to handle these cases separately.
|
|
Label L_OneCharLoop;
|
|
bind(L_TooShort);
|
|
mtctr(haycnt);
|
|
lhz(n_start, 0, needle); // First character of needle
|
|
bind(L_OneCharLoop);
|
|
lhzu(ch1, 2, addr);
|
|
cmpw(CCR1, ch1, n_start);
|
|
beq(CCR1, L_Found); // Did we find the one character needle?
|
|
bdnz(L_OneCharLoop);
|
|
li(result, -1); // Not found.
|
|
b(L_End);
|
|
} // 8 instructions, so no impact on alignment.
|
|
for (int x = 0; x < nopcnt; ++x) nop();
|
|
}
|
|
|
|
// **************************************************************************************************
|
|
// Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
|
|
// **************************************************************************************************
|
|
|
|
// Compare the rest
|
|
//36 if needlecntval==0, else 37:
|
|
bind(L_Comp2);
|
|
addi(addr, addr, 2); // First comparison has failed, 2nd one hit.
|
|
bind(L_Comp1); // Addr points to possible needle start.
|
|
bind(L_Comp3); // Could have created a copy and use a different return address but saving code size here.
|
|
if (needlecntval != 2) { // Const needlecnt==2?
|
|
if (needlecntval != 3) {
|
|
if (needlecntval == 0) beq(CCR6, L_Found); // Variable needlecnt==2?
|
|
Register ind_reg = tmp4;
|
|
li(ind_reg, 2*2); // First 2 characters are already compared, use index 2.
|
|
mtctr(needlecnt); // Decremented by 2, still > 0.
|
|
//40:
|
|
Label L_CompLoop;
|
|
bind(L_CompLoop);
|
|
lhzx(ch2, needle, ind_reg);
|
|
lhzx(ch1, addr, ind_reg);
|
|
cmpw(CCR1, ch1, ch2);
|
|
bne(CCR1, L_OuterLoop);
|
|
addi(ind_reg, ind_reg, 2);
|
|
bdnz(L_CompLoop);
|
|
} else { // No loop required if there's only one needle character left.
|
|
lhz(ch2, 2*2, needle);
|
|
lhz(ch1, 2*2, addr);
|
|
cmpw(CCR1, ch1, ch2);
|
|
bne(CCR1, L_OuterLoop);
|
|
}
|
|
}
|
|
// Return index ...
|
|
//46:
|
|
bind(L_Found);
|
|
subf(addr, haystack, addr); // relative to haystack, ...
|
|
srdi(result, addr, 1); // in characters.
|
|
//48:
|
|
bind(L_End);
|
|
}
|
|
|
|
// Implementation of Compare for jchar arrays.
|
|
//
|
|
// Kills the registers str1, str2, cnt1, cnt2.
|
|
// Kills cr0, ctr.
|
|
// Assumes that result differes from the input registers.
|
|
void MacroAssembler::string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg,
|
|
Register result_reg, Register tmp_reg) {
|
|
assert_different_registers(result_reg, str1_reg, str2_reg, cnt1_reg, cnt2_reg, tmp_reg);
|
|
|
|
Label Ldone, Lslow_case, Lslow_loop, Lfast_loop;
|
|
Register cnt_diff = R0,
|
|
limit_reg = cnt1_reg,
|
|
chr1_reg = result_reg,
|
|
chr2_reg = cnt2_reg,
|
|
addr_diff = str2_reg;
|
|
|
|
// Offset 0 should be 32 byte aligned.
|
|
//-4:
|
|
dcbtct(str1_reg, 0x00); // Indicate R/O access to str1.
|
|
dcbtct(str2_reg, 0x00); // Indicate R/O access to str2.
|
|
//-2:
|
|
// Compute min(cnt1, cnt2) and check if 0 (bail out if we don't need to compare characters).
|
|
subf(result_reg, cnt2_reg, cnt1_reg); // difference between cnt1/2
|
|
subf_(addr_diff, str1_reg, str2_reg); // alias?
|
|
beq(CCR0, Ldone); // return cnt difference if both ones are identical
|
|
srawi(limit_reg, result_reg, 31); // generate signmask (cnt1/2 must be non-negative so cnt_diff can't overflow)
|
|
mr(cnt_diff, result_reg);
|
|
andr(limit_reg, result_reg, limit_reg); // difference or zero (negative): cnt1<cnt2 ? cnt1-cnt2 : 0
|
|
add_(limit_reg, cnt2_reg, limit_reg); // min(cnt1, cnt2)==0?
|
|
beq(CCR0, Ldone); // return cnt difference if one has 0 length
|
|
|
|
lhz(chr1_reg, 0, str1_reg); // optional: early out if first characters mismatch
|
|
lhzx(chr2_reg, str1_reg, addr_diff); // optional: early out if first characters mismatch
|
|
addi(tmp_reg, limit_reg, -1); // min(cnt1, cnt2)-1
|
|
subf_(result_reg, chr2_reg, chr1_reg); // optional: early out if first characters mismatch
|
|
bne(CCR0, Ldone); // optional: early out if first characters mismatch
|
|
|
|
// Set loop counter by scaling down tmp_reg
|
|
srawi_(chr2_reg, tmp_reg, exact_log2(4)); // (min(cnt1, cnt2)-1)/4
|
|
ble(CCR0, Lslow_case); // need >4 characters for fast loop
|
|
andi(limit_reg, tmp_reg, 4-1); // remaining characters
|
|
|
|
// Adapt str1_reg str2_reg for the first loop iteration
|
|
mtctr(chr2_reg); // (min(cnt1, cnt2)-1)/4
|
|
addi(limit_reg, limit_reg, 4+1); // compare last 5-8 characters in slow_case if mismatch found in fast_loop
|
|
//16:
|
|
// Compare the rest of the characters
|
|
bind(Lfast_loop);
|
|
ld(chr1_reg, 0, str1_reg);
|
|
ldx(chr2_reg, str1_reg, addr_diff);
|
|
cmpd(CCR0, chr2_reg, chr1_reg);
|
|
bne(CCR0, Lslow_case); // return chr1_reg
|
|
addi(str1_reg, str1_reg, 4*2);
|
|
bdnz(Lfast_loop);
|
|
addi(limit_reg, limit_reg, -4); // no mismatch found in fast_loop, only 1-4 characters missing
|
|
//23:
|
|
bind(Lslow_case);
|
|
mtctr(limit_reg);
|
|
//24:
|
|
bind(Lslow_loop);
|
|
lhz(chr1_reg, 0, str1_reg);
|
|
lhzx(chr2_reg, str1_reg, addr_diff);
|
|
subf_(result_reg, chr2_reg, chr1_reg);
|
|
bne(CCR0, Ldone); // return chr1_reg
|
|
addi(str1_reg, str1_reg, 1*2);
|
|
bdnz(Lslow_loop);
|
|
//30:
|
|
// If strings are equal up to min length, return the length difference.
|
|
mr(result_reg, cnt_diff);
|
|
nop(); // alignment
|
|
//32:
|
|
// Otherwise, return the difference between the first mismatched chars.
|
|
bind(Ldone);
|
|
}
|
|
|
|
|
|
// Compare char[] arrays.
|
|
//
|
|
// str1_reg USE only
|
|
// str2_reg USE only
|
|
// cnt_reg USE_DEF, due to tmp reg shortage
|
|
// result_reg DEF only, might compromise USE only registers
|
|
void MacroAssembler::char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg,
|
|
Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg,
|
|
Register tmp5_reg) {
|
|
|
|
// Str1 may be the same register as str2 which can occur e.g. after scalar replacement.
|
|
assert_different_registers(result_reg, str1_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg);
|
|
assert_different_registers(result_reg, str2_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg);
|
|
|
|
// Offset 0 should be 32 byte aligned.
|
|
Label Linit_cbc, Lcbc, Lloop, Ldone_true, Ldone_false;
|
|
Register index_reg = tmp5_reg;
|
|
Register cbc_iter = tmp4_reg;
|
|
|
|
//-1:
|
|
dcbtct(str1_reg, 0x00); // Indicate R/O access to str1.
|
|
dcbtct(str2_reg, 0x00); // Indicate R/O access to str2.
|
|
//1:
|
|
andi(cbc_iter, cnt_reg, 4-1); // Remaining iterations after 4 java characters per iteration loop.
|
|
li(index_reg, 0); // init
|
|
li(result_reg, 0); // assume false
|
|
srwi_(tmp2_reg, cnt_reg, exact_log2(4)); // Div: 4 java characters per iteration (main loop).
|
|
|
|
cmpwi(CCR1, cbc_iter, 0); // CCR1 = (cbc_iter==0)
|
|
beq(CCR0, Linit_cbc); // too short
|
|
mtctr(tmp2_reg);
|
|
//8:
|
|
bind(Lloop);
|
|
ldx(tmp1_reg, str1_reg, index_reg);
|
|
ldx(tmp2_reg, str2_reg, index_reg);
|
|
cmpd(CCR0, tmp1_reg, tmp2_reg);
|
|
bne(CCR0, Ldone_false); // Unequal char pair found -> done.
|
|
addi(index_reg, index_reg, 4*sizeof(jchar));
|
|
bdnz(Lloop);
|
|
//14:
|
|
bind(Linit_cbc);
|
|
beq(CCR1, Ldone_true);
|
|
mtctr(cbc_iter);
|
|
//16:
|
|
bind(Lcbc);
|
|
lhzx(tmp1_reg, str1_reg, index_reg);
|
|
lhzx(tmp2_reg, str2_reg, index_reg);
|
|
cmpw(CCR0, tmp1_reg, tmp2_reg);
|
|
bne(CCR0, Ldone_false); // Unequal char pair found -> done.
|
|
addi(index_reg, index_reg, 1*sizeof(jchar));
|
|
bdnz(Lcbc);
|
|
nop();
|
|
bind(Ldone_true);
|
|
li(result_reg, 1);
|
|
//24:
|
|
bind(Ldone_false);
|
|
}
|
|
|
|
|
|
void MacroAssembler::char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
|
|
Register tmp1_reg, Register tmp2_reg) {
|
|
// Str1 may be the same register as str2 which can occur e.g. after scalar replacement.
|
|
assert_different_registers(result_reg, str1_reg, tmp1_reg, tmp2_reg);
|
|
assert_different_registers(result_reg, str2_reg, tmp1_reg, tmp2_reg);
|
|
assert(sizeof(jchar) == 2, "must be");
|
|
assert(cntval >= 0 && ((cntval & 0x7fff) == cntval), "wrong immediate");
|
|
|
|
Label Ldone_false;
|
|
|
|
if (cntval < 16) { // short case
|
|
if (cntval != 0) li(result_reg, 0); // assume false
|
|
|
|
const int num_bytes = cntval*sizeof(jchar);
|
|
int index = 0;
|
|
for (int next_index; (next_index = index + 8) <= num_bytes; index = next_index) {
|
|
ld(tmp1_reg, index, str1_reg);
|
|
ld(tmp2_reg, index, str2_reg);
|
|
cmpd(CCR0, tmp1_reg, tmp2_reg);
|
|
bne(CCR0, Ldone_false);
|
|
}
|
|
if (cntval & 2) {
|
|
lwz(tmp1_reg, index, str1_reg);
|
|
lwz(tmp2_reg, index, str2_reg);
|
|
cmpw(CCR0, tmp1_reg, tmp2_reg);
|
|
bne(CCR0, Ldone_false);
|
|
index += 4;
|
|
}
|
|
if (cntval & 1) {
|
|
lhz(tmp1_reg, index, str1_reg);
|
|
lhz(tmp2_reg, index, str2_reg);
|
|
cmpw(CCR0, tmp1_reg, tmp2_reg);
|
|
bne(CCR0, Ldone_false);
|
|
}
|
|
// fallthrough: true
|
|
} else {
|
|
Label Lloop;
|
|
Register index_reg = tmp1_reg;
|
|
const int loopcnt = cntval/4;
|
|
assert(loopcnt > 0, "must be");
|
|
// Offset 0 should be 32 byte aligned.
|
|
//2:
|
|
dcbtct(str1_reg, 0x00); // Indicate R/O access to str1.
|
|
dcbtct(str2_reg, 0x00); // Indicate R/O access to str2.
|
|
li(tmp2_reg, loopcnt);
|
|
li(index_reg, 0); // init
|
|
li(result_reg, 0); // assume false
|
|
mtctr(tmp2_reg);
|
|
//8:
|
|
bind(Lloop);
|
|
ldx(R0, str1_reg, index_reg);
|
|
ldx(tmp2_reg, str2_reg, index_reg);
|
|
cmpd(CCR0, R0, tmp2_reg);
|
|
bne(CCR0, Ldone_false); // Unequal char pair found -> done.
|
|
addi(index_reg, index_reg, 4*sizeof(jchar));
|
|
bdnz(Lloop);
|
|
//14:
|
|
if (cntval & 2) {
|
|
lwzx(R0, str1_reg, index_reg);
|
|
lwzx(tmp2_reg, str2_reg, index_reg);
|
|
cmpw(CCR0, R0, tmp2_reg);
|
|
bne(CCR0, Ldone_false);
|
|
if (cntval & 1) addi(index_reg, index_reg, 2*sizeof(jchar));
|
|
}
|
|
if (cntval & 1) {
|
|
lhzx(R0, str1_reg, index_reg);
|
|
lhzx(tmp2_reg, str2_reg, index_reg);
|
|
cmpw(CCR0, R0, tmp2_reg);
|
|
bne(CCR0, Ldone_false);
|
|
}
|
|
// fallthru: true
|
|
}
|
|
li(result_reg, 1);
|
|
bind(Ldone_false);
|
|
}
|
|
|
|
// Helpers for Intrinsic Emitters
|
|
//
|
|
// Revert the byte order of a 32bit value in a register
|
|
// src: 0x44556677
|
|
// dst: 0x77665544
|
|
// Three steps to obtain the result:
|
|
// 1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
|
|
// into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
|
|
// This value initializes dst.
|
|
// 2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
|
|
// byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
|
|
// This value is mask inserted into dst with a [0..23] mask of 1s.
|
|
// 3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
|
|
// This value is mask inserted into dst with a [8..15] mask of 1s.
|
|
void MacroAssembler::load_reverse_32(Register dst, Register src) {
|
|
assert_different_registers(dst, src);
|
|
|
|
rldicl(dst, src, (4+1)*8, 56); // Rotate byte 4 into position 7 (rightmost), clear all to the left.
|
|
rlwimi(dst, src, 3*8, 0, 23); // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
|
|
rlwimi(dst, src, 1*8, 8, 15); // Insert byte 6 into position 5, leave the rest alone.
|
|
}
|
|
|
|
// Calculate the column addresses of the crc32 lookup table into distinct registers.
|
|
// This loop-invariant calculation is moved out of the loop body, reducing the loop
|
|
// body size from 20 to 16 instructions.
|
|
// Returns the offset that was used to calculate the address of column tc3.
|
|
// Due to register shortage, setting tc3 may overwrite table. With the return offset
|
|
// at hand, the original table address can be easily reconstructed.
|
|
int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
|
|
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
// This is what we implement (the DOLIT4 part):
|
|
// ========================================================================= */
|
|
// #define DOLIT4 c ^= *buf4++; \
|
|
// c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
|
|
// crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
|
|
// #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
|
|
// ========================================================================= */
|
|
const int ix0 = 3*(4*CRC32_COLUMN_SIZE);
|
|
const int ix1 = 2*(4*CRC32_COLUMN_SIZE);
|
|
const int ix2 = 1*(4*CRC32_COLUMN_SIZE);
|
|
const int ix3 = 0*(4*CRC32_COLUMN_SIZE);
|
|
#else
|
|
// This is what we implement (the DOBIG4 part):
|
|
// =========================================================================
|
|
// #define DOBIG4 c ^= *++buf4; \
|
|
// c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
|
|
// crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
|
|
// #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
|
|
// =========================================================================
|
|
const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
|
|
const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
|
|
const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
|
|
const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
|
|
#endif
|
|
assert_different_registers(table, tc0, tc1, tc2);
|
|
assert(table == tc3, "must be!");
|
|
|
|
if (ix0 != 0) addi(tc0, table, ix0);
|
|
if (ix1 != 0) addi(tc1, table, ix1);
|
|
if (ix2 != 0) addi(tc2, table, ix2);
|
|
if (ix3 != 0) addi(tc3, table, ix3);
|
|
|
|
return ix3;
|
|
}
|
|
|
|
/**
|
|
* uint32_t crc;
|
|
* timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
|
|
*/
|
|
void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
|
|
assert_different_registers(crc, table, tmp);
|
|
assert_different_registers(val, table);
|
|
|
|
if (crc == val) { // Must rotate first to use the unmodified value.
|
|
rlwinm(tmp, val, 2, 24-2, 31-2); // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
|
|
// As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
|
|
srwi(crc, crc, 8); // Unsigned shift, clear leftmost 8 bits.
|
|
} else {
|
|
srwi(crc, crc, 8); // Unsigned shift, clear leftmost 8 bits.
|
|
rlwinm(tmp, val, 2, 24-2, 31-2); // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
|
|
}
|
|
lwzx(tmp, table, tmp);
|
|
xorr(crc, crc, tmp);
|
|
}
|
|
|
|
/**
|
|
* uint32_t crc;
|
|
* timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
|
|
*/
|
|
void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
|
|
fold_byte_crc32(crc, crc, table, tmp);
|
|
}
|
|
|
|
/**
|
|
* Emits code to update CRC-32 with a byte value according to constants in table.
|
|
*
|
|
* @param [in,out]crc Register containing the crc.
|
|
* @param [in]val Register containing the byte to fold into the CRC.
|
|
* @param [in]table Register containing the table of crc constants.
|
|
*
|
|
* uint32_t crc;
|
|
* val = crc_table[(val ^ crc) & 0xFF];
|
|
* crc = val ^ (crc >> 8);
|
|
*/
|
|
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
|
|
BLOCK_COMMENT("update_byte_crc32:");
|
|
xorr(val, val, crc);
|
|
fold_byte_crc32(crc, val, table, val);
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*/
|
|
void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
|
|
Register data, bool loopAlignment, bool invertCRC) {
|
|
assert_different_registers(crc, buf, len, table, data);
|
|
|
|
Label L_mainLoop, L_done;
|
|
const int mainLoop_stepping = 1;
|
|
const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;
|
|
|
|
// Process all bytes in a single-byte loop.
|
|
cmpdi(CCR0, len, 0); // Anything to do?
|
|
mtctr(len);
|
|
beq(CCR0, L_done);
|
|
|
|
if (invertCRC) {
|
|
nand(crc, crc, crc); // ~c
|
|
}
|
|
|
|
align(mainLoop_alignment);
|
|
BIND(L_mainLoop);
|
|
lbz(data, 0, buf); // Byte from buffer, zero-extended.
|
|
addi(buf, buf, mainLoop_stepping); // Advance buffer position.
|
|
update_byte_crc32(crc, data, table);
|
|
bdnz(L_mainLoop); // Iterate.
|
|
|
|
if (invertCRC) {
|
|
nand(crc, crc, crc); // ~c
|
|
}
|
|
|
|
bind(L_done);
|
|
}
|
|
|
|
/**
|
|
* Emits code to update CRC-32 with a 4-byte value according to constants in table
|
|
* Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
|
|
*/
|
|
// A not on the lookup table address(es):
|
|
// The lookup table consists of two sets of four columns each.
|
|
// The columns {0..3} are used for little-endian machines.
|
|
// The columns {4..7} are used for big-endian machines.
|
|
// To save the effort of adding the column offset to the table address each time
|
|
// a table element is looked up, it is possible to pass the pre-calculated
|
|
// column addresses.
|
|
// Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
|
|
void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
Register tc0, Register tc1, Register tc2, Register tc3) {
|
|
assert_different_registers(crc, t3);
|
|
|
|
// XOR crc with next four bytes of buffer.
|
|
lwz(t3, bufDisp, buf);
|
|
if (bufInc != 0) {
|
|
addi(buf, buf, bufInc);
|
|
}
|
|
xorr(t3, t3, crc);
|
|
|
|
// Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
|
|
rlwinm(t0, t3, 2, 24-2, 31-2); // ((t1 >> 0) & 0xff) << 2
|
|
rlwinm(t1, t3, 32+(2- 8), 24-2, 31-2); // ((t1 >> 8) & 0xff) << 2
|
|
rlwinm(t2, t3, 32+(2-16), 24-2, 31-2); // ((t1 >> 16) & 0xff) << 2
|
|
rlwinm(t3, t3, 32+(2-24), 24-2, 31-2); // ((t1 >> 24) & 0xff) << 2
|
|
|
|
// Use the pre-calculated column addresses.
|
|
// Load pre-calculated table values.
|
|
lwzx(t0, tc0, t0);
|
|
lwzx(t1, tc1, t1);
|
|
lwzx(t2, tc2, t2);
|
|
lwzx(t3, tc3, t3);
|
|
|
|
// Calculate new crc from table values.
|
|
xorr(t0, t0, t1);
|
|
xorr(t2, t2, t3);
|
|
xorr(crc, t0, t2); // Now crc contains the final checksum value.
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*
|
|
* Uses R9..R12 as work register. Must be saved/restored by caller!
|
|
*/
|
|
void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
Register tc0, Register tc1, Register tc2, Register tc3) {
|
|
assert_different_registers(crc, buf, len, table);
|
|
|
|
Label L_mainLoop, L_tail;
|
|
Register tmp = t0;
|
|
Register data = t0;
|
|
Register tmp2 = t1;
|
|
const int mainLoop_stepping = 8;
|
|
const int tailLoop_stepping = 1;
|
|
const int log_stepping = exact_log2(mainLoop_stepping);
|
|
const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
|
|
const int complexThreshold = 2*mainLoop_stepping;
|
|
|
|
// Don't test for len <= 0 here. This pathological case should not occur anyway.
|
|
// Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
|
|
// The situation itself is detected and handled correctly by the conditional branches
|
|
// following aghi(len, -stepping) and aghi(len, +stepping).
|
|
assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
|
|
|
|
BLOCK_COMMENT("kernel_crc32_2word {");
|
|
|
|
nand(crc, crc, crc); // ~c
|
|
|
|
// Check for short (<mainLoop_stepping) buffer.
|
|
cmpdi(CCR0, len, complexThreshold);
|
|
blt(CCR0, L_tail);
|
|
|
|
// Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
|
|
// We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
|
|
{
|
|
// Align buf addr to mainLoop_stepping boundary.
|
|
neg(tmp2, buf); // Calculate # preLoop iterations for alignment.
|
|
rldicl(tmp2, tmp2, 0, 64-log_stepping); // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
|
|
|
|
if (complexThreshold > mainLoop_stepping) {
|
|
sub(len, len, tmp2); // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
|
|
} else {
|
|
sub(tmp, len, tmp2); // Remaining bytes for main loop.
|
|
cmpdi(CCR0, tmp, mainLoop_stepping);
|
|
blt(CCR0, L_tail); // For less than one mainloop_stepping left, do only tail processing
|
|
mr(len, tmp); // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
|
|
}
|
|
update_byteLoop_crc32(crc, buf, tmp2, table, data, false, false);
|
|
}
|
|
|
|
srdi(tmp2, len, log_stepping); // #iterations for mainLoop
|
|
andi(len, len, mainLoop_stepping-1); // remaining bytes for tailLoop
|
|
mtctr(tmp2);
|
|
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
Register crc_rv = crc;
|
|
#else
|
|
Register crc_rv = tmp; // Load_reverse needs separate registers to work on.
|
|
// Occupies tmp, but frees up crc.
|
|
load_reverse_32(crc_rv, crc); // Revert byte order because we are dealing with big-endian data.
|
|
tmp = crc;
|
|
#endif
|
|
|
|
int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
|
|
|
|
align(mainLoop_alignment); // Octoword-aligned loop address. Shows 2% improvement.
|
|
BIND(L_mainLoop);
|
|
update_1word_crc32(crc_rv, buf, table, 0, 0, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
|
|
update_1word_crc32(crc_rv, buf, table, 4, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
|
|
bdnz(L_mainLoop);
|
|
|
|
#ifndef VM_LITTLE_ENDIAN
|
|
load_reverse_32(crc, crc_rv); // Revert byte order because we are dealing with big-endian data.
|
|
tmp = crc_rv; // Tmp uses it's original register again.
|
|
#endif
|
|
|
|
// Restore original table address for tailLoop.
|
|
if (reconstructTableOffset != 0) {
|
|
addi(table, table, -reconstructTableOffset);
|
|
}
|
|
|
|
// Process last few (<complexThreshold) bytes of buffer.
|
|
BIND(L_tail);
|
|
update_byteLoop_crc32(crc, buf, len, table, data, false, false);
|
|
|
|
nand(crc, crc, crc); // ~c
|
|
BLOCK_COMMENT("} kernel_crc32_2word");
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*
|
|
* uses R9..R12 as work register. Must be saved/restored by caller!
|
|
*/
|
|
void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
Register tc0, Register tc1, Register tc2, Register tc3) {
|
|
assert_different_registers(crc, buf, len, table);
|
|
|
|
Label L_mainLoop, L_tail;
|
|
Register tmp = t0;
|
|
Register data = t0;
|
|
Register tmp2 = t1;
|
|
const int mainLoop_stepping = 4;
|
|
const int tailLoop_stepping = 1;
|
|
const int log_stepping = exact_log2(mainLoop_stepping);
|
|
const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
|
|
const int complexThreshold = 2*mainLoop_stepping;
|
|
|
|
// Don't test for len <= 0 here. This pathological case should not occur anyway.
|
|
// Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
|
|
// The situation itself is detected and handled correctly by the conditional branches
|
|
// following aghi(len, -stepping) and aghi(len, +stepping).
|
|
assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
|
|
|
|
BLOCK_COMMENT("kernel_crc32_1word {");
|
|
|
|
nand(crc, crc, crc); // ~c
|
|
|
|
// Check for short (<mainLoop_stepping) buffer.
|
|
cmpdi(CCR0, len, complexThreshold);
|
|
blt(CCR0, L_tail);
|
|
|
|
// Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
|
|
// We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
|
|
{
|
|
// Align buf addr to mainLoop_stepping boundary.
|
|
neg(tmp2, buf); // Calculate # preLoop iterations for alignment.
|
|
rldicl(tmp2, tmp2, 0, 64-log_stepping); // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
|
|
|
|
if (complexThreshold > mainLoop_stepping) {
|
|
sub(len, len, tmp2); // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
|
|
} else {
|
|
sub(tmp, len, tmp2); // Remaining bytes for main loop.
|
|
cmpdi(CCR0, tmp, mainLoop_stepping);
|
|
blt(CCR0, L_tail); // For less than one mainloop_stepping left, do only tail processing
|
|
mr(len, tmp); // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
|
|
}
|
|
update_byteLoop_crc32(crc, buf, tmp2, table, data, false, false);
|
|
}
|
|
|
|
srdi(tmp2, len, log_stepping); // #iterations for mainLoop
|
|
andi(len, len, mainLoop_stepping-1); // remaining bytes for tailLoop
|
|
mtctr(tmp2);
|
|
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
Register crc_rv = crc;
|
|
#else
|
|
Register crc_rv = tmp; // Load_reverse needs separate registers to work on.
|
|
// Occupies tmp, but frees up crc.
|
|
load_reverse_32(crc_rv, crc); // evert byte order because we are dealing with big-endian data.
|
|
tmp = crc;
|
|
#endif
|
|
|
|
int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
|
|
|
|
align(mainLoop_alignment); // Octoword-aligned loop address. Shows 2% improvement.
|
|
BIND(L_mainLoop);
|
|
update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
|
|
bdnz(L_mainLoop);
|
|
|
|
#ifndef VM_LITTLE_ENDIAN
|
|
load_reverse_32(crc, crc_rv); // Revert byte order because we are dealing with big-endian data.
|
|
tmp = crc_rv; // Tmp uses it's original register again.
|
|
#endif
|
|
|
|
// Restore original table address for tailLoop.
|
|
if (reconstructTableOffset != 0) {
|
|
addi(table, table, -reconstructTableOffset);
|
|
}
|
|
|
|
// Process last few (<complexThreshold) bytes of buffer.
|
|
BIND(L_tail);
|
|
update_byteLoop_crc32(crc, buf, len, table, data, false, false);
|
|
|
|
nand(crc, crc, crc); // ~c
|
|
BLOCK_COMMENT("} kernel_crc32_1word");
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*
|
|
* Uses R7_ARG5, R8_ARG6 as work registers.
|
|
*/
|
|
void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
|
|
Register t0, Register t1, Register t2, Register t3) {
|
|
assert_different_registers(crc, buf, len, table);
|
|
|
|
Register data = t0; // Holds the current byte to be folded into crc.
|
|
|
|
BLOCK_COMMENT("kernel_crc32_1byte {");
|
|
|
|
// Process all bytes in a single-byte loop.
|
|
update_byteLoop_crc32(crc, buf, len, table, data, true, true);
|
|
|
|
BLOCK_COMMENT("} kernel_crc32_1byte");
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp) {
|
|
assert_different_registers(crc, buf, /* len, not used!! */ table, tmp);
|
|
|
|
BLOCK_COMMENT("kernel_crc32_singleByte:");
|
|
nand(crc, crc, crc); // ~c
|
|
|
|
lbz(tmp, 0, buf); // Byte from buffer, zero-extended.
|
|
update_byte_crc32(crc, tmp, table);
|
|
|
|
nand(crc, crc, crc); // ~c
|
|
}
|
|
|
|
// dest_lo += src1 + src2
|
|
// dest_hi += carry1 + carry2
|
|
void MacroAssembler::add2_with_carry(Register dest_hi,
|
|
Register dest_lo,
|
|
Register src1, Register src2) {
|
|
li(R0, 0);
|
|
addc(dest_lo, dest_lo, src1);
|
|
adde(dest_hi, dest_hi, R0);
|
|
addc(dest_lo, dest_lo, src2);
|
|
adde(dest_hi, dest_hi, R0);
|
|
}
|
|
|
|
// Multiply 64 bit by 64 bit first loop.
|
|
void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
|
|
Register x_xstart,
|
|
Register y, Register y_idx,
|
|
Register z,
|
|
Register carry,
|
|
Register product_high, Register product,
|
|
Register idx, Register kdx,
|
|
Register tmp) {
|
|
// jlong carry, x[], y[], z[];
|
|
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
|
|
// huge_128 product = y[idx] * x[xstart] + carry;
|
|
// z[kdx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
// z[xstart] = carry;
|
|
|
|
Label L_first_loop, L_first_loop_exit;
|
|
Label L_one_x, L_one_y, L_multiply;
|
|
|
|
addic_(xstart, xstart, -1);
|
|
blt(CCR0, L_one_x); // Special case: length of x is 1.
|
|
|
|
// Load next two integers of x.
|
|
sldi(tmp, xstart, LogBytesPerInt);
|
|
ldx(x_xstart, x, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(x_xstart, x_xstart, 32, 0);
|
|
#endif
|
|
|
|
align(32, 16);
|
|
bind(L_first_loop);
|
|
|
|
cmpdi(CCR0, idx, 1);
|
|
blt(CCR0, L_first_loop_exit);
|
|
addi(idx, idx, -2);
|
|
beq(CCR0, L_one_y);
|
|
|
|
// Load next two integers of y.
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
ldx(y_idx, y, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(y_idx, y_idx, 32, 0);
|
|
#endif
|
|
|
|
|
|
bind(L_multiply);
|
|
multiply64(product_high, product, x_xstart, y_idx);
|
|
|
|
li(tmp, 0);
|
|
addc(product, product, carry); // Add carry to result.
|
|
adde(product_high, product_high, tmp); // Add carry of the last addition.
|
|
addi(kdx, kdx, -2);
|
|
|
|
// Store result.
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(product, product, 32, 0);
|
|
#endif
|
|
sldi(tmp, kdx, LogBytesPerInt);
|
|
stdx(product, z, tmp);
|
|
mr_if_needed(carry, product_high);
|
|
b(L_first_loop);
|
|
|
|
|
|
bind(L_one_y); // Load one 32 bit portion of y as (0,value).
|
|
|
|
lwz(y_idx, 0, y);
|
|
b(L_multiply);
|
|
|
|
|
|
bind(L_one_x); // Load one 32 bit portion of x as (0,value).
|
|
|
|
lwz(x_xstart, 0, x);
|
|
b(L_first_loop);
|
|
|
|
bind(L_first_loop_exit);
|
|
}
|
|
|
|
// Multiply 64 bit by 64 bit and add 128 bit.
|
|
void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
|
|
Register z, Register yz_idx,
|
|
Register idx, Register carry,
|
|
Register product_high, Register product,
|
|
Register tmp, int offset) {
|
|
|
|
// huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
|
|
// z[kdx] = (jlong)product;
|
|
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
if (offset) {
|
|
addi(tmp, tmp, offset);
|
|
}
|
|
ldx(yz_idx, y, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(yz_idx, yz_idx, 32, 0);
|
|
#endif
|
|
|
|
multiply64(product_high, product, x_xstart, yz_idx);
|
|
ldx(yz_idx, z, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(yz_idx, yz_idx, 32, 0);
|
|
#endif
|
|
|
|
add2_with_carry(product_high, product, carry, yz_idx);
|
|
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
if (offset) {
|
|
addi(tmp, tmp, offset);
|
|
}
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(product, product, 32, 0);
|
|
#endif
|
|
stdx(product, z, tmp);
|
|
}
|
|
|
|
// Multiply 128 bit by 128 bit. Unrolled inner loop.
|
|
void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
|
|
Register y, Register z,
|
|
Register yz_idx, Register idx, Register carry,
|
|
Register product_high, Register product,
|
|
Register carry2, Register tmp) {
|
|
|
|
// jlong carry, x[], y[], z[];
|
|
// int kdx = ystart+1;
|
|
// for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
|
|
// huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
|
|
// z[kdx+idx+1] = (jlong)product;
|
|
// jlong carry2 = (jlong)(product >>> 64);
|
|
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
|
|
// z[kdx+idx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
// idx += 2;
|
|
// if (idx > 0) {
|
|
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
|
|
// z[kdx+idx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
|
|
Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
|
|
const Register jdx = R0;
|
|
|
|
// Scale the index.
|
|
srdi_(jdx, idx, 2);
|
|
beq(CCR0, L_third_loop_exit);
|
|
mtctr(jdx);
|
|
|
|
align(32, 16);
|
|
bind(L_third_loop);
|
|
|
|
addi(idx, idx, -4);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8);
|
|
mr_if_needed(carry2, product_high);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0);
|
|
mr_if_needed(carry, product_high);
|
|
bdnz(L_third_loop);
|
|
|
|
bind(L_third_loop_exit); // Handle any left-over operand parts.
|
|
|
|
andi_(idx, idx, 0x3);
|
|
beq(CCR0, L_post_third_loop_done);
|
|
|
|
Label L_check_1;
|
|
|
|
addic_(idx, idx, -2);
|
|
blt(CCR0, L_check_1);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0);
|
|
mr_if_needed(carry, product_high);
|
|
|
|
bind(L_check_1);
|
|
|
|
addi(idx, idx, 0x2);
|
|
andi_(idx, idx, 0x1);
|
|
addic_(idx, idx, -1);
|
|
blt(CCR0, L_post_third_loop_done);
|
|
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
lwzx(yz_idx, y, tmp);
|
|
multiply64(product_high, product, x_xstart, yz_idx);
|
|
lwzx(yz_idx, z, tmp);
|
|
|
|
add2_with_carry(product_high, product, yz_idx, carry);
|
|
|
|
sldi(tmp, idx, LogBytesPerInt);
|
|
stwx(product, z, tmp);
|
|
srdi(product, product, 32);
|
|
|
|
sldi(product_high, product_high, 32);
|
|
orr(product, product, product_high);
|
|
mr_if_needed(carry, product);
|
|
|
|
bind(L_post_third_loop_done);
|
|
} // multiply_128_x_128_loop
|
|
|
|
void MacroAssembler::multiply_to_len(Register x, Register xlen,
|
|
Register y, Register ylen,
|
|
Register z, Register zlen,
|
|
Register tmp1, Register tmp2,
|
|
Register tmp3, Register tmp4,
|
|
Register tmp5, Register tmp6,
|
|
Register tmp7, Register tmp8,
|
|
Register tmp9, Register tmp10,
|
|
Register tmp11, Register tmp12,
|
|
Register tmp13) {
|
|
|
|
ShortBranchVerifier sbv(this);
|
|
|
|
assert_different_registers(x, xlen, y, ylen, z, zlen,
|
|
tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
|
|
assert_different_registers(x, xlen, y, ylen, z, zlen,
|
|
tmp1, tmp2, tmp3, tmp4, tmp5, tmp7);
|
|
assert_different_registers(x, xlen, y, ylen, z, zlen,
|
|
tmp1, tmp2, tmp3, tmp4, tmp5, tmp8);
|
|
|
|
const Register idx = tmp1;
|
|
const Register kdx = tmp2;
|
|
const Register xstart = tmp3;
|
|
|
|
const Register y_idx = tmp4;
|
|
const Register carry = tmp5;
|
|
const Register product = tmp6;
|
|
const Register product_high = tmp7;
|
|
const Register x_xstart = tmp8;
|
|
const Register tmp = tmp9;
|
|
|
|
// First Loop.
|
|
//
|
|
// final static long LONG_MASK = 0xffffffffL;
|
|
// int xstart = xlen - 1;
|
|
// int ystart = ylen - 1;
|
|
// long carry = 0;
|
|
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
|
|
// long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
|
|
// z[kdx] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// z[xstart] = (int)carry;
|
|
|
|
mr_if_needed(idx, ylen); // idx = ylen
|
|
mr_if_needed(kdx, zlen); // kdx = xlen + ylen
|
|
li(carry, 0); // carry = 0
|
|
|
|
Label L_done;
|
|
|
|
addic_(xstart, xlen, -1);
|
|
blt(CCR0, L_done);
|
|
|
|
multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z,
|
|
carry, product_high, product, idx, kdx, tmp);
|
|
|
|
Label L_second_loop;
|
|
|
|
cmpdi(CCR0, kdx, 0);
|
|
beq(CCR0, L_second_loop);
|
|
|
|
Label L_carry;
|
|
|
|
addic_(kdx, kdx, -1);
|
|
beq(CCR0, L_carry);
|
|
|
|
// Store lower 32 bits of carry.
|
|
sldi(tmp, kdx, LogBytesPerInt);
|
|
stwx(carry, z, tmp);
|
|
srdi(carry, carry, 32);
|
|
addi(kdx, kdx, -1);
|
|
|
|
|
|
bind(L_carry);
|
|
|
|
// Store upper 32 bits of carry.
|
|
sldi(tmp, kdx, LogBytesPerInt);
|
|
stwx(carry, z, tmp);
|
|
|
|
// Second and third (nested) loops.
|
|
//
|
|
// for (int i = xstart-1; i >= 0; i--) { // Second loop
|
|
// carry = 0;
|
|
// for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
|
|
// long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
|
|
// (z[k] & LONG_MASK) + carry;
|
|
// z[k] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// z[i] = (int)carry;
|
|
// }
|
|
//
|
|
// i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
|
|
|
|
bind(L_second_loop);
|
|
|
|
li(carry, 0); // carry = 0;
|
|
|
|
addic_(xstart, xstart, -1); // i = xstart-1;
|
|
blt(CCR0, L_done);
|
|
|
|
Register zsave = tmp10;
|
|
|
|
mr(zsave, z);
|
|
|
|
|
|
Label L_last_x;
|
|
|
|
sldi(tmp, xstart, LogBytesPerInt);
|
|
add(z, z, tmp); // z = z + k - j
|
|
addi(z, z, 4);
|
|
addic_(xstart, xstart, -1); // i = xstart-1;
|
|
blt(CCR0, L_last_x);
|
|
|
|
sldi(tmp, xstart, LogBytesPerInt);
|
|
ldx(x_xstart, x, tmp);
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
rldicl(x_xstart, x_xstart, 32, 0);
|
|
#endif
|
|
|
|
|
|
Label L_third_loop_prologue;
|
|
|
|
bind(L_third_loop_prologue);
|
|
|
|
Register xsave = tmp11;
|
|
Register xlensave = tmp12;
|
|
Register ylensave = tmp13;
|
|
|
|
mr(xsave, x);
|
|
mr(xlensave, xstart);
|
|
mr(ylensave, ylen);
|
|
|
|
|
|
multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen,
|
|
carry, product_high, product, x, tmp);
|
|
|
|
mr(z, zsave);
|
|
mr(x, xsave);
|
|
mr(xlen, xlensave); // This is the decrement of the loop counter!
|
|
mr(ylen, ylensave);
|
|
|
|
addi(tmp3, xlen, 1);
|
|
sldi(tmp, tmp3, LogBytesPerInt);
|
|
stwx(carry, z, tmp);
|
|
addic_(tmp3, tmp3, -1);
|
|
blt(CCR0, L_done);
|
|
|
|
srdi(carry, carry, 32);
|
|
sldi(tmp, tmp3, LogBytesPerInt);
|
|
stwx(carry, z, tmp);
|
|
b(L_second_loop);
|
|
|
|
// Next infrequent code is moved outside loops.
|
|
bind(L_last_x);
|
|
|
|
lwz(x_xstart, 0, x);
|
|
b(L_third_loop_prologue);
|
|
|
|
bind(L_done);
|
|
} // multiply_to_len
|
|
|
|
void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
|
|
#ifdef ASSERT
|
|
Label ok;
|
|
if (check_equal) {
|
|
beq(CCR0, ok);
|
|
} else {
|
|
bne(CCR0, ok);
|
|
}
|
|
stop(msg, id);
|
|
bind(ok);
|
|
#endif
|
|
}
|
|
|
|
void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
|
|
Register mem_base, const char* msg, int id) {
|
|
#ifdef ASSERT
|
|
switch (size) {
|
|
case 4:
|
|
lwz(R0, mem_offset, mem_base);
|
|
cmpwi(CCR0, R0, 0);
|
|
break;
|
|
case 8:
|
|
ld(R0, mem_offset, mem_base);
|
|
cmpdi(CCR0, R0, 0);
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
asm_assert(check_equal, msg, id);
|
|
#endif // ASSERT
|
|
}
|
|
|
|
void MacroAssembler::verify_thread() {
|
|
if (VerifyThread) {
|
|
unimplemented("'VerifyThread' currently not implemented on PPC");
|
|
}
|
|
}
|
|
|
|
// READ: oop. KILL: R0. Volatile floats perhaps.
|
|
void MacroAssembler::verify_oop(Register oop, const char* msg) {
|
|
if (!VerifyOops) {
|
|
return;
|
|
}
|
|
|
|
address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
|
|
const Register tmp = R11; // Will be preserved.
|
|
const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
|
|
save_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
|
|
mr_if_needed(R4_ARG2, oop);
|
|
save_LR_CR(tmp); // save in old frame
|
|
push_frame_reg_args(nbytes_save, tmp);
|
|
// load FunctionDescriptor** / entry_address *
|
|
load_const_optimized(tmp, fd, R0);
|
|
// load FunctionDescriptor* / entry_address
|
|
ld(tmp, 0, tmp);
|
|
load_const_optimized(R3_ARG1, (address)msg, R0);
|
|
// Call destination for its side effect.
|
|
call_c(tmp);
|
|
|
|
pop_frame();
|
|
restore_LR_CR(tmp);
|
|
restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
}
|
|
|
|
void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) {
|
|
if (!VerifyOops) {
|
|
return;
|
|
}
|
|
|
|
address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
|
|
const Register tmp = R11; // Will be preserved.
|
|
const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
|
|
save_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
|
|
ld(R4_ARG2, offs, base);
|
|
save_LR_CR(tmp); // save in old frame
|
|
push_frame_reg_args(nbytes_save, tmp);
|
|
// load FunctionDescriptor** / entry_address *
|
|
load_const_optimized(tmp, fd, R0);
|
|
// load FunctionDescriptor* / entry_address
|
|
ld(tmp, 0, tmp);
|
|
load_const_optimized(R3_ARG1, (address)msg, R0);
|
|
// Call destination for its side effect.
|
|
call_c(tmp);
|
|
|
|
pop_frame();
|
|
restore_LR_CR(tmp);
|
|
restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
|
|
}
|
|
|
|
const char* stop_types[] = {
|
|
"stop",
|
|
"untested",
|
|
"unimplemented",
|
|
"shouldnotreachhere"
|
|
};
|
|
|
|
static void stop_on_request(int tp, const char* msg) {
|
|
tty->print("PPC assembly code requires stop: (%s) %s\n", stop_types[tp%/*stop_end*/4], msg);
|
|
guarantee(false, "PPC assembly code requires stop: %s", msg);
|
|
}
|
|
|
|
// Call a C-function that prints output.
|
|
void MacroAssembler::stop(int type, const char* msg, int id) {
|
|
#ifndef PRODUCT
|
|
block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
|
|
#else
|
|
block_comment("stop {");
|
|
#endif
|
|
|
|
// setup arguments
|
|
load_const_optimized(R3_ARG1, type);
|
|
load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
|
|
illtrap();
|
|
emit_int32(id);
|
|
block_comment("} stop;");
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Write pattern 0x0101010101010101 in memory region [low-before, high+after].
|
|
// Val, addr are temp registers.
|
|
// If low == addr, addr is killed.
|
|
// High is preserved.
|
|
void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
|
|
if (!ZapMemory) return;
|
|
|
|
assert_different_registers(low, val);
|
|
|
|
BLOCK_COMMENT("zap memory region {");
|
|
load_const_optimized(val, 0x0101010101010101);
|
|
int size = before + after;
|
|
if (low == high && size < 5 && size > 0) {
|
|
int offset = -before*BytesPerWord;
|
|
for (int i = 0; i < size; ++i) {
|
|
std(val, offset, low);
|
|
offset += (1*BytesPerWord);
|
|
}
|
|
} else {
|
|
addi(addr, low, -before*BytesPerWord);
|
|
assert_different_registers(high, val);
|
|
if (after) addi(high, high, after * BytesPerWord);
|
|
Label loop;
|
|
bind(loop);
|
|
std(val, 0, addr);
|
|
addi(addr, addr, 8);
|
|
cmpd(CCR6, addr, high);
|
|
ble(CCR6, loop);
|
|
if (after) addi(high, high, -after * BytesPerWord); // Correct back to old value.
|
|
}
|
|
BLOCK_COMMENT("} zap memory region");
|
|
}
|
|
|
|
#endif // !PRODUCT
|
|
|
|
SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
|
|
int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
|
|
assert(sizeof(bool) == 1, "PowerPC ABI");
|
|
masm->lbz(temp, simm16_offset, temp);
|
|
masm->cmpwi(CCR0, temp, 0);
|
|
masm->beq(CCR0, _label);
|
|
}
|
|
|
|
SkipIfEqualZero::~SkipIfEqualZero() {
|
|
_masm->bind(_label);
|
|
}
|