jdk-24/hotspot/src/share/vm/gc/g1/g1ParScanThreadState.hpp

242 lines
9.0 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_G1PARSCANTHREADSTATE_HPP
#define SHARE_VM_GC_G1_G1PARSCANTHREADSTATE_HPP
#include "gc/g1/dirtyCardQueue.hpp"
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/g1CollectorPolicy.hpp"
#include "gc/g1/g1OopClosures.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1SATBCardTableModRefBS.hpp"
#include "gc/shared/ageTable.hpp"
#include "memory/allocation.hpp"
#include "oops/oop.hpp"
class G1PLABAllocator;
class G1EvacuationRootClosures;
class HeapRegion;
class outputStream;
class G1ParScanThreadState : public CHeapObj<mtGC> {
private:
G1CollectedHeap* _g1h;
RefToScanQueue* _refs;
DirtyCardQueue _dcq;
G1SATBCardTableModRefBS* _ct_bs;
G1EvacuationRootClosures* _closures;
G1PLABAllocator* _plab_allocator;
AgeTable _age_table;
InCSetState _dest[InCSetState::Num];
// Local tenuring threshold.
uint _tenuring_threshold;
G1ParScanClosure _scanner;
int _hash_seed;
uint _worker_id;
// Map from young-age-index (0 == not young, 1 is youngest) to
// surviving words. base is what we get back from the malloc call
size_t* _surviving_young_words_base;
// this points into the array, as we use the first few entries for padding
size_t* _surviving_young_words;
// Indicates whether in the last generation (old) there is no more space
// available for allocation.
bool _old_gen_is_full;
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
DirtyCardQueue& dirty_card_queue() { return _dcq; }
G1SATBCardTableModRefBS* ctbs() { return _ct_bs; }
InCSetState dest(InCSetState original) const {
assert(original.is_valid(),
"Original state invalid: " CSETSTATE_FORMAT, original.value());
assert(_dest[original.value()].is_valid_gen(),
"Dest state is invalid: " CSETSTATE_FORMAT, _dest[original.value()].value());
return _dest[original.value()];
}
public:
G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length);
virtual ~G1ParScanThreadState();
void set_ref_processor(ReferenceProcessor* rp) { _scanner.set_ref_processor(rp); }
#ifdef ASSERT
bool queue_is_empty() const { return _refs->is_empty(); }
bool verify_ref(narrowOop* ref) const;
bool verify_ref(oop* ref) const;
bool verify_task(StarTask ref) const;
#endif // ASSERT
template <class T> void do_oop_ext(T* ref);
template <class T> void push_on_queue(T* ref);
template <class T> void update_rs(HeapRegion* from, T* p, oop o) {
// If the new value of the field points to the same region or
// is the to-space, we don't need to include it in the Rset updates.
if (!HeapRegion::is_in_same_region(p, o) && !from->is_young()) {
size_t card_index = ctbs()->index_for(p);
// If the card hasn't been added to the buffer, do it.
if (ctbs()->mark_card_deferred(card_index)) {
dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
}
}
}
G1EvacuationRootClosures* closures() { return _closures; }
uint worker_id() { return _worker_id; }
// Returns the current amount of waste due to alignment or not being able to fit
// objects within LABs and the undo waste.
virtual void waste(size_t& wasted, size_t& undo_wasted);
size_t* surviving_young_words() {
// We add one to hide entry 0 which accumulates surviving words for
// age -1 regions (i.e. non-young ones)
return _surviving_young_words + 1;
}
void flush(size_t* surviving_young_words);
private:
#define G1_PARTIAL_ARRAY_MASK 0x2
inline bool has_partial_array_mask(oop* ref) const {
return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
}
// We never encode partial array oops as narrowOop*, so return false immediately.
// This allows the compiler to create optimized code when popping references from
// the work queue.
inline bool has_partial_array_mask(narrowOop* ref) const {
assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
return false;
}
// Only implement set_partial_array_mask() for regular oops, not for narrowOops.
// We always encode partial arrays as regular oop, to allow the
// specialization for has_partial_array_mask() for narrowOops above.
// This means that unintentional use of this method with narrowOops are caught
// by the compiler.
inline oop* set_partial_array_mask(oop obj) const {
assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
}
inline oop clear_partial_array_mask(oop* ref) const {
return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
}
inline void do_oop_partial_array(oop* p);
// This method is applied to the fields of the objects that have just been copied.
template <class T> inline void do_oop_evac(T* p, HeapRegion* from);
template <class T> inline void deal_with_reference(T* ref_to_scan);
inline void dispatch_reference(StarTask ref);
// Tries to allocate word_sz in the PLAB of the next "generation" after trying to
// allocate into dest. State is the original (source) cset state for the object
// that is allocated for. Previous_plab_refill_failed indicates whether previously
// a PLAB refill into "state" failed.
// Returns a non-NULL pointer if successful, and updates dest if required.
// Also determines whether we should continue to try to allocate into the various
// generations or just end trying to allocate.
HeapWord* allocate_in_next_plab(InCSetState const state,
InCSetState* dest,
size_t word_sz,
AllocationContext_t const context,
bool previous_plab_refill_failed);
inline InCSetState next_state(InCSetState const state, markOop const m, uint& age);
void report_promotion_event(InCSetState const dest_state,
oop const old, size_t word_sz, uint age,
HeapWord * const obj_ptr, const AllocationContext_t context) const;
public:
oop copy_to_survivor_space(InCSetState const state, oop const obj, markOop const old_mark);
void trim_queue();
inline void steal_and_trim_queue(RefToScanQueueSet *task_queues);
// An attempt to evacuate "obj" has failed; take necessary steps.
oop handle_evacuation_failure_par(oop obj, markOop m);
};
class G1ParScanThreadStateSet : public StackObj {
G1CollectedHeap* _g1h;
G1ParScanThreadState** _states;
size_t* _surviving_young_words_total;
size_t* _cards_scanned;
size_t _total_cards_scanned;
uint _n_workers;
bool _flushed;
public:
G1ParScanThreadStateSet(G1CollectedHeap* g1h, uint n_workers, size_t young_cset_length) :
_g1h(g1h),
_states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
_surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length, mtGC)),
_cards_scanned(NEW_C_HEAP_ARRAY(size_t, n_workers, mtGC)),
_total_cards_scanned(0),
_n_workers(n_workers),
_flushed(false) {
for (uint i = 0; i < n_workers; ++i) {
_states[i] = new_par_scan_state(i, young_cset_length);
}
memset(_surviving_young_words_total, 0, young_cset_length * sizeof(size_t));
memset(_cards_scanned, 0, n_workers * sizeof(size_t));
}
~G1ParScanThreadStateSet() {
assert(_flushed, "thread local state from the per thread states should have been flushed");
FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
FREE_C_HEAP_ARRAY(size_t, _cards_scanned);
}
void flush();
G1ParScanThreadState* state_for_worker(uint worker_id);
void add_cards_scanned(uint worker_id, size_t cards_scanned);
size_t total_cards_scanned() const;
const size_t* surviving_young_words() const;
private:
G1ParScanThreadState* new_par_scan_state(uint worker_id, size_t young_cset_length);
};
#endif // SHARE_VM_GC_G1_G1PARSCANTHREADSTATE_HPP