2023-12-27 13:29:33 +00:00
2024-02-28 16:51:41 +00:00
%TODO:
% -Explain <c
% - Kapitel 1.2 + 1.3 ist noch zu komplex
% - Constraints und Unifikation erklären, bevor Unifikation erwähnt wird
2023-12-27 13:29:33 +00:00
\section { Type Inference for Java}
%The goal is to find a correct typing for a given Java program.
Type inference for Java has many use cases and could be used to help programmers by inserting correct types for them,
2024-03-05 17:31:50 +00:00
finding better type solutions for already typed Java programs (for example more generical ones),
2023-12-27 13:29:33 +00:00
or allowing to write typeless Java code which is then type infered and thereby type checked by our algorithm.
The algorithm proposed in this paper can determine a correct typing for the untyped Java source code example shown in figure \ref { fig:intro-example-typeless} .
Our algorithm is also capable of finding solutions involving wildcards as shown in figure \ref { fig:intro-example-typed} .
2024-02-07 17:26:41 +00:00
%This paper extends a type inference algorithm for Featherweight Java \cite{TIforFGJ} by adding wildcards.
%The last step to create a type inference algorithm compatible to the Java type system.
The algorithm presented in this paper is a slightly improved version of the one in \cite { TIforFGJ} including wildcard support.
%a modified version of the \unify{} algorithm presented in \cite{plue09_1}.
2024-02-07 16:29:41 +00:00
The input to the type inference algorithm is a Featherweight Java program (example in figure \ref { fig:nested-list-example-typeless} ) conforming to the syntax shown in figure \ref { fig:syntax} .
The \fjtype { } algorithm calculates constraints based on this intermediate representation,
which are then solved by the \unify { } algorithm
resulting in a correctly typed program (see figure \ref { fig:nested-list-example-typed} ).
2024-02-07 09:28:28 +00:00
2024-03-05 17:31:50 +00:00
\begin { itemize}
\item
2024-03-05 23:33:54 +00:00
We introduce the language \tifj { } (chapter \ref { sec:tifj} ).
A Featherweight Java derivative including Generics, Wildcards and Type Inference.
\item
2024-02-11 20:59:57 +00:00
We support capture conversion and Java style method calls.
This requires existential types in a form which is not denotable by Java syntax \cite { aModelForJavaWithWildcards} .
2024-03-05 17:31:50 +00:00
\item
2024-02-11 20:59:57 +00:00
We present a novel approach to deal with existential types and capture conversion during constraint unification.
The algorithm is split in two parts. A constraint generation step and an unification step.
2024-03-05 17:31:50 +00:00
\item
2024-02-11 20:59:57 +00:00
We proof soundness and aim for a good compromise between completeness and time complexity.
2024-03-05 17:31:50 +00:00
\end { itemize}
2024-03-05 16:12:56 +00:00
% Our algorithm finds a correct type solution for the following example, where the Java local type inference fails:
% \begin{verbatim}
% class SuperPair<A,B>{
% A a;
% B b;
% }
% class Pair<A,B> extends SuperPair<B,A>{
% A a;
% B b;
2024-02-11 20:59:57 +00:00
2024-03-05 16:12:56 +00:00
% <X> X choose(X a, X b){ return b; }
2024-02-11 20:59:57 +00:00
2024-03-05 16:12:56 +00:00
% String m(List<? extends Pair<Integer, String>> a, List<? extends Pair<Integer, String>> b){
% return choose(choose(a,b).value.a,b.value.b);
% }
% }
% \end{verbatim}
2024-02-11 20:59:57 +00:00
2024-03-05 17:31:50 +00:00
\begin { figure} %[tp]
2024-02-06 17:04:31 +00:00
\begin { subfigure} [t]{ \linewidth }
\begin { lstlisting} [style=fgj]
class List<A> {
List<A> add(A v) { ... }
}
class Example {
m(l, la, lb){
return l
.add(la.add(1))
.add(lb.add("str"));
}
}
\end { lstlisting}
\caption { Java method with missing return type}
\label { fig:nested-list-example-typeless}
\end { subfigure}
~
2024-02-07 17:26:41 +00:00
% \begin{subfigure}[t]{\linewidth}
% \begin{lstlisting}[style=tfgj]
% class List<A> {
% List<A> add(A v) { ... }
% }
% class Example {
% m(l, la, lb){
% return let r2 : (*@$\wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}}$@*) = {
% let r1 : (*@$\wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}}$@*) = l in {
% let p1 : (*@$\exptype{List}{\type{Integer}}$@*) = {
% let xa = la in xa.add(1)
% } in x1.add(p1)
% } in {
% let p2 = {
% let xb = lb in xb.add("str")
% } in x2.add(p2)
% };
% }
% }
% \end{lstlisting}
% \caption{Featherweight Java Representation}
% \label{fig:nested-list-example-let}
% \end{subfigure}
% ~
2024-02-06 17:04:31 +00:00
\begin { subfigure} [t]{ \linewidth }
\begin { lstlisting} [style=tfgj]
class List<A> {
List<A> add(A v) { ... }
}
class Example {
m(List<List<? extends Object>> l, List<Integer> la, List<String> lb){
return l
.add(la.add(1))
.add(lb.add("str"));
}
}
\end { lstlisting}
\caption { Java Representation}
\label { fig:nested-list-example-typed}
\end { subfigure}
%\caption{Example code}
%\label{fig:intro-example-code}
\end { figure}
2023-12-27 13:29:33 +00:00
%TODO
% The goal is to proof soundness in respect to the type rules introduced by \cite{aModelForJavaWithWildcards}
% and \cite{WildcardsNeedWitnessProtection}.
2024-03-05 17:31:50 +00:00
\begin { figure} %[tp]
2023-12-27 13:29:33 +00:00
\begin { subfigure} [t]{ 0.49\linewidth }
\begin { lstlisting} [style=fgj]
genList() {
if( ... ) {
return new List<String>();
} else {
return new List<Integer>();
}
}
\end { lstlisting}
\caption { Java method with missing return type}
\label { fig:intro-example-typeless}
\end { subfigure}
~
\begin { subfigure} [t]{ 0.49\linewidth }
\begin { lstlisting} [style=tfgj]
List<?> genList() {
if( ... ) {
return new List<String>();
} else {
return new List<Integer>();
}
}
\end { lstlisting}
\caption { Correct type}
\label { fig:intro-example-typed}
\end { subfigure}
%\caption{Example code}
%\label{fig:intro-example-code}
2024-01-31 17:05:22 +00:00
\end { figure}
2023-12-27 13:29:33 +00:00
% \subsection{Wildcards}
% Java subtyping involving generics is invariant.
% For example \texttt{List<String>} is not a subtype of \texttt{List<Object>}.
% %Wildcards introduce variance by allowing \texttt{List<String>} to be a subtype of \texttt{List<?>}.
% \texttt{List<Object>} is not a valid return type for the method \texttt{genList}.
% The type inference algorithm has to find the correct type involving wildcards (\texttt{List<?>}).
\subsection { Java Wildcards}
2024-03-05 17:31:50 +00:00
Wildcards are expressed by a \texttt { ?} in Java and can be used as type parameters.
2023-12-27 13:29:33 +00:00
Wildcards add variance to Java type parameters.
2024-02-14 18:19:03 +00:00
Generally Java has invariant subtyping for polymorphic types.
A \texttt { List<String>} is not a subtype of \texttt { List<Object>} for example
2023-12-27 13:29:33 +00:00
even though it seems intuitive with \texttt { String} being a subtype of \texttt { Object} .
2024-02-14 18:19:03 +00:00
2024-03-05 17:31:50 +00:00
Wildcards can be formalized as existential types \cite { WildFJ} .
\texttt { List<? extends Object>} and \texttt { List<? super String>} are both wildcard types
denoted in our syntax by $ \wctype { \wildcard { X } { \type { Object } } { \bot } } { List } { \rwildcard { X } } $ and
$ \wctype { \wildcard { X } { \type { Object } } { \type { String } } } { List } { \rwildcard { X } } $ .
2023-12-27 13:29:33 +00:00
The syntax used here allows for wildcard parameters to have a name, an uppper and lower bound at the same time,
and a type they are bound to.
In this case the name is $ \rwildcard { X } $ and it's bound to the the type \texttt { List} .
2024-02-11 20:59:57 +00:00
Those properties are needed to formalize capture conversion.
Polymorphic method calls need to be wraped in a process which \textit { opens} existential types \cite { addingWildcardsToJava} .
In Java this is done implicitly in a process called capture conversion.
2024-03-05 23:33:54 +00:00
One problem is the divergence between denotable and expressable types in Java \cite { semanticWildcardModel} .
A wildcard in the Java syntax has no name and is bound to its enclosing type.
$ \exptype { List } { \exptype { List } { \type { ? } } } $ equates to $ \exptype { List } { \wctype { \rwildcard { X } } { List } { \rwildcard { X } } } $ .
During type checking \emph { intermediate types}
%like $\wctype{\rwildcard{X}}{List}{\exptype{List}{\rwildcard{X}}}$
%or $\wctype{\rwildcard{X}}{Pair}{\rwildcard{X}, \rwildcard{X}}$
can emerge, which have no equivalent in the Java syntax.
%Our type inference algorithm uses existential types internally but spawns type solutions compatible with Java.
Example: % This program is not typable with the Type Inference algorithm from Plümicke
\begin { verbatim}
class List<X> extends Object { ...}
class List2D<X> extends List<List<X>> { ...}
<X> void shuffle(List<List<X>> list) { ...}
List<List<?>> l = ...;
List2D<?> l2d = ...;
shuffle(l); // Error
shuffle(l2d); // Valid
\end { verbatim}
Java is using local type inference to allow method invocations which are not describable with regular Java types.
The \texttt { shuffle} method in this case is invoked with the type $ \wctype { \rwildcard { X } } { List 2 D } { \rwildcard { X } } $
which is a subtype of $ \wctype { \rwildcard { X } } { List } { \exptype { List } { \rwildcard { X } } } $ .
After capture conversion \texttt { l2d'} has the type $ \exptype { List } { \exptype { List } { \rwildcard { X } } } $
and \texttt { shuffle} can be invoked with the type parameter $ \rwildcard { X } $ :
\begin { lstlisting} [style=letfj]
let l2d' : (*@$ \wctype { \rwildcard { X } } { List } { \exptype { List } { \rwildcard { X } } } $ @*) = l2d in <X>shuffle(l2d')
\end { lstlisting}
The respective constraints are:
\begin { constraintset}
\begin { center}
$
\begin { array} { l}
\wctype { \rwildcard { X} } { List2D} { \rwildcard { X} } \lessdotCC \exptype { List} { \exptype { List} { \wtv { x} } }
\\
\hline
\wctype { \rwildcard { X} } { List} { \exptype { List} { \rwildcard { X} } } \lessdotCC \exptype { List} { \exptype { List} { \wtv { x} } }
\\
\hline
\textit { Capture Conversion:} \
\exptype { List} { \exptype { List} { \rwildcard { X} } } \lessdot \exptype { List} { \exptype { List} { \wtv { x} } }
\\
\hline
\textit { Solution:} \wtv { x} \doteq \rwildcard { X} \implies \exptype { List} { \exptype { List} { \rwildcard { X} } } \lessdot \exptype { List} { \exptype { List} { \rwildcard { X} } }
\end { array}
$
\end { center}
\end { constraintset}
\texttt { l} however has the type
$ \exptype { List } { \wctype { \rwildcard { X } } { List } { \rwildcard { X } } } $ .
The method call \texttt { shuffle(l)} is not correct, because there is no solution for the subtype constraint:
$ \exptype { List } { \wctype { \rwildcard { X } } { List } { \rwildcard { X } } } \lessdotCC \exptype { List } { \exptype { List } { \wtv { x } } } $
% $\exptype{List}{String} <: \wctype{\wildcard{X}{\bot}{\type{Object}}}{List}{\rwildcard{X}}$
% means \texttt{List<String>} is a subtype of \texttt{List<? extend Object>}.
2024-02-11 20:59:57 +00:00
2024-03-05 16:12:56 +00:00
\subsection { Global Type Inference}
% A global type inference algorithm works on an input with no type annotations at all.
2024-02-11 20:59:57 +00:00
% \begin{verbatim}
2024-03-05 16:12:56 +00:00
% m(l) {
% return l.add(l);
% }
2024-02-11 20:59:57 +00:00
% \end{verbatim}
2024-03-05 16:12:56 +00:00
% $\tv{l} \lessdotCC \exptype{List}{\wtv{x}}, \tv{l} \lessdotCC \wtv{x}$
2024-03-05 23:33:54 +00:00
\begin { description}
\item [input] \tifj { } program
\item [output] type solution
\item [postcondition] the type solution applied to the input must yield a valid \letfj { } program
\end { description}
The input to our type inference algorithm is a modified version of the \letfj { } \cite { WildcardsNeedWitnessProtection} calculus (see chapter \ref { sec:tifj} ).
First \fjtype { } generates constraints
and afterwards \unify { } computes a solution for the given constraint set.
2024-03-05 16:12:56 +00:00
Constraints consist out of subtype constraints $ ( \type { T } \lessdot \type { T } ) $ and capture constraints $ ( \type { T } \lessdotCC \type { T } ) $ .
2024-03-05 23:33:54 +00:00
\textit { Note:} a type $ \type { T } $ can also be a type placeholders $ \ntv { a } $ or a wildcard type placeholder $ \wtv { a } $ .
2024-03-05 16:12:56 +00:00
A subtype constraint is satisfied if the left side is a subtype of the right side according to the rules in figure \ref { fig:subtyping} .
2024-03-05 23:33:54 +00:00
\textit { Example:} $ \exptype { List } { \ntv { a } } \lessdot \exptype { List } { \type { String } } $ is fulfilled by replacing type placeholder $ \ntv { a } $ with the type $ \type { String } $ .
Subtype constraints and type placeholders act the same as the ones used in \emph { Type Inference for Featherweight Generic Java} \cite { TIforFGJ} .
2024-03-05 16:12:56 +00:00
The novel capture constraints and wildcard placeholders are needed for method invocations involving wildcards.
%show input and a correct letFJ representation
Even in a full typed program local type inference can be necessary.
%TODO: first show local type inference and explain lessdotCC constraints. then show example with global TI
Let's start with an example where all types are already given:
\begin { lstlisting} [style=tfgj, caption=Valid Java program, label=lst:addExample]
<A> List<A> add(List<A> l, A v)
List<? super String> l = ...;
add(l, "String");
\end { lstlisting}
\begin { lstlisting} [style=letfj, caption=\letfj { } representation of \texttt { add(l, "String")} , label=lst:addExampleLet]
let l2 : (*@$ \wctype { \wildcard { X } { \type { Object } } { \type { String } } } { List } { \rwildcard { X } } $ @*) = l in <X>add(l2, "String");
\end { lstlisting}
In \letfj { } there is no local type inference and all type parameters for a method call are mandatory.
If wildcards are involved the so called capture conversion has to be done manually via let statements.
A let statement \emph { opens} an existential type.
In the body of the let statement the \textit { capture type} $ \wctype { \wildcard { X } { \type { Object } } { \type { String } } } { List } { \rwildcard { X } } $
becomes $ \exptype { List } { \rwildcard { X } } $ and the wildcard $ \wildcard { X } { \type { Object } } { \type { String } } $ is free and can be used as
a type parameter to \texttt { <X>add(...)} .
%This is a valid Java program where the type parameters for the polymorphic method \texttt{add}
%are determined by local type inference.
Our type inference algorithm has to add let statements if necessary, including the capture types.
Lets have a look at the constraints generated by \fjtype { } for the example in listing \ref { lst:addExample} :
\begin { constraintset}
2024-03-05 23:33:54 +00:00
\begin { center}
$ \begin { array } { c }
2024-03-05 16:12:56 +00:00
\wctype { \wildcard { X} { \type { Object} } { \type { String} } } { List} { \rwildcard { X} } \lessdotCC \exptype { List} { \wtv { a} } , \, \type { String} \lessdotCC \wtv { a}
\\
\hline
2024-03-05 23:33:54 +00:00
\textit { Capture Conversion:} \ \exptype { List} { \rwildcard { X} } \lessdot \exptype { List} { \wtv { a} } , \, \type { String} \lessdot \wtv { a}
2024-03-05 16:12:56 +00:00
\\
\hline
2024-03-05 23:33:54 +00:00
\textit { Solution:} \ \wtv { a} \doteq \rwildcard { X} \implies \exptype { List} { \rwildcard { X} } \lessdot \exptype { List} { \rwildcard { X} } , \, \type { String} \lessdot \rwildcard { X}
2024-03-05 16:12:56 +00:00
\end { array}
$
2024-03-05 23:33:54 +00:00
\end { center}
2024-03-05 16:12:56 +00:00
\end { constraintset}
%Why do we need the lessdotCC constraints here?
The type of \texttt { l} can be capture converted by a let statement if needed (see listing \ref { lst:addExampleLet} ).
Therefore we assign the constraint $ \wctype { \wildcard { X } { \type { Object } } { \type { String } } } { List } { \rwildcard { X } } \lessdotCC \exptype { List } { \wtv { a } } $
which allows \unify { } to do a capture conversion to $ \exptype { List } { \rwildcard { X } } \lessdot \exptype { List } { \wtv { a } } $ .
\textit { Note:} The constraint $ \type { String } \lessdot \rwildcard { X } $ is satisfied because $ \rwildcard { X } $ has $ \type { String } $ as lower bound.
% No capture conversion for methods in the same class:
% Given two methods without type annotations like
2024-02-11 20:59:57 +00:00
% \begin{verbatim}
2024-03-05 16:12:56 +00:00
% // m :: () -> r
% m() = new List<String>() :? new List<Integer>();
% // id :: (a) -> a
% id(a) = a
2024-02-11 20:59:57 +00:00
% \end{verbatim}
2024-03-05 16:12:56 +00:00
% and a method call \texttt{id(m())} would lead to the constraints:
% $\exptype{List}{\type{String}} \lessdot \ntv{r},
% \exptype{List}{\type{Integer}} \lessdot \ntv{r},
% \ntv{r} \lessdotCC \ntv{a}$
% In this example capture conversion is not applicable,
% because the \texttt{id} method is not polymorphic.
% The type solution provided by \unify{} for this constraint set is:
% $\sigma(\ntv{r}) = \wctype{\rwildcard{X}}{List}{\rwildcard{X}},
% \sigma(\ntv{a}) = \wctype{\rwildcard{X}}{List}{\rwildcard{X}}$
2024-02-11 20:59:57 +00:00
% \begin{verbatim}
2024-03-05 16:12:56 +00:00
% List<?> m() = new List<String>() :? new List<Integer>();
% List<?> id(List<?> a) = a
2024-02-11 20:59:57 +00:00
% \end{verbatim}
2024-03-05 16:12:56 +00:00
The following example has the \texttt { id} method already typed and the method \texttt { m}
extended by a recursive call \texttt { id(m())} :
\begin { verbatim}
<A> List<A> id(List<A> a) = a
m() = new List<String>() :? new List<Integer>() :? id(m());
\end { verbatim}
Now the constraints make use of a $ \lessdotCC $ constraint:
$ \exptype { List } { \type { String } } \lessdot \ntv { r } ,
\exptype { List} { \type { Integer} } \lessdot \ntv { r} ,
\ntv { r} \lessdotCC \exptype { List} { \wtv { a} } $
2024-02-11 20:59:57 +00:00
2024-03-05 16:12:56 +00:00
After substituting $ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ for $ \ntv { r } $ like in the example before
we get the constraint $ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } \lessdotCC \exptype { List } { \wtv { a } } $ .
Due to the $ \lessdotCC $ \unify { } is allowed to perform a capture conversion yielding
$ \exptype { List } { \rwildcard { X } } \lessdot \exptype { List } { \wtv { a } } $ .
\textit { Note:} The wildcard placeholder $ \wtv { a } $ is allowed to hold free variables whereas a normal placeholder like $ \ntv { r } $
is never assigned a type containing free variables.
Therefore \unify { } sets $ \wtv { a } \doteq \rwildcard { X } $ , completing the constraint set and resulting in the type solution:
\begin { verbatim}
List<?> m() = new List<String>() :? new List<Integer>() :? id(m());
\end { verbatim}
2024-02-11 20:59:57 +00:00
2023-12-27 13:29:33 +00:00
\subsection { Challenges} \label { challenges}
2024-02-11 20:59:57 +00:00
%TODO: Wildcard subtyping is infinite see \cite{TamingWildcards}
2024-02-06 17:04:31 +00:00
2023-12-27 13:29:33 +00:00
The introduction of wildcards adds additional challenges.
% we cannot replace every type variable with a wildcard
Type variables can also be used as type parameters, for example
$ \exptype { List } { String } \lessdot \exptype { List } { \tv { a } } $ .
A problem arises when replacing type variables with wildcards.
% Wildcards are not reflexive.
% ( on the equals property ), every wildcard has to be capture converted when leaving its scope
% do not substitute free type variables
Lets have a look at two examples:
\begin { itemize}
\item \begin { example} \label { intro-example1}
The first one is a valid Java program.
The type \texttt { List<? super String>} is \textit { capture converted} to a fresh type variable $ \rwildcard { X } $
which is used as the generic method parameter \texttt { A} .
Java uses capture conversion to replace the generic \texttt { A} by a capture converted version of the
\texttt { ? super String} wildcard.
Knowing that the type \texttt { String} is a subtype of any type the wildcard \texttt { ? super String} can inherit
it is safe to pass \texttt { "String"} for the first parameter of the function.
\begin { verbatim}
2024-03-05 16:12:56 +00:00
<A> List<A> add(List<A> l, A v) { }
2023-12-27 13:29:33 +00:00
2024-03-05 16:12:56 +00:00
List<? super String> list = ...;
add("String", list);
2023-12-27 13:29:33 +00:00
\end { verbatim}
\end { example}
\item \begin { example} \label { intro-example2}
This example displays an incorrect Java program.
The method call to \texttt { concat} with two wildcard lists is unsound.
Each list could be of a different kind and therefore the \texttt { concat} cannot succeed.
\begin { verbatim}
2024-03-05 16:12:56 +00:00
<A> List<A> concat(List<A> l1, List<A> l2) { ... }
2023-12-27 13:29:33 +00:00
2024-03-05 16:12:56 +00:00
List<?> list = ... ;
concat(list, list);
2023-12-27 13:29:33 +00:00
\end { verbatim}
2024-03-05 16:12:56 +00:00
% $\wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}, \\
% \wctype{\wildcard{X}{\type{Object}}{\bot}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$
2023-12-27 13:29:33 +00:00
\end { example}
2024-03-05 16:12:56 +00:00
% \item
% \unify{} morphs a constraint set into a correct type solution
% gradually assigning types to type placeholders during that process.
% Solved constraints are removed and never considered again.
% In the following example \unify{} solves the constraint generated by the expression
% \texttt{l.add(l.head())} first, which results in $\ntv{l} \lessdot \exptype{List}{\wtv{a}}$.
% \begin{verbatim}
% anyList() = new List<String>() :? new List<Integer>()
2024-02-14 18:19:03 +00:00
2024-03-05 16:12:56 +00:00
% add(anyList(), anyList().head());
% \end{verbatim}
% The type for \texttt{l} can be any kind of list, but it has to be a invariant one.
% Assigning a \texttt{List<?>} for \texttt{l} is unsound, because the type list hiding behind
% \texttt{List<?>} could be a different one for the \texttt{add} call than the \texttt{head} method call.
% An additional constraint $\wctype{\rwildcard{X}}{List}{\rwildcard{X}} \lessdot \exptype{List}{\wtv{a}}$
% is solved by removing the wildcard $\rwildcard{X}$ if possible.
2024-02-14 18:19:03 +00:00
2023-12-27 13:29:33 +00:00
\end { itemize}
The \unify { } algorithm only sees the constraints with no information about the program they originated from.
2024-03-05 16:12:56 +00:00
The main challenge was to find an algorithm which computes $ \sigma ( \wtv { a } ) = \rwildcard { X } $ for example \ref { intro-example1} but not for example \ref { intro-example2} .
2024-03-05 17:31:50 +00:00
\subsection { Capture Conversion}
The input to our type inference algorithm does not contain let statements.
Those are added after computing a type solution.
Let statements act as capture conversion and only have to be applied in method calls involving wildcard types.
\begin { figure}
\begin { minipage} { 0.45\textwidth }
\begin { lstlisting} [style=fgj]
<X> List<X> clone(List<X> l);
example(p){
return clone(p);
}
\end { lstlisting}
\end { minipage} %
\hfill
\begin { minipage} { 0.5\textwidth }
\begin { lstlisting} [style=tfgj]
(*@$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ @*) example((*@$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ @*) p){
return let x : (*@$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ @*) = p in
clone(x) : (*@$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ @*);
}
\end { lstlisting}
\end { minipage}
\caption { Type inference adding capture conversion} \label { fig:addingLetExample}
\end { figure}
Figure \ref { fig:addingLetExample} shows a let statement getting added to the typed output.
The method \texttt { clone} cannot be called with the type $ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ .
After a capture conversion \texttt { x} has the type $ \exptype { List } { \rwildcard { X } } $ with $ \rwildcard { X } $ being a free variable.
Afterwards we have to find a supertype of $ \exptype { List } { \rwildcard { X } } $ , which does not contain free variables
($ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ in this case).
During the constraint generation step most types are not known yet and are represented by a type placeholder.
During a methodcall like the one in the \texttt { example} method in figure \ref { fig:ccExample} the type of the parameter \texttt { p}
is not known yet.
The type \texttt { List<?>} would be one possibility as a parameter type for \texttt { p} .
To make wildcards work for our type inference algorithm \unify { } has to apply capture conversions if necessary.
The type placeholder $ \tv { r } $ is the return type of the \texttt { example} method.
One possible type solution is $ \tv { p } \doteq \tv { r } \doteq \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ ,
which leads to:
\begin { verbatim}
List<?> example(List<?> p){
return clone(p);
}
\end { verbatim}
But by substituting $ \tv { p } \doteq \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ in the constraint
$ \tv { p } \lessdotCC \exptype { List } { \wtv { x } } $ leads to
$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } \lessdotCC \exptype { List } { \wtv { x } } $ .
To make this typing possible we have to introduce a capture conversion via a let statement:
$ \texttt { return } \ ( \texttt { let } \ \texttt { x } : \wctype { \rwildcard { X } } { List } { \rwildcard { X } } = \texttt { p } \ \texttt { in } \
\texttt { clone} \generics { \rwildcard { X} } (x) : \wctype { \rwildcard { X} } { List} { \rwildcard { X} } )$
Inside the let statement the variable \texttt { x} has the type $ \exptype { List } { \rwildcard { X } } $
This spawns additional problems.
\begin { figure}
\begin { minipage} { 0.45\textwidth }
\begin { verbatim}
<X> List<X> clone(List<X> l){ ...}
example(p){
return clone(p);
}
\end { verbatim}
\end { minipage} %
\hfill
\begin { minipage} { 0.35\textwidth }
\begin { constraintset}
\textbf { Constraints:} \\
$
\tv { p} \lessdotCC \exptype { List} { \wtv { x} } , \\
\tv { p} \lessdot \tv { r} , \\
\tv { p} \lessdot \type { Object} ,
\tv { r} \lessdot \type { Object}
$
\end { constraintset}
\end { minipage}
\caption { Type inference example} \label { fig:ccExample}
\end { figure}
In addition with free variables this leads to unwanted behaviour.
Take the constraint
$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } \lessdot \exptype { List } { \wtv { a } } $ for example.
After a capture conversion from $ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ to $ \exptype { List } { \rwildcard { Y } } $ and a substitution $ \wtv { a } \doteq \rwildcard { Y } $
we get
$ \exptype { List } { \rwildcard { Y } } \lessdot \exptype { List } { \rwildcard { Y } } $ .
Which is correct if we apply capture conversion to the left side:
$ \exptype { List } { \rwildcard { X } } <: \exptype { List } { \rwildcard { X } } $
If the input constraints did not intend for this constraint to undergo a capture conversion then \unify { } would produce an invalid
type solution due to:
$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } \nless : \exptype { List } { \rwildcard { X } } $
The reason for this is the \texttt { S-Exists} rule's premise
$ \text { dom } ( \Delta ' ) \cap \text { fv } ( \exptype { List } { \rwildcard { X } } ) = \emptyset $ .
Additionally free variables are not allowed to leave the scope of a capture conversion
introduced by a let statement.
%TODO we combat both of this with wildcard type placeholders (? flag)
Type placeholders which are not flagged as possible free variables ($ \wtv { a } $ ) can never hold a free variable or a type containing free variables.
Constraint generation places these standard place holders at method return types and parameter types.
\begin { lstlisting} [style=fgj]
<X> List<X> clone(List<X> l);
(*@$ \red { \tv { r } } $ @*) example((*@$ \red { \tv { p } } $ @*) p){
return clone(p);
}
\end { lstlisting}
This prevents type solutions that contain free variables in parameter and return types.
When calling a method which already has a type annotation we have to consider adding a capture conversion in form of a let statement.
The constraint $ \tv { p } \lessdot \exptype { List } { \wtv { x } } $ signals the \unify { } algorithm that here a capture conversion is possible.
$ \sigma ( \tv { p } ) = \wctype { \rwildcard { X } } { List } { \rwildcard { X } } , \sigma ( \tv { r } ) = \wctype { \rwildcard { X } } { List } { \rwildcard { X } } , $ is a possible solution.
But only when adding a capture conversion:
\begin { lstlisting} [style=fgj]
<X> List<X> clone(List<X> l);
(*@$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ @*) example((*@$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ @*) p){
return let x : (*@$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ @*) = p in clone(x) : (*@$ \wctype { \rwildcard { X } } { List } { \rwildcard { X } } $ @*);
}
\end { lstlisting}
Capture constraints cannot be stored in a set.
$ \wtv { a } \lessdotCC \wtv { b } $ is not the same as $ \wtv { a } \lessdotCC \wtv { b } $ .
Both constraints will end up the same after a substitution for both placeholders $ \tv { a } $ and $ \tv { b } $ .
But afterwards a capture conversion is applied, which can generate different types on the left sides.
\begin { itemize}
\item $ \text { CC } ( \wctype { \rwildcard { X } } { List } { \rwildcard { X } } ) \implies \exptype { List } { \rwildcard { Y } } $
\item $ \text { CC } ( \wctype { \rwildcard { X } } { List } { \rwildcard { X } } ) \implies \exptype { List } { \rwildcard { Z } } $
\end { itemize}