jdk-24/hotspot/src/cpu/ppc/vm/templateInterpreterGenerator_ppc.cpp
Jesper Wilhelmsson 54d0181916 Merge
2016-01-14 17:36:29 +01:00

2287 lines
86 KiB
C++

/*
* Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015 SAP AG. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
#undef __
#define __ _masm->
// Size of interpreter code. Increase if too small. Interpreter will
// fail with a guarantee ("not enough space for interpreter generation");
// if too small.
// Run with +PrintInterpreter to get the VM to print out the size.
// Max size with JVMTI
int TemplateInterpreter::InterpreterCodeSize = 230*K;
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":")
//-----------------------------------------------------------------------------
address TemplateInterpreterGenerator::generate_slow_signature_handler() {
// Slow_signature handler that respects the PPC C calling conventions.
//
// We get called by the native entry code with our output register
// area == 8. First we call InterpreterRuntime::get_result_handler
// to copy the pointer to the signature string temporarily to the
// first C-argument and to return the result_handler in
// R3_RET. Since native_entry will copy the jni-pointer to the
// first C-argument slot later on, it is OK to occupy this slot
// temporarilly. Then we copy the argument list on the java
// expression stack into native varargs format on the native stack
// and load arguments into argument registers. Integer arguments in
// the varargs vector will be sign-extended to 8 bytes.
//
// On entry:
// R3_ARG1 - intptr_t* Address of java argument list in memory.
// R15_prev_state - BytecodeInterpreter* Address of interpreter state for
// this method
// R19_method
//
// On exit (just before return instruction):
// R3_RET - contains the address of the result_handler.
// R4_ARG2 - is not updated for static methods and contains "this" otherwise.
// R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
// ARGi contains this argument. Otherwise, ARGi is not updated.
// F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
const int LogSizeOfTwoInstructions = 3;
// FIXME: use Argument:: GL: Argument names different numbers!
const int max_fp_register_arguments = 13;
const int max_int_register_arguments = 6; // first 2 are reserved
const Register arg_java = R21_tmp1;
const Register arg_c = R22_tmp2;
const Register signature = R23_tmp3; // is string
const Register sig_byte = R24_tmp4;
const Register fpcnt = R25_tmp5;
const Register argcnt = R26_tmp6;
const Register intSlot = R27_tmp7;
const Register target_sp = R28_tmp8;
const FloatRegister floatSlot = F0;
address entry = __ function_entry();
__ save_LR_CR(R0);
__ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
// We use target_sp for storing arguments in the C frame.
__ mr(target_sp, R1_SP);
__ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
__ mr(arg_java, R3_ARG1);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
// Signature is in R3_RET. Signature is callee saved.
__ mr(signature, R3_RET);
// Get the result handler.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
{
Label L;
// test if static
// _access_flags._flags must be at offset 0.
// TODO PPC port: requires change in shared code.
//assert(in_bytes(AccessFlags::flags_offset()) == 0,
// "MethodDesc._access_flags == MethodDesc._access_flags._flags");
// _access_flags must be a 32 bit value.
assert(sizeof(AccessFlags) == 4, "wrong size");
__ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
// testbit with condition register.
__ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
__ btrue(CCR0, L);
// For non-static functions, pass "this" in R4_ARG2 and copy it
// to 2nd C-arg slot.
// We need to box the Java object here, so we use arg_java
// (address of current Java stack slot) as argument and don't
// dereference it as in case of ints, floats, etc.
__ mr(R4_ARG2, arg_java);
__ addi(arg_java, arg_java, -BytesPerWord);
__ std(R4_ARG2, _abi(carg_2), target_sp);
__ bind(L);
}
// Will be incremented directly after loop_start. argcnt=0
// corresponds to 3rd C argument.
__ li(argcnt, -1);
// arg_c points to 3rd C argument
__ addi(arg_c, target_sp, _abi(carg_3));
// no floating-point args parsed so far
__ li(fpcnt, 0);
Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
Label loop_start, loop_end;
Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
// signature points to '(' at entry
#ifdef ASSERT
__ lbz(sig_byte, 0, signature);
__ cmplwi(CCR0, sig_byte, '(');
__ bne(CCR0, do_dontreachhere);
#endif
__ bind(loop_start);
__ addi(argcnt, argcnt, 1);
__ lbzu(sig_byte, 1, signature);
__ cmplwi(CCR0, sig_byte, ')'); // end of signature
__ beq(CCR0, loop_end);
__ cmplwi(CCR0, sig_byte, 'B'); // byte
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'C'); // char
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'D'); // double
__ beq(CCR0, do_double);
__ cmplwi(CCR0, sig_byte, 'F'); // float
__ beq(CCR0, do_float);
__ cmplwi(CCR0, sig_byte, 'I'); // int
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'J'); // long
__ beq(CCR0, do_long);
__ cmplwi(CCR0, sig_byte, 'S'); // short
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'Z'); // boolean
__ beq(CCR0, do_int);
__ cmplwi(CCR0, sig_byte, 'L'); // object
__ beq(CCR0, do_object);
__ cmplwi(CCR0, sig_byte, '['); // array
__ beq(CCR0, do_array);
// __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
// __ beq(CCR0, do_void);
__ bind(do_dontreachhere);
__ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
__ bind(do_array);
{
Label start_skip, end_skip;
__ bind(start_skip);
__ lbzu(sig_byte, 1, signature);
__ cmplwi(CCR0, sig_byte, '[');
__ beq(CCR0, start_skip); // skip further brackets
__ cmplwi(CCR0, sig_byte, '9');
__ bgt(CCR0, end_skip); // no optional size
__ cmplwi(CCR0, sig_byte, '0');
__ bge(CCR0, start_skip); // skip optional size
__ bind(end_skip);
__ cmplwi(CCR0, sig_byte, 'L');
__ beq(CCR0, do_object); // for arrays of objects, the name of the object must be skipped
__ b(do_boxed); // otherwise, go directly to do_boxed
}
__ bind(do_object);
{
Label L;
__ bind(L);
__ lbzu(sig_byte, 1, signature);
__ cmplwi(CCR0, sig_byte, ';');
__ bne(CCR0, L);
}
// Need to box the Java object here, so we use arg_java (address of
// current Java stack slot) as argument and don't dereference it as
// in case of ints, floats, etc.
Label do_null;
__ bind(do_boxed);
__ ld(R0,0, arg_java);
__ cmpdi(CCR0, R0, 0);
__ li(intSlot,0);
__ beq(CCR0, do_null);
__ mr(intSlot, arg_java);
__ bind(do_null);
__ std(intSlot, 0, arg_c);
__ addi(arg_java, arg_java, -BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
__ blt(CCR0, move_intSlot_to_ARG);
__ b(loop_start);
__ bind(do_int);
__ lwa(intSlot, 0, arg_java);
__ std(intSlot, 0, arg_c);
__ addi(arg_java, arg_java, -BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
__ blt(CCR0, move_intSlot_to_ARG);
__ b(loop_start);
__ bind(do_long);
__ ld(intSlot, -BytesPerWord, arg_java);
__ std(intSlot, 0, arg_c);
__ addi(arg_java, arg_java, - 2 * BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
__ blt(CCR0, move_intSlot_to_ARG);
__ b(loop_start);
__ bind(do_float);
__ lfs(floatSlot, 0, arg_java);
#if defined(LINUX)
// Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
// in the least significant word of an argument slot.
#if defined(VM_LITTLE_ENDIAN)
__ stfs(floatSlot, 0, arg_c);
#else
__ stfs(floatSlot, 4, arg_c);
#endif
#elif defined(AIX)
// Although AIX runs on big endian CPU, float is in most significant
// word of an argument slot.
__ stfs(floatSlot, 0, arg_c);
#else
#error "unknown OS"
#endif
__ addi(arg_java, arg_java, -BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
__ blt(CCR0, move_floatSlot_to_FARG);
__ b(loop_start);
__ bind(do_double);
__ lfd(floatSlot, - BytesPerWord, arg_java);
__ stfd(floatSlot, 0, arg_c);
__ addi(arg_java, arg_java, - 2 * BytesPerWord);
__ addi(arg_c, arg_c, BytesPerWord);
__ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
__ blt(CCR0, move_floatSlot_to_FARG);
__ b(loop_start);
__ bind(loop_end);
__ pop_frame();
__ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
__ restore_LR_CR(R0);
__ blr();
Label move_int_arg, move_float_arg;
__ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
__ mr(R5_ARG3, intSlot); __ b(loop_start);
__ mr(R6_ARG4, intSlot); __ b(loop_start);
__ mr(R7_ARG5, intSlot); __ b(loop_start);
__ mr(R8_ARG6, intSlot); __ b(loop_start);
__ mr(R9_ARG7, intSlot); __ b(loop_start);
__ mr(R10_ARG8, intSlot); __ b(loop_start);
__ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
__ fmr(F1_ARG1, floatSlot); __ b(loop_start);
__ fmr(F2_ARG2, floatSlot); __ b(loop_start);
__ fmr(F3_ARG3, floatSlot); __ b(loop_start);
__ fmr(F4_ARG4, floatSlot); __ b(loop_start);
__ fmr(F5_ARG5, floatSlot); __ b(loop_start);
__ fmr(F6_ARG6, floatSlot); __ b(loop_start);
__ fmr(F7_ARG7, floatSlot); __ b(loop_start);
__ fmr(F8_ARG8, floatSlot); __ b(loop_start);
__ fmr(F9_ARG9, floatSlot); __ b(loop_start);
__ fmr(F10_ARG10, floatSlot); __ b(loop_start);
__ fmr(F11_ARG11, floatSlot); __ b(loop_start);
__ fmr(F12_ARG12, floatSlot); __ b(loop_start);
__ fmr(F13_ARG13, floatSlot); __ b(loop_start);
__ bind(move_intSlot_to_ARG);
__ sldi(R0, argcnt, LogSizeOfTwoInstructions);
__ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
__ add(R11_scratch1, R0, R11_scratch1);
__ mtctr(R11_scratch1/*branch_target*/);
__ bctr();
__ bind(move_floatSlot_to_FARG);
__ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
__ addi(fpcnt, fpcnt, 1);
__ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
__ add(R11_scratch1, R0, R11_scratch1);
__ mtctr(R11_scratch1/*branch_target*/);
__ bctr();
return entry;
}
address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
//
// Registers alive
// R3_RET
// LR
//
// Registers updated
// R3_RET
//
Label done;
address entry = __ pc();
switch (type) {
case T_BOOLEAN:
// convert !=0 to 1
__ neg(R0, R3_RET);
__ orr(R0, R3_RET, R0);
__ srwi(R3_RET, R0, 31);
break;
case T_BYTE:
// sign extend 8 bits
__ extsb(R3_RET, R3_RET);
break;
case T_CHAR:
// zero extend 16 bits
__ clrldi(R3_RET, R3_RET, 48);
break;
case T_SHORT:
// sign extend 16 bits
__ extsh(R3_RET, R3_RET);
break;
case T_INT:
// sign extend 32 bits
__ extsw(R3_RET, R3_RET);
break;
case T_LONG:
break;
case T_OBJECT:
// unbox result if not null
__ cmpdi(CCR0, R3_RET, 0);
__ beq(CCR0, done);
__ ld(R3_RET, 0, R3_RET);
__ verify_oop(R3_RET);
break;
case T_FLOAT:
break;
case T_DOUBLE:
break;
case T_VOID:
break;
default: ShouldNotReachHere();
}
BIND(done);
__ blr();
return entry;
}
// Abstract method entry.
//
address TemplateInterpreterGenerator::generate_abstract_entry(void) {
address entry = __ pc();
//
// Registers alive
// R16_thread - JavaThread*
// R19_method - callee's method (method to be invoked)
// R1_SP - SP prepared such that caller's outgoing args are near top
// LR - return address to caller
//
// Stack layout at this point:
//
// 0 [TOP_IJAVA_FRAME_ABI] <-- R1_SP
// alignment (optional)
// [outgoing Java arguments]
// ...
// PARENT [PARENT_IJAVA_FRAME_ABI]
// ...
//
// Can't use call_VM here because we have not set up a new
// interpreter state. Make the call to the vm and make it look like
// our caller set up the JavaFrameAnchor.
__ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
// Push a new C frame and save LR.
__ save_LR_CR(R0);
__ push_frame_reg_args(0, R11_scratch1);
// This is not a leaf but we have a JavaFrameAnchor now and we will
// check (create) exceptions afterward so this is ok.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
R16_thread);
// Pop the C frame and restore LR.
__ pop_frame();
__ restore_LR_CR(R0);
// Reset JavaFrameAnchor from call_VM_leaf above.
__ reset_last_Java_frame();
// We don't know our caller, so jump to the general forward exception stub,
// which will also pop our full frame off. Satisfy the interface of
// SharedRuntime::generate_forward_exception()
__ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
__ mtctr(R11_scratch1);
__ bctr();
return entry;
}
// Interpreter intrinsic for WeakReference.get().
// 1. Don't push a full blown frame and go on dispatching, but fetch the value
// into R8 and return quickly
// 2. If G1 is active we *must* execute this intrinsic for corrrectness:
// It contains a GC barrier which puts the reference into the satb buffer
// to indicate that someone holds a strong reference to the object the
// weak ref points to!
address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
// The code that gets generated by this routine is split into 2 parts:
// 1. the "intrinsified" code for G1 (or any SATB based GC),
// 2. the slow path - which is an expansion of the regular method entry.
//
// Notes:
// * In the G1 code we do not check whether we need to block for
// a safepoint. If G1 is enabled then we must execute the specialized
// code for Reference.get (except when the Reference object is null)
// so that we can log the value in the referent field with an SATB
// update buffer.
// If the code for the getfield template is modified so that the
// G1 pre-barrier code is executed when the current method is
// Reference.get() then going through the normal method entry
// will be fine.
// * The G1 code can, however, check the receiver object (the instance
// of java.lang.Reference) and jump to the slow path if null. If the
// Reference object is null then we obviously cannot fetch the referent
// and so we don't need to call the G1 pre-barrier. Thus we can use the
// regular method entry code to generate the NPE.
//
if (UseG1GC) {
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
Label slow_path;
// Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
// In the G1 code we don't check if we need to reach a safepoint. We
// continue and the thread will safepoint at the next bytecode dispatch.
// If the receiver is null then it is OK to jump to the slow path.
__ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
// Check if receiver == NULL and go the slow path.
__ cmpdi(CCR0, R3_RET, 0);
__ beq(CCR0, slow_path);
// Load the value of the referent field.
__ load_heap_oop(R3_RET, referent_offset, R3_RET);
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value.
// Restore caller sp for c2i case.
#ifdef ASSERT
__ ld(R9_ARG7, 0, R1_SP);
__ ld(R10_ARG8, 0, R21_sender_SP);
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
__ asm_assert_eq("backlink", 0x544);
#endif // ASSERT
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
__ g1_write_barrier_pre(noreg, // obj
noreg, // offset
R3_RET, // pre_val
R11_scratch1, // tmp
R12_scratch2, // tmp
true); // needs_frame
__ blr();
// Generate regular method entry.
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
return entry;
}
return NULL;
}
// Actually we should never reach here since we do stack overflow checks before pushing any frame.
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
address entry = __ pc();
__ unimplemented("generate_StackOverflowError_handler");
return entry;
}
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
address entry = __ pc();
__ empty_expression_stack();
__ load_const_optimized(R4_ARG2, (address) name);
// Index is in R17_tos.
__ mr(R5_ARG3, R17_tos);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
return entry;
}
#if 0
// Call special ClassCastException constructor taking object to cast
// and target class as arguments.
address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
address entry = __ pc();
// Expression stack must be empty before entering the VM if an
// exception happened.
__ empty_expression_stack();
// Thread will be loaded to R3_ARG1.
// Target class oop is in register R5_ARG3 by convention!
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
// Above call must not return here since exception pending.
DEBUG_ONLY(__ should_not_reach_here();)
return entry;
}
#endif
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
address entry = __ pc();
// Expression stack must be empty before entering the VM if an
// exception happened.
__ empty_expression_stack();
// Load exception object.
// Thread will be loaded to R3_ARG1.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
#ifdef ASSERT
// Above call must not return here since exception pending.
__ should_not_reach_here();
#endif
return entry;
}
address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
address entry = __ pc();
//__ untested("generate_exception_handler_common");
Register Rexception = R17_tos;
// Expression stack must be empty before entering the VM if an exception happened.
__ empty_expression_stack();
__ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
if (pass_oop) {
__ mr(R5_ARG3, Rexception);
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
} else {
__ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
}
// Throw exception.
__ mr(R3_ARG1, Rexception);
__ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
__ mtctr(R11_scratch1);
__ bctr();
return entry;
}
address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
address entry = __ pc();
__ unimplemented("generate_continuation_for");
return entry;
}
// This entry is returned to when a call returns to the interpreter.
// When we arrive here, we expect that the callee stack frame is already popped.
address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
address entry = __ pc();
// Move the value out of the return register back to the TOS cache of current frame.
switch (state) {
case ltos:
case btos:
case ctos:
case stos:
case atos:
case itos: __ mr(R17_tos, R3_RET); break; // RET -> TOS cache
case ftos:
case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
case vtos: break; // Nothing to do, this was a void return.
default : ShouldNotReachHere();
}
__ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
// Compiled code destroys templateTableBase, reload.
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
if (state == atos) {
__ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
}
const Register cache = R11_scratch1;
const Register size = R12_scratch2;
__ get_cache_and_index_at_bcp(cache, 1, index_size);
// Get least significant byte of 64 bit value:
#if defined(VM_LITTLE_ENDIAN)
__ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
#else
__ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
#endif
__ sldi(size, size, Interpreter::logStackElementSize);
__ add(R15_esp, R15_esp, size);
__ dispatch_next(state, step);
return entry;
}
address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
address entry = __ pc();
// If state != vtos, we're returning from a native method, which put it's result
// into the result register. So move the value out of the return register back
// to the TOS cache of current frame.
switch (state) {
case ltos:
case btos:
case ctos:
case stos:
case atos:
case itos: __ mr(R17_tos, R3_RET); break; // GR_RET -> TOS cache
case ftos:
case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
case vtos: break; // Nothing to do, this was a void return.
default : ShouldNotReachHere();
}
// Load LcpoolCache @@@ should be already set!
__ get_constant_pool_cache(R27_constPoolCache);
// Handle a pending exception, fall through if none.
__ check_and_forward_exception(R11_scratch1, R12_scratch2);
// Start executing bytecodes.
__ dispatch_next(state, step);
return entry;
}
address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
address entry = __ pc();
__ push(state);
__ call_VM(noreg, runtime_entry);
__ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
return entry;
}
// Helpers for commoning out cases in the various type of method entries.
// Increment invocation count & check for overflow.
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test.
//
void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
// Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
Register Rscratch1 = R11_scratch1;
Register Rscratch2 = R12_scratch2;
Register R3_counters = R3_ARG1;
Label done;
if (TieredCompilation) {
const int increment = InvocationCounter::count_increment;
Label no_mdo;
if (ProfileInterpreter) {
const Register Rmdo = R3_counters;
// If no method data exists, go to profile_continue.
__ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
__ cmpdi(CCR0, Rmdo, 0);
__ beq(CCR0, no_mdo);
// Increment invocation counter in the MDO.
const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
__ lwz(Rscratch2, mdo_ic_offs, Rmdo);
__ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
__ addi(Rscratch2, Rscratch2, increment);
__ stw(Rscratch2, mdo_ic_offs, Rmdo);
__ and_(Rscratch1, Rscratch2, Rscratch1);
__ bne(CCR0, done);
__ b(*overflow);
}
// Increment counter in MethodCounters*.
const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
__ bind(no_mdo);
__ get_method_counters(R19_method, R3_counters, done);
__ lwz(Rscratch2, mo_ic_offs, R3_counters);
__ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
__ addi(Rscratch2, Rscratch2, increment);
__ stw(Rscratch2, mo_ic_offs, R3_counters);
__ and_(Rscratch1, Rscratch2, Rscratch1);
__ beq(CCR0, *overflow);
__ bind(done);
} else {
// Update standard invocation counters.
Register Rsum_ivc_bec = R4_ARG2;
__ get_method_counters(R19_method, R3_counters, done);
__ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
// Increment interpreter invocation counter.
if (ProfileInterpreter) { // %%% Merge this into methodDataOop.
__ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
__ addi(R12_scratch2, R12_scratch2, 1);
__ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
}
// Check if we must create a method data obj.
if (ProfileInterpreter && profile_method != NULL) {
const Register profile_limit = Rscratch1;
__ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
// Test to see if we should create a method data oop.
__ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
__ blt(CCR0, *profile_method_continue);
// If no method data exists, go to profile_method.
__ test_method_data_pointer(*profile_method);
}
// Finally check for counter overflow.
if (overflow) {
const Register invocation_limit = Rscratch1;
__ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
__ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
__ bge(CCR0, *overflow);
}
__ bind(done);
}
}
// Generate code to initiate compilation on invocation counter overflow.
void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
// Generate code to initiate compilation on the counter overflow.
// InterpreterRuntime::frequency_counter_overflow takes one arguments,
// which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
// We pass zero in.
// The call returns the address of the verified entry point for the method or NULL
// if the compilation did not complete (either went background or bailed out).
//
// Unlike the C++ interpreter above: Check exceptions!
// Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
// method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
__ li(R4_ARG2, 0);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
// Returns verified_entry_point or NULL.
// We ignore it in any case.
__ b(continue_entry);
}
void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
assert_different_registers(Rmem_frame_size, Rscratch1);
__ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
}
void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
__ unlock_object(R26_monitor, check_exceptions);
}
// Lock the current method, interpreter register window must be set up!
void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
const Register Robj_to_lock = Rscratch2;
{
if (!flags_preloaded) {
__ lwz(Rflags, method_(access_flags));
}
#ifdef ASSERT
// Check if methods needs synchronization.
{
Label Lok;
__ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
__ btrue(CCR0,Lok);
__ stop("method doesn't need synchronization");
__ bind(Lok);
}
#endif // ASSERT
}
// Get synchronization object to Rscratch2.
{
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
Label Lstatic;
Label Ldone;
__ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
__ btrue(CCR0, Lstatic);
// Non-static case: load receiver obj from stack and we're done.
__ ld(Robj_to_lock, R18_locals);
__ b(Ldone);
__ bind(Lstatic); // Static case: Lock the java mirror
__ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
__ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
__ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
__ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
__ bind(Ldone);
__ verify_oop(Robj_to_lock);
}
// Got the oop to lock => execute!
__ add_monitor_to_stack(true, Rscratch1, R0);
__ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
__ lock_object(R26_monitor, Robj_to_lock);
}
// Generate a fixed interpreter frame for pure interpreter
// and I2N native transition frames.
//
// Before (stack grows downwards):
//
// | ... |
// |------------- |
// | java arg0 |
// | ... |
// | java argn |
// | | <- R15_esp
// | |
// |--------------|
// | abi_112 |
// | | <- R1_SP
// |==============|
//
//
// After:
//
// | ... |
// | java arg0 |<- R18_locals
// | ... |
// | java argn |
// |--------------|
// | |
// | java locals |
// | |
// |--------------|
// | abi_48 |
// |==============|
// | |
// | istate |
// | |
// |--------------|
// | monitor |<- R26_monitor
// |--------------|
// | |<- R15_esp
// | expression |
// | stack |
// | |
// |--------------|
// | |
// | abi_112 |<- R1_SP
// |==============|
//
// The top most frame needs an abi space of 112 bytes. This space is needed,
// since we call to c. The c function may spill their arguments to the caller
// frame. When we call to java, we don't need these spill slots. In order to save
// space on the stack, we resize the caller. However, java local reside in
// the caller frame and the frame has to be increased. The frame_size for the
// current frame was calculated based on max_stack as size for the expression
// stack. At the call, just a part of the expression stack might be used.
// We don't want to waste this space and cut the frame back accordingly.
// The resulting amount for resizing is calculated as follows:
// resize = (number_of_locals - number_of_arguments) * slot_size
// + (R1_SP - R15_esp) + 48
//
// The size for the callee frame is calculated:
// framesize = 112 + max_stack + monitor + state_size
//
// maxstack: Max number of slots on the expression stack, loaded from the method.
// monitor: We statically reserve room for one monitor object.
// state_size: We save the current state of the interpreter to this area.
//
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
top_frame_size = R7_ARG5,
Rconst_method = R8_ARG6;
assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
__ ld(Rconst_method, method_(const));
__ lhz(Rsize_of_parameters /* number of params */,
in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
if (native_call) {
// If we're calling a native method, we reserve space for the worst-case signature
// handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
// We add two slots to the parameter_count, one for the jni
// environment and one for a possible native mirror.
Label skip_native_calculate_max_stack;
__ addi(top_frame_size, Rsize_of_parameters, 2);
__ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
__ bge(CCR0, skip_native_calculate_max_stack);
__ li(top_frame_size, Argument::n_register_parameters);
__ bind(skip_native_calculate_max_stack);
__ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
__ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
__ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
} else {
__ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
__ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
__ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
__ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
__ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
__ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
__ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
__ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
}
// Compute top frame size.
__ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
// Cut back area between esp and max_stack.
__ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
__ round_to(top_frame_size, frame::alignment_in_bytes);
__ round_to(parent_frame_resize, frame::alignment_in_bytes);
// parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
// Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
{
// --------------------------------------------------------------------------
// Stack overflow check
Label cont;
__ add(R11_scratch1, parent_frame_resize, top_frame_size);
generate_stack_overflow_check(R11_scratch1, R12_scratch2);
}
// Set up interpreter state registers.
__ add(R18_locals, R15_esp, Rsize_of_parameters);
__ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
__ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
// Set method data pointer.
if (ProfileInterpreter) {
Label zero_continue;
__ ld(R28_mdx, method_(method_data));
__ cmpdi(CCR0, R28_mdx, 0);
__ beq(CCR0, zero_continue);
__ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
__ bind(zero_continue);
}
if (native_call) {
__ li(R14_bcp, 0); // Must initialize.
} else {
__ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
}
// Resize parent frame.
__ mflr(R12_scratch2);
__ neg(parent_frame_resize, parent_frame_resize);
__ resize_frame(parent_frame_resize, R11_scratch1);
__ std(R12_scratch2, _abi(lr), R1_SP);
__ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
__ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
// Store values.
// R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
// in InterpreterMacroAssembler::call_from_interpreter.
__ std(R19_method, _ijava_state_neg(method), R1_SP);
__ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
__ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
__ std(R18_locals, _ijava_state_neg(locals), R1_SP);
// Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
// be found in the frame after save_interpreter_state is done. This is always true
// for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
// because e.g. frame::interpreter_frame_bcp() will not access the correct value
// (Enhanced Stack Trace).
// The signal handler does not save the interpreter state into the frame.
__ li(R0, 0);
#ifdef ASSERT
// Fill remaining slots with constants.
__ load_const_optimized(R11_scratch1, 0x5afe);
__ load_const_optimized(R12_scratch2, 0xdead);
#endif
// We have to initialize some frame slots for native calls (accessed by GC).
if (native_call) {
__ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
__ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
}
#ifdef ASSERT
else {
__ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
}
__ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
#endif
__ subf(R12_scratch2, top_frame_size, R1_SP);
__ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
__ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
// Push top frame.
__ push_frame(top_frame_size, R11_scratch1);
}
// End of helpers
address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
if (!Interpreter::math_entry_available(kind)) {
NOT_PRODUCT(__ should_not_reach_here();)
return NULL;
}
address entry = __ pc();
__ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
// Pop c2i arguments (if any) off when we return.
#ifdef ASSERT
__ ld(R9_ARG7, 0, R1_SP);
__ ld(R10_ARG8, 0, R21_sender_SP);
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
__ asm_assert_eq("backlink", 0x545);
#endif // ASSERT
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
if (kind == Interpreter::java_lang_math_sqrt) {
__ fsqrt(F1_RET, F1_RET);
} else if (kind == Interpreter::java_lang_math_abs) {
__ fabs(F1_RET, F1_RET);
} else {
ShouldNotReachHere();
}
// And we're done.
__ blr();
__ flush();
return entry;
}
// Interpreter stub for calling a native method. (asm interpreter)
// This sets up a somewhat different looking stack for calling the
// native method than the typical interpreter frame setup.
//
// On entry:
// R19_method - method
// R16_thread - JavaThread*
// R15_esp - intptr_t* sender tos
//
// abstract stack (grows up)
// [ IJava (caller of JNI callee) ] <-- ASP
// ...
address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
address entry = __ pc();
const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
// -----------------------------------------------------------------------------
// Allocate a new frame that represents the native callee (i2n frame).
// This is not a full-blown interpreter frame, but in particular, the
// following registers are valid after this:
// - R19_method
// - R18_local (points to start of argumuments to native function)
//
// abstract stack (grows up)
// [ IJava (caller of JNI callee) ] <-- ASP
// ...
const Register signature_handler_fd = R11_scratch1;
const Register pending_exception = R0;
const Register result_handler_addr = R31;
const Register native_method_fd = R11_scratch1;
const Register access_flags = R22_tmp2;
const Register active_handles = R11_scratch1; // R26_monitor saved to state.
const Register sync_state = R12_scratch2;
const Register sync_state_addr = sync_state; // Address is dead after use.
const Register suspend_flags = R11_scratch1;
//=============================================================================
// Allocate new frame and initialize interpreter state.
Label exception_return;
Label exception_return_sync_check;
Label stack_overflow_return;
// Generate new interpreter state and jump to stack_overflow_return in case of
// a stack overflow.
//generate_compute_interpreter_state(stack_overflow_return);
Register size_of_parameters = R22_tmp2;
generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
//=============================================================================
// Increment invocation counter. On overflow, entry to JNI method
// will be compiled.
Label invocation_counter_overflow, continue_after_compile;
if (inc_counter) {
if (synchronized) {
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
// This flag has two effects, one is to force an unwind in the topmost
// interpreter frame and not perform an unlock while doing so.
__ li(R0, 1);
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
}
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
BIND(continue_after_compile);
// Reset the _do_not_unlock_if_synchronized flag.
if (synchronized) {
__ li(R0, 0);
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
}
}
// access_flags = method->access_flags();
// Load access flags.
assert(access_flags->is_nonvolatile(),
"access_flags must be in a non-volatile register");
// Type check.
assert(4 == sizeof(AccessFlags), "unexpected field size");
__ lwz(access_flags, method_(access_flags));
// We don't want to reload R19_method and access_flags after calls
// to some helper functions.
assert(R19_method->is_nonvolatile(),
"R19_method must be a non-volatile register");
// Check for synchronized methods. Must happen AFTER invocation counter
// check, so method is not locked if counter overflows.
if (synchronized) {
lock_method(access_flags, R11_scratch1, R12_scratch2, true);
// Update monitor in state.
__ ld(R11_scratch1, 0, R1_SP);
__ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
}
// jvmti/jvmpi support
__ notify_method_entry();
//=============================================================================
// Get and call the signature handler.
__ ld(signature_handler_fd, method_(signature_handler));
Label call_signature_handler;
__ cmpdi(CCR0, signature_handler_fd, 0);
__ bne(CCR0, call_signature_handler);
// Method has never been called. Either generate a specialized
// handler or point to the slow one.
//
// Pass parameter 'false' to avoid exception check in call_VM.
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
// Check for an exception while looking up the target method. If we
// incurred one, bail.
__ ld(pending_exception, thread_(pending_exception));
__ cmpdi(CCR0, pending_exception, 0);
__ bne(CCR0, exception_return_sync_check); // Has pending exception.
// Reload signature handler, it may have been created/assigned in the meanwhile.
__ ld(signature_handler_fd, method_(signature_handler));
__ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
BIND(call_signature_handler);
// Before we call the signature handler we push a new frame to
// protect the interpreter frame volatile registers when we return
// from jni but before we can get back to Java.
// First set the frame anchor while the SP/FP registers are
// convenient and the slow signature handler can use this same frame
// anchor.
// We have a TOP_IJAVA_FRAME here, which belongs to us.
__ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
// Now the interpreter frame (and its call chain) have been
// invalidated and flushed. We are now protected against eager
// being enabled in native code. Even if it goes eager the
// registers will be reloaded as clean and we will invalidate after
// the call so no spurious flush should be possible.
// Call signature handler and pass locals address.
//
// Our signature handlers copy required arguments to the C stack
// (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
__ mr(R3_ARG1, R18_locals);
#if !defined(ABI_ELFv2)
__ ld(signature_handler_fd, 0, signature_handler_fd);
#endif
__ call_stub(signature_handler_fd);
// Remove the register parameter varargs slots we allocated in
// compute_interpreter_state. SP+16 ends up pointing to the ABI
// outgoing argument area.
//
// Not needed on PPC64.
//__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
// Save across call to native method.
__ mr(result_handler_addr, R3_RET);
__ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
// Set up fixed parameters and call the native method.
// If the method is static, get mirror into R4_ARG2.
{
Label method_is_not_static;
// Access_flags is non-volatile and still, no need to restore it.
// Restore access flags.
__ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
__ bfalse(CCR0, method_is_not_static);
// constants = method->constants();
__ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
__ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
// pool_holder = method->constants()->pool_holder();
__ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
R11_scratch1/*constants*/);
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
// mirror = pool_holder->klass_part()->java_mirror();
__ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
// state->_native_mirror = mirror;
__ ld(R11_scratch1, 0, R1_SP);
__ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
// R4_ARG2 = &state->_oop_temp;
__ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
BIND(method_is_not_static);
}
// At this point, arguments have been copied off the stack into
// their JNI positions. Oops are boxed in-place on the stack, with
// handles copied to arguments. The result handler address is in a
// register.
// Pass JNIEnv address as first parameter.
__ addir(R3_ARG1, thread_(jni_environment));
// Load the native_method entry before we change the thread state.
__ ld(native_method_fd, method_(native_function));
//=============================================================================
// Transition from _thread_in_Java to _thread_in_native. As soon as
// we make this change the safepoint code needs to be certain that
// the last Java frame we established is good. The pc in that frame
// just needs to be near here not an actual return address.
// We use release_store_fence to update values like the thread state, where
// we don't want the current thread to continue until all our prior memory
// accesses (including the new thread state) are visible to other threads.
__ li(R0, _thread_in_native);
__ release();
// TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
__ stw(R0, thread_(thread_state));
if (UseMembar) {
__ fence();
}
//=============================================================================
// Call the native method. Argument registers must not have been
// overwritten since "__ call_stub(signature_handler);" (except for
// ARG1 and ARG2 for static methods).
__ call_c(native_method_fd);
__ li(R0, 0);
__ ld(R11_scratch1, 0, R1_SP);
__ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
__ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
__ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
// Note: C++ interpreter needs the following here:
// The frame_manager_lr field, which we use for setting the last
// java frame, gets overwritten by the signature handler. Restore
// it now.
//__ get_PC_trash_LR(R11_scratch1);
//__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
// Because of GC R19_method may no longer be valid.
// Block, if necessary, before resuming in _thread_in_Java state.
// In order for GC to work, don't clear the last_Java_sp until after
// blocking.
//=============================================================================
// Switch thread to "native transition" state before reading the
// synchronization state. This additional state is necessary
// because reading and testing the synchronization state is not
// atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
// in _thread_in_native state, loads _not_synchronized and is
// preempted. VM thread changes sync state to synchronizing and
// suspends threads for GC. Thread A is resumed to finish this
// native method, but doesn't block here since it didn't see any
// synchronization in progress, and escapes.
// We use release_store_fence to update values like the thread state, where
// we don't want the current thread to continue until all our prior memory
// accesses (including the new thread state) are visible to other threads.
__ li(R0/*thread_state*/, _thread_in_native_trans);
__ release();
__ stw(R0/*thread_state*/, thread_(thread_state));
if (UseMembar) {
__ fence();
}
// Write serialization page so that the VM thread can do a pseudo remote
// membar. We use the current thread pointer to calculate a thread
// specific offset to write to within the page. This minimizes bus
// traffic due to cache line collision.
else {
__ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
}
// Now before we return to java we must look for a current safepoint
// (a new safepoint can not start since we entered native_trans).
// We must check here because a current safepoint could be modifying
// the callers registers right this moment.
// Acquire isn't strictly necessary here because of the fence, but
// sync_state is declared to be volatile, so we do it anyway
// (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
// TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
__ lwz(sync_state, sync_state_offs, sync_state_addr);
// TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
__ lwz(suspend_flags, thread_(suspend_flags));
Label sync_check_done;
Label do_safepoint;
// No synchronization in progress nor yet synchronized.
__ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
// Not suspended.
__ cmpwi(CCR1, suspend_flags, 0);
__ bne(CCR0, do_safepoint);
__ beq(CCR1, sync_check_done);
__ bind(do_safepoint);
__ isync();
// Block. We do the call directly and leave the current
// last_Java_frame setup undisturbed. We must save any possible
// native result across the call. No oop is present.
__ mr(R3_ARG1, R16_thread);
#if defined(ABI_ELFv2)
__ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
relocInfo::none);
#else
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
relocInfo::none);
#endif
__ bind(sync_check_done);
//=============================================================================
// <<<<<< Back in Interpreter Frame >>>>>
// We are in thread_in_native_trans here and back in the normal
// interpreter frame. We don't have to do anything special about
// safepoints and we can switch to Java mode anytime we are ready.
// Note: frame::interpreter_frame_result has a dependency on how the
// method result is saved across the call to post_method_exit. For
// native methods it assumes that the non-FPU/non-void result is
// saved in _native_lresult and a FPU result in _native_fresult. If
// this changes then the interpreter_frame_result implementation
// will need to be updated too.
// On PPC64, we have stored the result directly after the native call.
//=============================================================================
// Back in Java
// We use release_store_fence to update values like the thread state, where
// we don't want the current thread to continue until all our prior memory
// accesses (including the new thread state) are visible to other threads.
__ li(R0/*thread_state*/, _thread_in_Java);
__ release();
__ stw(R0/*thread_state*/, thread_(thread_state));
if (UseMembar) {
__ fence();
}
__ reset_last_Java_frame();
// Jvmdi/jvmpi support. Whether we've got an exception pending or
// not, and whether unlocking throws an exception or not, we notify
// on native method exit. If we do have an exception, we'll end up
// in the caller's context to handle it, so if we don't do the
// notify here, we'll drop it on the floor.
__ notify_method_exit(true/*native method*/,
ilgl /*illegal state (not used for native methods)*/,
InterpreterMacroAssembler::NotifyJVMTI,
false /*check_exceptions*/);
//=============================================================================
// Handle exceptions
if (synchronized) {
// Don't check for exceptions since we're still in the i2n frame. Do that
// manually afterwards.
unlock_method(false);
}
// Reset active handles after returning from native.
// thread->active_handles()->clear();
__ ld(active_handles, thread_(active_handles));
// TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
__ li(R0, 0);
__ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
Label exception_return_sync_check_already_unlocked;
__ ld(R0/*pending_exception*/, thread_(pending_exception));
__ cmpdi(CCR0, R0/*pending_exception*/, 0);
__ bne(CCR0, exception_return_sync_check_already_unlocked);
//-----------------------------------------------------------------------------
// No exception pending.
// Move native method result back into proper registers and return.
// Invoke result handler (may unbox/promote).
__ ld(R11_scratch1, 0, R1_SP);
__ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
__ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
__ call_stub(result_handler_addr);
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
// Must use the return pc which was loaded from the caller's frame
// as the VM uses return-pc-patching for deoptimization.
__ mtlr(R0);
__ blr();
//-----------------------------------------------------------------------------
// An exception is pending. We call into the runtime only if the
// caller was not interpreted. If it was interpreted the
// interpreter will do the correct thing. If it isn't interpreted
// (call stub/compiled code) we will change our return and continue.
BIND(exception_return_sync_check);
if (synchronized) {
// Don't check for exceptions since we're still in the i2n frame. Do that
// manually afterwards.
unlock_method(false);
}
BIND(exception_return_sync_check_already_unlocked);
const Register return_pc = R31;
__ ld(return_pc, 0, R1_SP);
__ ld(return_pc, _abi(lr), return_pc);
// Get the address of the exception handler.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
R16_thread,
return_pc /* return pc */);
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
// Load the PC of the the exception handler into LR.
__ mtlr(R3_RET);
// Load exception into R3_ARG1 and clear pending exception in thread.
__ ld(R3_ARG1/*exception*/, thread_(pending_exception));
__ li(R4_ARG2, 0);
__ std(R4_ARG2, thread_(pending_exception));
// Load the original return pc into R4_ARG2.
__ mr(R4_ARG2/*issuing_pc*/, return_pc);
// Return to exception handler.
__ blr();
//=============================================================================
// Counter overflow.
if (inc_counter) {
// Handle invocation counter overflow.
__ bind(invocation_counter_overflow);
generate_counter_overflow(continue_after_compile);
}
return entry;
}
// Generic interpreted method entry to (asm) interpreter.
//
address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
address entry = __ pc();
// Generate the code to allocate the interpreter stack frame.
Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
Rsize_of_locals = R5_ARG3; // Written by generate_fixed_frame.
generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
// --------------------------------------------------------------------------
// Zero out non-parameter locals.
// Note: *Always* zero out non-parameter locals as Sparc does. It's not
// worth to ask the flag, just do it.
Register Rslot_addr = R6_ARG4,
Rnum = R7_ARG5;
Label Lno_locals, Lzero_loop;
// Set up the zeroing loop.
__ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
__ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
__ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
__ beq(CCR0, Lno_locals);
__ li(R0, 0);
__ mtctr(Rnum);
// The zero locals loop.
__ bind(Lzero_loop);
__ std(R0, 0, Rslot_addr);
__ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
__ bdnz(Lzero_loop);
__ bind(Lno_locals);
// --------------------------------------------------------------------------
// Counter increment and overflow check.
Label invocation_counter_overflow,
profile_method,
profile_method_continue;
if (inc_counter || ProfileInterpreter) {
Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
if (synchronized) {
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
// runtime, exception handling i.e. unlock_if_synchronized_method will
// check this thread local flag.
// This flag has two effects, one is to force an unwind in the topmost
// interpreter frame and not perform an unlock while doing so.
__ li(R0, 1);
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
}
// Argument and return type profiling.
__ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
// Increment invocation counter and check for overflow.
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
}
__ bind(profile_method_continue);
// Reset the _do_not_unlock_if_synchronized flag.
if (synchronized) {
__ li(R0, 0);
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
}
}
// --------------------------------------------------------------------------
// Locking of synchronized methods. Must happen AFTER invocation_counter
// check and stack overflow check, so method is not locked if overflows.
if (synchronized) {
lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
}
#ifdef ASSERT
else {
Label Lok;
__ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
__ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
__ asm_assert_eq("method needs synchronization", 0x8521);
__ bind(Lok);
}
#endif // ASSERT
__ verify_thread();
// --------------------------------------------------------------------------
// JVMTI support
__ notify_method_entry();
// --------------------------------------------------------------------------
// Start executing instructions.
__ dispatch_next(vtos);
// --------------------------------------------------------------------------
// Out of line counter overflow and MDO creation code.
if (ProfileInterpreter) {
// We have decided to profile this method in the interpreter.
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ set_method_data_pointer_for_bcp();
__ b(profile_method_continue);
}
if (inc_counter) {
// Handle invocation counter overflow.
__ bind(invocation_counter_overflow);
generate_counter_overflow(profile_method_continue);
}
return entry;
}
// CRC32 Intrinsics.
//
// Contract on scratch and work registers.
// =======================================
//
// On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
// You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
// You can't rely on these registers across calls.
//
// The generators for CRC32_update and for CRC32_updateBytes use the
// scratch/work register set internally, passing the work registers
// as arguments to the MacroAssembler emitters as required.
//
// R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
// Their contents is not constant but may change according to the requirements
// of the emitted code.
//
// All other registers from the scratch/work register set are used "internally"
// and contain garbage (i.e. unpredictable values) once blr() is reached.
// Basically, only R3_RET contains a defined value which is the function result.
//
/**
* Method entry for static native methods:
* int java.util.zip.CRC32.update(int crc, int b)
*/
address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
if (UseCRC32Intrinsics) {
address start = __ pc(); // Remember stub start address (is rtn value).
Label slow_path;
// Safepoint check
const Register sync_state = R11_scratch1;
int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
__ lwz(sync_state, sync_state_offs, sync_state);
__ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
__ bne(CCR0, slow_path);
// We don't generate local frame and don't align stack because
// we not even call stub code (we generate the code inline)
// and there is no safepoint on this path.
// Load java parameters.
// R15_esp is callers operand stack pointer, i.e. it points to the parameters.
const Register argP = R15_esp;
const Register crc = R3_ARG1; // crc value
const Register data = R4_ARG2; // address of java byte value (kernel_crc32 needs address)
const Register dataLen = R5_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter.
const Register table = R6_ARG4; // address of crc32 table
const Register tmp = dataLen; // Reuse unused len register to show we don't actually need a separate tmp here.
BLOCK_COMMENT("CRC32_update {");
// Arguments are reversed on java expression stack
#ifdef VM_LITTLE_ENDIAN
__ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
// Being passed as an int, the single byte is at offset +0.
#else
__ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
// Being passed from java as an int, the single byte is at offset +3.
#endif
__ lwz(crc, 2*wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register.
StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
__ kernel_crc32_singleByte(crc, data, dataLen, table, tmp);
// Restore caller sp for c2i case and return.
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
__ blr();
// Generate a vanilla native entry as the slow path.
BLOCK_COMMENT("} CRC32_update");
BIND(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
return start;
}
return NULL;
}
// CRC32 Intrinsics.
/**
* Method entry for static native methods:
* int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len)
* int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
*/
address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
if (UseCRC32Intrinsics) {
address start = __ pc(); // Remember stub start address (is rtn value).
Label slow_path;
// Safepoint check
const Register sync_state = R11_scratch1;
int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
__ lwz(sync_state, sync_state_offs, sync_state);
__ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
__ bne(CCR0, slow_path);
// We don't generate local frame and don't align stack because
// we not even call stub code (we generate the code inline)
// and there is no safepoint on this path.
// Load parameters.
// Z_esp is callers operand stack pointer, i.e. it points to the parameters.
const Register argP = R15_esp;
const Register crc = R3_ARG1; // crc value
const Register data = R4_ARG2; // address of java byte array
const Register dataLen = R5_ARG3; // source data len
const Register table = R6_ARG4; // address of crc32 table
const Register t0 = R9; // scratch registers for crc calculation
const Register t1 = R10;
const Register t2 = R11;
const Register t3 = R12;
const Register tc0 = R2; // registers to hold pre-calculated column addresses
const Register tc1 = R7;
const Register tc2 = R8;
const Register tc3 = table; // table address is reconstructed at the end of kernel_crc32_* emitters
const Register tmp = t0; // Only used very locally to calculate byte buffer address.
// Arguments are reversed on java expression stack.
// Calculate address of start element.
if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
BLOCK_COMMENT("CRC32_updateByteBuffer {");
// crc @ (SP + 5W) (32bit)
// buf @ (SP + 3W) (64bit ptr to long array)
// off @ (SP + 2W) (32bit)
// dataLen @ (SP + 1W) (32bit)
// data = buf + off
__ ld( data, 3*wordSize, argP); // start of byte buffer
__ lwa( tmp, 2*wordSize, argP); // byte buffer offset
__ lwa( dataLen, 1*wordSize, argP); // #bytes to process
__ lwz( crc, 5*wordSize, argP); // current crc state
__ add( data, data, tmp); // Add byte buffer offset.
} else { // Used for "updateBytes update".
BLOCK_COMMENT("CRC32_updateBytes {");
// crc @ (SP + 4W) (32bit)
// buf @ (SP + 3W) (64bit ptr to byte array)
// off @ (SP + 2W) (32bit)
// dataLen @ (SP + 1W) (32bit)
// data = buf + off + base_offset
__ ld( data, 3*wordSize, argP); // start of byte buffer
__ lwa( tmp, 2*wordSize, argP); // byte buffer offset
__ lwa( dataLen, 1*wordSize, argP); // #bytes to process
__ add( data, data, tmp); // add byte buffer offset
__ lwz( crc, 4*wordSize, argP); // current crc state
__ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
}
StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
// Performance measurements show the 1word and 2word variants to be almost equivalent,
// with very light advantages for the 1word variant. We chose the 1word variant for
// code compactness.
__ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3);
// Restore caller sp for c2i case and return.
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
__ blr();
// Generate a vanilla native entry as the slow path.
BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
BIND(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
return start;
}
return NULL;
}
// Not supported
address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
return NULL;
}
// =============================================================================
// Exceptions
void TemplateInterpreterGenerator::generate_throw_exception() {
Register Rexception = R17_tos,
Rcontinuation = R3_RET;
// --------------------------------------------------------------------------
// Entry point if an method returns with a pending exception (rethrow).
Interpreter::_rethrow_exception_entry = __ pc();
{
__ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
// Compiled code destroys templateTableBase, reload.
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
}
// Entry point if a interpreted method throws an exception (throw).
Interpreter::_throw_exception_entry = __ pc();
{
__ mr(Rexception, R3_RET);
__ verify_thread();
__ verify_oop(Rexception);
// Expression stack must be empty before entering the VM in case of an exception.
__ empty_expression_stack();
// Find exception handler address and preserve exception oop.
// Call C routine to find handler and jump to it.
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
__ mtctr(Rcontinuation);
// Push exception for exception handler bytecodes.
__ push_ptr(Rexception);
// Jump to exception handler (may be remove activation entry!).
__ bctr();
}
// If the exception is not handled in the current frame the frame is
// removed and the exception is rethrown (i.e. exception
// continuation is _rethrow_exception).
//
// Note: At this point the bci is still the bxi for the instruction
// which caused the exception and the expression stack is
// empty. Thus, for any VM calls at this point, GC will find a legal
// oop map (with empty expression stack).
// In current activation
// tos: exception
// bcp: exception bcp
// --------------------------------------------------------------------------
// JVMTI PopFrame support
Interpreter::_remove_activation_preserving_args_entry = __ pc();
{
// Set the popframe_processing bit in popframe_condition indicating that we are
// currently handling popframe, so that call_VMs that may happen later do not
// trigger new popframe handling cycles.
__ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
__ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
__ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
// Empty the expression stack, as in normal exception handling.
__ empty_expression_stack();
__ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
// Check to see whether we are returning to a deoptimized frame.
// (The PopFrame call ensures that the caller of the popped frame is
// either interpreted or compiled and deoptimizes it if compiled.)
// Note that we don't compare the return PC against the
// deoptimization blob's unpack entry because of the presence of
// adapter frames in C2.
Label Lcaller_not_deoptimized;
Register return_pc = R3_ARG1;
__ ld(return_pc, 0, R1_SP);
__ ld(return_pc, _abi(lr), return_pc);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
__ cmpdi(CCR0, R3_RET, 0);
__ bne(CCR0, Lcaller_not_deoptimized);
// The deoptimized case.
// In this case, we can't call dispatch_next() after the frame is
// popped, but instead must save the incoming arguments and restore
// them after deoptimization has occurred.
__ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
__ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
__ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
__ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
__ subf(R5_ARG3, R4_ARG2, R5_ARG3);
// Save these arguments.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
// Inform deoptimization that it is responsible for restoring these arguments.
__ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
__ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
// Return from the current method into the deoptimization blob. Will eventually
// end up in the deopt interpeter entry, deoptimization prepared everything that
// we will reexecute the call that called us.
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
__ mtlr(return_pc);
__ blr();
// The non-deoptimized case.
__ bind(Lcaller_not_deoptimized);
// Clear the popframe condition flag.
__ li(R0, 0);
__ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
// Get out of the current method and re-execute the call that called us.
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
__ restore_interpreter_state(R11_scratch1);
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
if (ProfileInterpreter) {
__ set_method_data_pointer_for_bcp();
__ ld(R11_scratch1, 0, R1_SP);
__ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
}
#if INCLUDE_JVMTI
Label L_done;
__ lbz(R11_scratch1, 0, R14_bcp);
__ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
__ bne(CCR0, L_done);
// The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
// Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
__ ld(R4_ARG2, 0, R18_locals);
__ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
__ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
__ cmpdi(CCR0, R4_ARG2, 0);
__ beq(CCR0, L_done);
__ std(R4_ARG2, wordSize, R15_esp);
__ bind(L_done);
#endif // INCLUDE_JVMTI
__ dispatch_next(vtos);
}
// end of JVMTI PopFrame support
// --------------------------------------------------------------------------
// Remove activation exception entry.
// This is jumped to if an interpreted method can't handle an exception itself
// (we come from the throw/rethrow exception entry above). We're going to call
// into the VM to find the exception handler in the caller, pop the current
// frame and return the handler we calculated.
Interpreter::_remove_activation_entry = __ pc();
{
__ pop_ptr(Rexception);
__ verify_thread();
__ verify_oop(Rexception);
__ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
__ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
__ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
__ get_vm_result(Rexception);
// We are done with this activation frame; find out where to go next.
// The continuation point will be an exception handler, which expects
// the following registers set up:
//
// RET: exception oop
// ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
Register return_pc = R31; // Needs to survive the runtime call.
__ ld(return_pc, 0, R1_SP);
__ ld(return_pc, _abi(lr), return_pc);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
// Remove the current activation.
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
__ mr(R4_ARG2, return_pc);
__ mtlr(R3_RET);
__ mr(R3_RET, Rexception);
__ blr();
}
}
// JVMTI ForceEarlyReturn support.
// Returns "in the middle" of a method with a "fake" return value.
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
Register Rscratch1 = R11_scratch1,
Rscratch2 = R12_scratch2;
address entry = __ pc();
__ empty_expression_stack();
__ load_earlyret_value(state, Rscratch1);
__ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
// Clear the earlyret state.
__ li(R0, 0);
__ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
__ remove_activation(state, false, false);
// Copied from TemplateTable::_return.
// Restoration of lr done by remove_activation.
switch (state) {
case ltos:
case btos:
case ctos:
case stos:
case atos:
case itos: __ mr(R3_RET, R17_tos); break;
case ftos:
case dtos: __ fmr(F1_RET, F15_ftos); break;
case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
// to get visible before the reference to the object gets stored anywhere.
__ membar(Assembler::StoreStore); break;
default : ShouldNotReachHere();
}
__ blr();
return entry;
} // end of ForceEarlyReturn support
//-----------------------------------------------------------------------------
// Helper for vtos entry point generation
void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
address& bep,
address& cep,
address& sep,
address& aep,
address& iep,
address& lep,
address& fep,
address& dep,
address& vep) {
assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
Label L;
aep = __ pc(); __ push_ptr(); __ b(L);
fep = __ pc(); __ push_f(); __ b(L);
dep = __ pc(); __ push_d(); __ b(L);
lep = __ pc(); __ push_l(); __ b(L);
__ align(32, 12, 24); // align L
bep = cep = sep =
iep = __ pc(); __ push_i();
vep = __ pc();
__ bind(L);
generate_and_dispatch(t);
}
//-----------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
//__ flush_bundle();
address entry = __ pc();
const char *bname = NULL;
uint tsize = 0;
switch(state) {
case ftos:
bname = "trace_code_ftos {";
tsize = 2;
break;
case btos:
bname = "trace_code_btos {";
tsize = 2;
break;
case ctos:
bname = "trace_code_ctos {";
tsize = 2;
break;
case stos:
bname = "trace_code_stos {";
tsize = 2;
break;
case itos:
bname = "trace_code_itos {";
tsize = 2;
break;
case ltos:
bname = "trace_code_ltos {";
tsize = 3;
break;
case atos:
bname = "trace_code_atos {";
tsize = 2;
break;
case vtos:
// Note: In case of vtos, the topmost of stack value could be a int or doubl
// In case of a double (2 slots) we won't see the 2nd stack value.
// Maybe we simply should print the topmost 3 stack slots to cope with the problem.
bname = "trace_code_vtos {";
tsize = 2;
break;
case dtos:
bname = "trace_code_dtos {";
tsize = 3;
break;
default:
ShouldNotReachHere();
}
BLOCK_COMMENT(bname);
// Support short-cut for TraceBytecodesAt.
// Don't call into the VM if we don't want to trace to speed up things.
Label Lskip_vm_call;
if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
__ ld(R11_scratch1, offs1, R11_scratch1);
__ lwa(R12_scratch2, offs2, R12_scratch2);
__ cmpd(CCR0, R12_scratch2, R11_scratch1);
__ blt(CCR0, Lskip_vm_call);
}
__ push(state);
// Load 2 topmost expression stack values.
__ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
__ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
__ mflr(R31);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
__ mtlr(R31);
__ pop(state);
if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
__ bind(Lskip_vm_call);
}
__ blr();
BLOCK_COMMENT("} trace_code");
return entry;
}
void TemplateInterpreterGenerator::count_bytecode() {
int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
__ lwz(R12_scratch2, offs, R11_scratch1);
__ addi(R12_scratch2, R12_scratch2, 1);
__ stw(R12_scratch2, offs, R11_scratch1);
}
void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
__ lwz(R12_scratch2, offs, R11_scratch1);
__ addi(R12_scratch2, R12_scratch2, 1);
__ stw(R12_scratch2, offs, R11_scratch1);
}
void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
const Register addr = R11_scratch1,
tmp = R12_scratch2;
// Get index, shift out old bytecode, bring in new bytecode, and store it.
// _index = (_index >> log2_number_of_codes) |
// (bytecode << log2_number_of_codes);
int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
__ lwz(tmp, offs1, addr);
__ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
__ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
__ stw(tmp, offs1, addr);
// Bump bucket contents.
// _counters[_index] ++;
int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
__ sldi(tmp, tmp, LogBytesPerInt);
__ add(addr, tmp, addr);
__ lwz(tmp, offs2, addr);
__ addi(tmp, tmp, 1);
__ stw(tmp, offs2, addr);
}
void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
// Call a little run-time stub to avoid blow-up for each bytecode.
// The run-time runtime saves the right registers, depending on
// the tosca in-state for the given template.
assert(Interpreter::trace_code(t->tos_in()) != NULL,
"entry must have been generated");
// Note: we destroy LR here.
__ bl(Interpreter::trace_code(t->tos_in()));
}
void TemplateInterpreterGenerator::stop_interpreter_at() {
Label L;
int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
__ ld(R11_scratch1, offs1, R11_scratch1);
__ lwa(R12_scratch2, offs2, R12_scratch2);
__ cmpd(CCR0, R12_scratch2, R11_scratch1);
__ bne(CCR0, L);
__ illtrap();
__ bind(L);
}
#endif // !PRODUCT