jdk-24/src/hotspot/share/gc/g1/g1AllocRegion.cpp
Thomas Schatzl d702d5f8d2 8208669: GC changes to allow enabling -Wreorder
Reviewed-by: kbarrett
2018-08-08 15:31:06 +02:00

395 lines
14 KiB
C++

/*
* Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1AllocRegion.inline.hpp"
#include "gc/g1/g1EvacStats.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/orderAccess.hpp"
#include "utilities/align.hpp"
G1CollectedHeap* G1AllocRegion::_g1h = NULL;
HeapRegion* G1AllocRegion::_dummy_region = NULL;
void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) {
assert(_dummy_region == NULL, "should be set once");
assert(dummy_region != NULL, "pre-condition");
assert(dummy_region->free() == 0, "pre-condition");
// Make sure that any allocation attempt on this region will fail
// and will not trigger any asserts.
assert(dummy_region->allocate_no_bot_updates(1) == NULL, "should fail");
assert(dummy_region->allocate(1) == NULL, "should fail");
DEBUG_ONLY(size_t assert_tmp);
assert(dummy_region->par_allocate_no_bot_updates(1, 1, &assert_tmp) == NULL, "should fail");
assert(dummy_region->par_allocate(1, 1, &assert_tmp) == NULL, "should fail");
_g1h = g1h;
_dummy_region = dummy_region;
}
size_t G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region) {
assert(alloc_region != NULL && alloc_region != _dummy_region,
"pre-condition");
size_t result = 0;
// Other threads might still be trying to allocate using a CAS out
// of the region we are trying to retire, as they can do so without
// holding the lock. So, we first have to make sure that noone else
// can allocate out of it by doing a maximal allocation. Even if our
// CAS attempt fails a few times, we'll succeed sooner or later
// given that failed CAS attempts mean that the region is getting
// closed to being full.
size_t free_word_size = alloc_region->free() / HeapWordSize;
// This is the minimum free chunk we can turn into a dummy
// object. If the free space falls below this, then noone can
// allocate in this region anyway (all allocation requests will be
// of a size larger than this) so we won't have to perform the dummy
// allocation.
size_t min_word_size_to_fill = CollectedHeap::min_fill_size();
while (free_word_size >= min_word_size_to_fill) {
HeapWord* dummy = par_allocate(alloc_region, free_word_size);
if (dummy != NULL) {
// If the allocation was successful we should fill in the space.
CollectedHeap::fill_with_object(dummy, free_word_size);
alloc_region->set_pre_dummy_top(dummy);
result += free_word_size * HeapWordSize;
break;
}
free_word_size = alloc_region->free() / HeapWordSize;
// It's also possible that someone else beats us to the
// allocation and they fill up the region. In that case, we can
// just get out of the loop.
}
result += alloc_region->free();
assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill,
"post-condition");
return result;
}
size_t G1AllocRegion::retire_internal(HeapRegion* alloc_region, bool fill_up) {
// We never have to check whether the active region is empty or not,
// and potentially free it if it is, given that it's guaranteed that
// it will never be empty.
size_t waste = 0;
assert_alloc_region(!alloc_region->is_empty(),
"the alloc region should never be empty");
if (fill_up) {
waste = fill_up_remaining_space(alloc_region);
}
assert_alloc_region(alloc_region->used() >= _used_bytes_before, "invariant");
size_t allocated_bytes = alloc_region->used() - _used_bytes_before;
retire_region(alloc_region, allocated_bytes);
_used_bytes_before = 0;
return waste;
}
size_t G1AllocRegion::retire(bool fill_up) {
assert_alloc_region(_alloc_region != NULL, "not initialized properly");
size_t waste = 0;
trace("retiring");
HeapRegion* alloc_region = _alloc_region;
if (alloc_region != _dummy_region) {
waste = retire_internal(alloc_region, fill_up);
reset_alloc_region();
}
trace("retired");
return waste;
}
HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size,
bool force) {
assert_alloc_region(_alloc_region == _dummy_region, "pre-condition");
assert_alloc_region(_used_bytes_before == 0, "pre-condition");
trace("attempting region allocation");
HeapRegion* new_alloc_region = allocate_new_region(word_size, force);
if (new_alloc_region != NULL) {
new_alloc_region->reset_pre_dummy_top();
// Need to do this before the allocation
_used_bytes_before = new_alloc_region->used();
HeapWord* result = allocate(new_alloc_region, word_size);
assert_alloc_region(result != NULL, "the allocation should succeeded");
OrderAccess::storestore();
// Note that we first perform the allocation and then we store the
// region in _alloc_region. This is the reason why an active region
// can never be empty.
update_alloc_region(new_alloc_region);
trace("region allocation successful");
return result;
} else {
trace("region allocation failed");
return NULL;
}
ShouldNotReachHere();
}
void G1AllocRegion::init() {
trace("initializing");
assert_alloc_region(_alloc_region == NULL && _used_bytes_before == 0, "pre-condition");
assert_alloc_region(_dummy_region != NULL, "should have been set");
_alloc_region = _dummy_region;
_count = 0;
trace("initialized");
}
void G1AllocRegion::set(HeapRegion* alloc_region) {
trace("setting");
// We explicitly check that the region is not empty to make sure we
// maintain the "the alloc region cannot be empty" invariant.
assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition");
assert_alloc_region(_alloc_region == _dummy_region &&
_used_bytes_before == 0 && _count == 0,
"pre-condition");
_used_bytes_before = alloc_region->used();
_alloc_region = alloc_region;
_count += 1;
trace("set");
}
void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) {
trace("update");
// We explicitly check that the region is not empty to make sure we
// maintain the "the alloc region cannot be empty" invariant.
assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition");
_alloc_region = alloc_region;
_count += 1;
trace("updated");
}
HeapRegion* G1AllocRegion::release() {
trace("releasing");
HeapRegion* alloc_region = _alloc_region;
retire(false /* fill_up */);
assert_alloc_region(_alloc_region == _dummy_region, "post-condition of retire()");
_alloc_region = NULL;
trace("released");
return (alloc_region == _dummy_region) ? NULL : alloc_region;
}
#ifndef PRODUCT
void G1AllocRegion::trace(const char* str, size_t min_word_size, size_t desired_word_size, size_t actual_word_size, HeapWord* result) {
// All the calls to trace that set either just the size or the size
// and the result are considered part of detailed tracing and are
// skipped during other tracing.
Log(gc, alloc, region) log;
if (!log.is_debug()) {
return;
}
bool detailed_info = log.is_trace();
if ((actual_word_size == 0 && result == NULL) || detailed_info) {
ResourceMark rm;
LogStream ls_trace(log.trace());
LogStream ls_debug(log.debug());
outputStream* out = detailed_info ? &ls_trace : &ls_debug;
out->print("%s: %u ", _name, _count);
if (_alloc_region == NULL) {
out->print("NULL");
} else if (_alloc_region == _dummy_region) {
out->print("DUMMY");
} else {
out->print(HR_FORMAT, HR_FORMAT_PARAMS(_alloc_region));
}
out->print(" : %s", str);
if (detailed_info) {
if (result != NULL) {
out->print(" min " SIZE_FORMAT " desired " SIZE_FORMAT " actual " SIZE_FORMAT " " PTR_FORMAT,
min_word_size, desired_word_size, actual_word_size, p2i(result));
} else if (min_word_size != 0) {
out->print(" min " SIZE_FORMAT " desired " SIZE_FORMAT, min_word_size, desired_word_size);
}
}
out->cr();
}
}
#endif // PRODUCT
G1AllocRegion::G1AllocRegion(const char* name,
bool bot_updates)
: _alloc_region(NULL),
_count(0),
_used_bytes_before(0),
_bot_updates(bot_updates),
_name(name)
{ }
HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
bool force) {
return _g1h->new_mutator_alloc_region(word_size, force);
}
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
_g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}
void MutatorAllocRegion::init() {
assert(_retained_alloc_region == NULL, "Pre-condition");
G1AllocRegion::init();
_wasted_bytes = 0;
}
bool MutatorAllocRegion::should_retain(HeapRegion* region) {
size_t free_bytes = region->free();
if (free_bytes < MinTLABSize) {
return false;
}
if (_retained_alloc_region != NULL &&
free_bytes < _retained_alloc_region->free()) {
return false;
}
return true;
}
size_t MutatorAllocRegion::retire(bool fill_up) {
size_t waste = 0;
trace("retiring");
HeapRegion* current_region = get();
if (current_region != NULL) {
// Retain the current region if it fits a TLAB and has more
// free than the currently retained region.
if (should_retain(current_region)) {
trace("mutator retained");
if (_retained_alloc_region != NULL) {
waste = retire_internal(_retained_alloc_region, true);
}
_retained_alloc_region = current_region;
} else {
waste = retire_internal(current_region, fill_up);
}
reset_alloc_region();
}
_wasted_bytes += waste;
trace("retired");
return waste;
}
size_t MutatorAllocRegion::used_in_alloc_regions() {
size_t used = 0;
HeapRegion* hr = get();
if (hr != NULL) {
used += hr->used();
}
hr = _retained_alloc_region;
if (hr != NULL) {
used += hr->used();
}
return used;
}
HeapRegion* MutatorAllocRegion::release() {
HeapRegion* ret = G1AllocRegion::release();
// The retained alloc region must be retired and this must be
// done after the above call to release the mutator alloc region,
// since it might update the _retained_alloc_region member.
if (_retained_alloc_region != NULL) {
_wasted_bytes += retire_internal(_retained_alloc_region, false);
_retained_alloc_region = NULL;
}
log_debug(gc, alloc, region)("Mutator Allocation stats, regions: %u, wasted size: " SIZE_FORMAT "%s (%4.1f%%)",
count(),
byte_size_in_proper_unit(_wasted_bytes),
proper_unit_for_byte_size(_wasted_bytes),
percent_of(_wasted_bytes, count() * HeapRegion::GrainBytes));
return ret;
}
HeapRegion* G1GCAllocRegion::allocate_new_region(size_t word_size,
bool force) {
assert(!force, "not supported for GC alloc regions");
return _g1h->new_gc_alloc_region(word_size, _purpose);
}
void G1GCAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
_g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, _purpose);
}
size_t G1GCAllocRegion::retire(bool fill_up) {
HeapRegion* retired = get();
size_t end_waste = G1AllocRegion::retire(fill_up);
// Do not count retirement of the dummy allocation region.
if (retired != NULL) {
_stats->add_region_end_waste(end_waste / HeapWordSize);
}
return end_waste;
}
HeapRegion* OldGCAllocRegion::release() {
HeapRegion* cur = get();
if (cur != NULL) {
// Determine how far we are from the next card boundary. If it is smaller than
// the minimum object size we can allocate into, expand into the next card.
HeapWord* top = cur->top();
HeapWord* aligned_top = align_up(top, BOTConstants::N_bytes);
size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
if (to_allocate_words != 0) {
// We are not at a card boundary. Fill up, possibly into the next, taking the
// end of the region and the minimum object size into account.
to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
// Skip allocation if there is not enough space to allocate even the smallest
// possible object. In this case this region will not be retained, so the
// original problem cannot occur.
if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
HeapWord* dummy = attempt_allocation(to_allocate_words);
CollectedHeap::fill_with_object(dummy, to_allocate_words);
}
}
}
return G1AllocRegion::release();
}