2007-12-01 00:00:00 +00:00
/*
2011-04-05 14:12:31 -07:00
* Copyright ( c ) 1997 , 2011 , Oracle and / or its affiliates . All rights reserved .
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER .
*
* This code is free software ; you can redistribute it and / or modify it
* under the terms of the GNU General Public License version 2 only , as
* published by the Free Software Foundation .
*
* This code is distributed in the hope that it will be useful , but WITHOUT
* ANY WARRANTY ; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE . See the GNU General Public License
* version 2 for more details ( a copy is included in the LICENSE file that
* accompanied this code ) .
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work ; if not , write to the Free Software Foundation ,
* Inc . , 51 Franklin St , Fifth Floor , Boston , MA 02110 - 1301 USA .
*
2010-05-27 19:08:38 -07:00
* Please contact Oracle , 500 Oracle Parkway , Redwood Shores , CA 94065 USA
* or visit www . oracle . com if you need additional information or have any
* questions .
2007-12-01 00:00:00 +00:00
*
*/
2010-11-23 13:22:55 -08:00
# include "precompiled.hpp"
# include "libadt/vectset.hpp"
# include "memory/allocation.inline.hpp"
# include "opto/block.hpp"
# include "opto/c2compiler.hpp"
# include "opto/callnode.hpp"
# include "opto/cfgnode.hpp"
# include "opto/machnode.hpp"
# include "opto/opcodes.hpp"
# include "opto/phaseX.hpp"
# include "opto/rootnode.hpp"
# include "opto/runtime.hpp"
# include "runtime/deoptimization.hpp"
# ifdef TARGET_ARCH_MODEL_x86_32
# include "adfiles / ad_x86_32.hpp"
# endif
# ifdef TARGET_ARCH_MODEL_x86_64
# include "adfiles / ad_x86_64.hpp"
# endif
# ifdef TARGET_ARCH_MODEL_sparc
# include "adfiles / ad_sparc.hpp"
# endif
# ifdef TARGET_ARCH_MODEL_zero
# include "adfiles / ad_zero.hpp"
# endif
2011-02-02 11:35:26 -05:00
# ifdef TARGET_ARCH_MODEL_arm
# include "adfiles / ad_arm.hpp"
# endif
# ifdef TARGET_ARCH_MODEL_ppc
# include "adfiles / ad_ppc.hpp"
# endif
2010-11-23 13:22:55 -08:00
2007-12-01 00:00:00 +00:00
// Portions of code courtesy of Clifford Click
// Optimization - Graph Style
2009-01-13 11:10:00 -08:00
// To avoid float value underflow
# define MIN_BLOCK_FREQUENCY 1.e-35f
2007-12-01 00:00:00 +00:00
//----------------------------schedule_node_into_block-------------------------
// Insert node n into block b. Look for projections of n and make sure they
// are in b also.
void PhaseCFG : : schedule_node_into_block ( Node * n , Block * b ) {
// Set basic block of n, Add n to b,
_bbs . map ( n - > _idx , b ) ;
b - > add_inst ( n ) ;
// After Matching, nearly any old Node may have projections trailing it.
// These are usually machine-dependent flags. In any case, they might
// float to another block below this one. Move them up.
for ( DUIterator_Fast imax , i = n - > fast_outs ( imax ) ; i < imax ; i + + ) {
Node * use = n - > fast_out ( i ) ;
if ( use - > is_Proj ( ) ) {
Block * buse = _bbs [ use - > _idx ] ;
if ( buse ! = b ) { // In wrong block?
if ( buse ! = NULL )
buse - > find_remove ( use ) ; // Remove from wrong block
_bbs . map ( use - > _idx , b ) ; // Re-insert in this block
b - > add_inst ( use ) ;
}
}
}
}
2009-02-26 14:26:02 -08:00
//----------------------------replace_block_proj_ctrl-------------------------
// Nodes that have is_block_proj() nodes as their control need to use
// the appropriate Region for their actual block as their control since
// the projection will be in a predecessor block.
void PhaseCFG : : replace_block_proj_ctrl ( Node * n ) {
const Node * in0 = n - > in ( 0 ) ;
assert ( in0 ! = NULL , " Only control-dependent " ) ;
const Node * p = in0 - > is_block_proj ( ) ;
if ( p ! = NULL & & p ! = n ) { // Control from a block projection?
2010-12-03 01:34:31 -08:00
assert ( ! n - > pinned ( ) | | n - > is_MachConstantBase ( ) | | n - > is_SafePointScalarObject ( ) , " only pinned MachConstantBase or SafePointScalarObject node is expected here " ) ;
2009-02-26 14:26:02 -08:00
// Find trailing Region
Block * pb = _bbs [ in0 - > _idx ] ; // Block-projection already has basic block
uint j = 0 ;
if ( pb - > _num_succs ! = 1 ) { // More then 1 successor?
// Search for successor
uint max = pb - > _nodes . size ( ) ;
assert ( max > 1 , " " ) ;
uint start = max - pb - > _num_succs ;
// Find which output path belongs to projection
for ( j = start ; j < max ; j + + ) {
if ( pb - > _nodes [ j ] = = in0 )
break ;
}
assert ( j < max , " must find " ) ;
// Change control to match head of successor basic block
j - = start ;
}
n - > set_req ( 0 , pb - > _succs [ j ] - > head ( ) ) ;
}
}
2007-12-01 00:00:00 +00:00
//------------------------------schedule_pinned_nodes--------------------------
// Set the basic block for Nodes pinned into blocks
void PhaseCFG : : schedule_pinned_nodes ( VectorSet & visited ) {
// Allocate node stack of size C->unique()+8 to avoid frequent realloc
GrowableArray < Node * > spstack ( C - > unique ( ) + 8 ) ;
spstack . push ( _root ) ;
while ( spstack . is_nonempty ( ) ) {
Node * n = spstack . pop ( ) ;
if ( ! visited . test_set ( n - > _idx ) ) { // Test node and flag it as visited
if ( n - > pinned ( ) & & ! _bbs . lookup ( n - > _idx ) ) { // Pinned? Nail it down!
2009-02-26 14:26:02 -08:00
assert ( n - > in ( 0 ) , " pinned Node must have Control " ) ;
// Before setting block replace block_proj control edge
replace_block_proj_ctrl ( n ) ;
2007-12-01 00:00:00 +00:00
Node * input = n - > in ( 0 ) ;
while ( ! input - > is_block_start ( ) )
input = input - > in ( 0 ) ;
Block * b = _bbs [ input - > _idx ] ; // Basic block of controlling input
schedule_node_into_block ( n , b ) ;
}
for ( int i = n - > req ( ) - 1 ; i > = 0 ; - - i ) { // For all inputs
if ( n - > in ( i ) ! = NULL )
spstack . push ( n - > in ( i ) ) ;
}
}
}
}
# ifdef ASSERT
// Assert that new input b2 is dominated by all previous inputs.
// Check this by by seeing that it is dominated by b1, the deepest
// input observed until b2.
static void assert_dom ( Block * b1 , Block * b2 , Node * n , Block_Array & bbs ) {
if ( b1 = = NULL ) return ;
assert ( b1 - > _dom_depth < b2 - > _dom_depth , " sanity " ) ;
Block * tmp = b2 ;
while ( tmp ! = b1 & & tmp ! = NULL ) {
tmp = tmp - > _idom ;
}
if ( tmp ! = b1 ) {
// Detected an unschedulable graph. Print some nice stuff and die.
tty - > print_cr ( " !!! Unschedulable graph !!! " ) ;
for ( uint j = 0 ; j < n - > len ( ) ; j + + ) { // For all inputs
Node * inn = n - > in ( j ) ; // Get input
if ( inn = = NULL ) continue ; // Ignore NULL, missing inputs
Block * inb = bbs [ inn - > _idx ] ;
tty - > print ( " B%d idom=B%d depth=%2d " , inb - > _pre_order ,
inb - > _idom ? inb - > _idom - > _pre_order : 0 , inb - > _dom_depth ) ;
inn - > dump ( ) ;
}
tty - > print ( " Failing node: " ) ;
n - > dump ( ) ;
assert ( false , " unscheduable graph " ) ;
}
}
# endif
static Block * find_deepest_input ( Node * n , Block_Array & bbs ) {
// Find the last input dominated by all other inputs.
Block * deepb = NULL ; // Deepest block so far
int deepb_dom_depth = 0 ;
for ( uint k = 0 ; k < n - > len ( ) ; k + + ) { // For all inputs
Node * inn = n - > in ( k ) ; // Get input
if ( inn = = NULL ) continue ; // Ignore NULL, missing inputs
Block * inb = bbs [ inn - > _idx ] ;
assert ( inb ! = NULL , " must already have scheduled this input " ) ;
if ( deepb_dom_depth < ( int ) inb - > _dom_depth ) {
// The new inb must be dominated by the previous deepb.
// The various inputs must be linearly ordered in the dom
// tree, or else there will not be a unique deepest block.
DEBUG_ONLY ( assert_dom ( deepb , inb , n , bbs ) ) ;
deepb = inb ; // Save deepest block
deepb_dom_depth = deepb - > _dom_depth ;
}
}
assert ( deepb ! = NULL , " must be at least one input to n " ) ;
return deepb ;
}
//------------------------------schedule_early---------------------------------
// Find the earliest Block any instruction can be placed in. Some instructions
// are pinned into Blocks. Unpinned instructions can appear in last block in
// which all their inputs occur.
bool PhaseCFG : : schedule_early ( VectorSet & visited , Node_List & roots ) {
// Allocate stack with enough space to avoid frequent realloc
Node_Stack nstack ( roots . Size ( ) + 8 ) ; // (unique >> 1) + 24 from Java2D stats
// roots.push(_root); _root will be processed among C->top() inputs
roots . push ( C - > top ( ) ) ;
visited . set ( C - > top ( ) - > _idx ) ;
while ( roots . size ( ) ! = 0 ) {
// Use local variables nstack_top_n & nstack_top_i to cache values
// on stack's top.
Node * nstack_top_n = roots . pop ( ) ;
uint nstack_top_i = 0 ;
//while_nstack_nonempty:
while ( true ) {
// Get parent node and next input's index from stack's top.
Node * n = nstack_top_n ;
uint i = nstack_top_i ;
if ( i = = 0 ) {
2009-02-26 14:26:02 -08:00
// Fixup some control. Constants without control get attached
// to root and nodes that use is_block_proj() nodes should be attached
// to the region that starts their block.
2007-12-01 00:00:00 +00:00
const Node * in0 = n - > in ( 0 ) ;
if ( in0 ! = NULL ) { // Control-dependent?
2009-02-26 14:26:02 -08:00
replace_block_proj_ctrl ( n ) ;
2007-12-01 00:00:00 +00:00
} else { // n->in(0) == NULL
if ( n - > req ( ) = = 1 ) { // This guy is a constant with NO inputs?
n - > set_req ( 0 , _root ) ;
}
}
}
// First, visit all inputs and force them to get a block. If an
// input is already in a block we quit following inputs (to avoid
// cycles). Instead we put that Node on a worklist to be handled
// later (since IT'S inputs may not have a block yet).
bool done = true ; // Assume all n's inputs will be processed
while ( i < n - > len ( ) ) { // For all inputs
Node * in = n - > in ( i ) ; // Get input
+ + i ;
if ( in = = NULL ) continue ; // Ignore NULL, missing inputs
int is_visited = visited . test_set ( in - > _idx ) ;
if ( ! _bbs . lookup ( in - > _idx ) ) { // Missing block selection?
if ( is_visited ) {
// assert( !visited.test(in->_idx), "did not schedule early" );
return false ;
}
nstack . push ( n , i ) ; // Save parent node and next input's index.
nstack_top_n = in ; // Process current input now.
nstack_top_i = 0 ;
done = false ; // Not all n's inputs processed.
break ; // continue while_nstack_nonempty;
} else if ( ! is_visited ) { // Input not yet visited?
roots . push ( in ) ; // Visit this guy later, using worklist
}
}
if ( done ) {
// All of n's inputs have been processed, complete post-processing.
// Some instructions are pinned into a block. These include Region,
// Phi, Start, Return, and other control-dependent instructions and
// any projections which depend on them.
if ( ! n - > pinned ( ) ) {
// Set earliest legal block.
_bbs . map ( n - > _idx , find_deepest_input ( n , _bbs ) ) ;
2009-02-26 14:26:02 -08:00
} else {
assert ( _bbs [ n - > _idx ] = = _bbs [ n - > in ( 0 ) - > _idx ] , " Pinned Node should be at the same block as its control edge " ) ;
2007-12-01 00:00:00 +00:00
}
if ( nstack . is_empty ( ) ) {
// Finished all nodes on stack.
// Process next node on the worklist 'roots'.
break ;
}
// Get saved parent node and next input's index.
nstack_top_n = nstack . node ( ) ;
nstack_top_i = nstack . index ( ) ;
nstack . pop ( ) ;
} // if (done)
} // while (true)
} // while (roots.size() != 0)
return true ;
}
//------------------------------dom_lca----------------------------------------
// Find least common ancestor in dominator tree
// LCA is a current notion of LCA, to be raised above 'this'.
// As a convenient boundary condition, return 'this' if LCA is NULL.
// Find the LCA of those two nodes.
Block * Block : : dom_lca ( Block * LCA ) {
if ( LCA = = NULL | | LCA = = this ) return this ;
Block * anc = this ;
while ( anc - > _dom_depth > LCA - > _dom_depth )
anc = anc - > _idom ; // Walk up till anc is as high as LCA
while ( LCA - > _dom_depth > anc - > _dom_depth )
LCA = LCA - > _idom ; // Walk up till LCA is as high as anc
while ( LCA ! = anc ) { // Walk both up till they are the same
LCA = LCA - > _idom ;
anc = anc - > _idom ;
}
return LCA ;
}
//--------------------------raise_LCA_above_use--------------------------------
// We are placing a definition, and have been given a def->use edge.
// The definition must dominate the use, so move the LCA upward in the
// dominator tree to dominate the use. If the use is a phi, adjust
// the LCA only with the phi input paths which actually use this def.
static Block * raise_LCA_above_use ( Block * LCA , Node * use , Node * def , Block_Array & bbs ) {
Block * buse = bbs [ use - > _idx ] ;
if ( buse = = NULL ) return LCA ; // Unused killing Projs have no use block
if ( ! use - > is_Phi ( ) ) return buse - > dom_lca ( LCA ) ;
uint pmax = use - > req ( ) ; // Number of Phi inputs
// Why does not this loop just break after finding the matching input to
// the Phi? Well...it's like this. I do not have true def-use/use-def
// chains. Means I cannot distinguish, from the def-use direction, which
// of many use-defs lead from the same use to the same def. That is, this
// Phi might have several uses of the same def. Each use appears in a
// different predecessor block. But when I enter here, I cannot distinguish
// which use-def edge I should find the predecessor block for. So I find
// them all. Means I do a little extra work if a Phi uses the same value
// more than once.
for ( uint j = 1 ; j < pmax ; j + + ) { // For all inputs
if ( use - > in ( j ) = = def ) { // Found matching input?
Block * pred = bbs [ buse - > pred ( j ) - > _idx ] ;
LCA = pred - > dom_lca ( LCA ) ;
}
}
return LCA ;
}
//----------------------------raise_LCA_above_marks----------------------------
// Return a new LCA that dominates LCA and any of its marked predecessors.
// Search all my parents up to 'early' (exclusive), looking for predecessors
// which are marked with the given index. Return the LCA (in the dom tree)
// of all marked blocks. If there are none marked, return the original
// LCA.
static Block * raise_LCA_above_marks ( Block * LCA , node_idx_t mark ,
Block * early , Block_Array & bbs ) {
Block_List worklist ;
worklist . push ( LCA ) ;
while ( worklist . size ( ) > 0 ) {
Block * mid = worklist . pop ( ) ;
if ( mid = = early ) continue ; // stop searching here
// Test and set the visited bit.
if ( mid - > raise_LCA_visited ( ) = = mark ) continue ; // already visited
// Don't process the current LCA, otherwise the search may terminate early
if ( mid ! = LCA & & mid - > raise_LCA_mark ( ) = = mark ) {
// Raise the LCA.
LCA = mid - > dom_lca ( LCA ) ;
if ( LCA = = early ) break ; // stop searching everywhere
assert ( early - > dominates ( LCA ) , " early is high enough " ) ;
// Resume searching at that point, skipping intermediate levels.
worklist . push ( LCA ) ;
2008-06-20 10:17:09 -07:00
if ( LCA = = mid )
continue ; // Don't mark as visited to avoid early termination.
2007-12-01 00:00:00 +00:00
} else {
// Keep searching through this block's predecessors.
for ( uint j = 1 , jmax = mid - > num_preds ( ) ; j < jmax ; j + + ) {
Block * mid_parent = bbs [ mid - > pred ( j ) - > _idx ] ;
worklist . push ( mid_parent ) ;
}
}
2008-06-20 10:17:09 -07:00
mid - > set_raise_LCA_visited ( mark ) ;
2007-12-01 00:00:00 +00:00
}
return LCA ;
}
//--------------------------memory_early_block--------------------------------
// This is a variation of find_deepest_input, the heart of schedule_early.
// Find the "early" block for a load, if we considered only memory and
// address inputs, that is, if other data inputs were ignored.
//
// Because a subset of edges are considered, the resulting block will
// be earlier (at a shallower dom_depth) than the true schedule_early
// point of the node. We compute this earlier block as a more permissive
// site for anti-dependency insertion, but only if subsume_loads is enabled.
static Block * memory_early_block ( Node * load , Block * early , Block_Array & bbs ) {
Node * base ;
Node * index ;
Node * store = load - > in ( MemNode : : Memory ) ;
load - > as_Mach ( ) - > memory_inputs ( base , index ) ;
assert ( base ! = NodeSentinel & & index ! = NodeSentinel ,
" unexpected base/index inputs " ) ;
Node * mem_inputs [ 4 ] ;
int mem_inputs_length = 0 ;
if ( base ! = NULL ) mem_inputs [ mem_inputs_length + + ] = base ;
if ( index ! = NULL ) mem_inputs [ mem_inputs_length + + ] = index ;
if ( store ! = NULL ) mem_inputs [ mem_inputs_length + + ] = store ;
// In the comparision below, add one to account for the control input,
// which may be null, but always takes up a spot in the in array.
if ( mem_inputs_length + 1 < ( int ) load - > req ( ) ) {
// This "load" has more inputs than just the memory, base and index inputs.
// For purposes of checking anti-dependences, we need to start
// from the early block of only the address portion of the instruction,
// and ignore other blocks that may have factored into the wider
// schedule_early calculation.
if ( load - > in ( 0 ) ! = NULL ) mem_inputs [ mem_inputs_length + + ] = load - > in ( 0 ) ;
Block * deepb = NULL ; // Deepest block so far
int deepb_dom_depth = 0 ;
for ( int i = 0 ; i < mem_inputs_length ; i + + ) {
Block * inb = bbs [ mem_inputs [ i ] - > _idx ] ;
if ( deepb_dom_depth < ( int ) inb - > _dom_depth ) {
// The new inb must be dominated by the previous deepb.
// The various inputs must be linearly ordered in the dom
// tree, or else there will not be a unique deepest block.
DEBUG_ONLY ( assert_dom ( deepb , inb , load , bbs ) ) ;
deepb = inb ; // Save deepest block
deepb_dom_depth = deepb - > _dom_depth ;
}
}
early = deepb ;
}
return early ;
}
//--------------------------insert_anti_dependences---------------------------
// A load may need to witness memory that nearby stores can overwrite.
// For each nearby store, either insert an "anti-dependence" edge
// from the load to the store, or else move LCA upward to force the
// load to (eventually) be scheduled in a block above the store.
//
// Do not add edges to stores on distinct control-flow paths;
// only add edges to stores which might interfere.
//
// Return the (updated) LCA. There will not be any possibly interfering
// store between the load's "early block" and the updated LCA.
// Any stores in the updated LCA will have new precedence edges
// back to the load. The caller is expected to schedule the load
// in the LCA, in which case the precedence edges will make LCM
// preserve anti-dependences. The caller may also hoist the load
// above the LCA, if it is not the early block.
Block * PhaseCFG : : insert_anti_dependences ( Block * LCA , Node * load , bool verify ) {
assert ( load - > needs_anti_dependence_check ( ) , " must be a load of some sort " ) ;
assert ( LCA ! = NULL , " " ) ;
DEBUG_ONLY ( Block * LCA_orig = LCA ) ;
// Compute the alias index. Loads and stores with different alias indices
// do not need anti-dependence edges.
uint load_alias_idx = C - > get_alias_index ( load - > adr_type ( ) ) ;
# ifdef ASSERT
if ( load_alias_idx = = Compile : : AliasIdxBot & & C - > AliasLevel ( ) > 0 & &
( PrintOpto | | VerifyAliases | |
PrintMiscellaneous & & ( WizardMode | | Verbose ) ) ) {
// Load nodes should not consume all of memory.
// Reporting a bottom type indicates a bug in adlc.
// If some particular type of node validly consumes all of memory,
// sharpen the preceding "if" to exclude it, so we can catch bugs here.
tty - > print_cr ( " *** Possible Anti-Dependence Bug: Load consumes all of memory. " ) ;
load - > dump ( 2 ) ;
if ( VerifyAliases ) assert ( load_alias_idx ! = Compile : : AliasIdxBot , " " ) ;
}
# endif
assert ( load_alias_idx | | ( load - > is_Mach ( ) & & load - > as_Mach ( ) - > ideal_Opcode ( ) = = Op_StrComp ) ,
" String compare is only known 'load' that does not conflict with any stores " ) ;
2009-03-31 14:07:08 -07:00
assert ( load_alias_idx | | ( load - > is_Mach ( ) & & load - > as_Mach ( ) - > ideal_Opcode ( ) = = Op_StrEquals ) ,
" String equals is a 'load' that does not conflict with any stores " ) ;
assert ( load_alias_idx | | ( load - > is_Mach ( ) & & load - > as_Mach ( ) - > ideal_Opcode ( ) = = Op_StrIndexOf ) ,
" String indexOf is a 'load' that does not conflict with any stores " ) ;
assert ( load_alias_idx | | ( load - > is_Mach ( ) & & load - > as_Mach ( ) - > ideal_Opcode ( ) = = Op_AryEq ) ,
" Arrays equals is a 'load' that do not conflict with any stores " ) ;
2007-12-01 00:00:00 +00:00
if ( ! C - > alias_type ( load_alias_idx ) - > is_rewritable ( ) ) {
// It is impossible to spoil this load by putting stores before it,
// because we know that the stores will never update the value
// which 'load' must witness.
return LCA ;
}
node_idx_t load_index = load - > _idx ;
// Note the earliest legal placement of 'load', as determined by
// by the unique point in the dom tree where all memory effects
// and other inputs are first available. (Computed by schedule_early.)
// For normal loads, 'early' is the shallowest place (dom graph wise)
// to look for anti-deps between this load and any store.
Block * early = _bbs [ load_index ] ;
// If we are subsuming loads, compute an "early" block that only considers
// memory or address inputs. This block may be different than the
// schedule_early block in that it could be at an even shallower depth in the
// dominator tree, and allow for a broader discovery of anti-dependences.
if ( C - > subsume_loads ( ) ) {
early = memory_early_block ( load , early , _bbs ) ;
}
ResourceArea * area = Thread : : current ( ) - > resource_area ( ) ;
Node_List worklist_mem ( area ) ; // prior memory state to store
Node_List worklist_store ( area ) ; // possible-def to explore
2008-02-28 10:45:15 -08:00
Node_List worklist_visited ( area ) ; // visited mergemem nodes
2007-12-01 00:00:00 +00:00
Node_List non_early_stores ( area ) ; // all relevant stores outside of early
bool must_raise_LCA = false ;
# ifdef TRACK_PHI_INPUTS
// %%% This extra checking fails because MergeMem nodes are not GVNed.
// Provide "phi_inputs" to check if every input to a PhiNode is from the
// original memory state. This indicates a PhiNode for which should not
// prevent the load from sinking. For such a block, set_raise_LCA_mark
// may be overly conservative.
// Mechanism: count inputs seen for each Phi encountered in worklist_store.
DEBUG_ONLY ( GrowableArray < uint > phi_inputs ( area , C - > unique ( ) , 0 , 0 ) ) ;
# endif
// 'load' uses some memory state; look for users of the same state.
// Recurse through MergeMem nodes to the stores that use them.
// Each of these stores is a possible definition of memory
// that 'load' needs to use. We need to force 'load'
// to occur before each such store. When the store is in
// the same block as 'load', we insert an anti-dependence
// edge load->store.
// The relevant stores "nearby" the load consist of a tree rooted
// at initial_mem, with internal nodes of type MergeMem.
// Therefore, the branches visited by the worklist are of this form:
// initial_mem -> (MergeMem ->)* store
// The anti-dependence constraints apply only to the fringe of this tree.
Node * initial_mem = load - > in ( MemNode : : Memory ) ;
worklist_store . push ( initial_mem ) ;
2008-02-28 10:45:15 -08:00
worklist_visited . push ( initial_mem ) ;
2007-12-01 00:00:00 +00:00
worklist_mem . push ( NULL ) ;
while ( worklist_store . size ( ) > 0 ) {
// Examine a nearby store to see if it might interfere with our load.
Node * mem = worklist_mem . pop ( ) ;
Node * store = worklist_store . pop ( ) ;
uint op = store - > Opcode ( ) ;
// MergeMems do not directly have anti-deps.
// Treat them as internal nodes in a forward tree of memory states,
// the leaves of which are each a 'possible-def'.
if ( store = = initial_mem // root (exclusive) of tree we are searching
| | op = = Op_MergeMem // internal node of tree we are searching
) {
mem = store ; // It's not a possibly interfering store.
2008-02-28 10:45:15 -08:00
if ( store = = initial_mem )
initial_mem = NULL ; // only process initial memory once
2007-12-01 00:00:00 +00:00
for ( DUIterator_Fast imax , i = mem - > fast_outs ( imax ) ; i < imax ; i + + ) {
store = mem - > fast_out ( i ) ;
if ( store - > is_MergeMem ( ) ) {
// Be sure we don't get into combinatorial problems.
// (Allow phis to be repeated; they can merge two relevant states.)
2008-02-28 10:45:15 -08:00
uint j = worklist_visited . size ( ) ;
for ( ; j > 0 ; j - - ) {
if ( worklist_visited . at ( j - 1 ) = = store ) break ;
2007-12-01 00:00:00 +00:00
}
2008-02-28 10:45:15 -08:00
if ( j > 0 ) continue ; // already on work list; do not repeat
worklist_visited . push ( store ) ;
2007-12-01 00:00:00 +00:00
}
worklist_mem . push ( mem ) ;
worklist_store . push ( store ) ;
}
continue ;
}
if ( op = = Op_MachProj | | op = = Op_Catch ) continue ;
if ( store - > needs_anti_dependence_check ( ) ) continue ; // not really a store
// Compute the alias index. Loads and stores with different alias
// indices do not need anti-dependence edges. Wide MemBar's are
// anti-dependent on everything (except immutable memories).
const TypePtr * adr_type = store - > adr_type ( ) ;
if ( ! C - > can_alias ( adr_type , load_alias_idx ) ) continue ;
// Most slow-path runtime calls do NOT modify Java memory, but
// they can block and so write Raw memory.
if ( store - > is_Mach ( ) ) {
MachNode * mstore = store - > as_Mach ( ) ;
if ( load_alias_idx ! = Compile : : AliasIdxRaw ) {
// Check for call into the runtime using the Java calling
// convention (and from there into a wrapper); it has no
// _method. Can't do this optimization for Native calls because
// they CAN write to Java memory.
if ( mstore - > ideal_Opcode ( ) = = Op_CallStaticJava ) {
assert ( mstore - > is_MachSafePoint ( ) , " " ) ;
MachSafePointNode * ms = ( MachSafePointNode * ) mstore ;
assert ( ms - > is_MachCallJava ( ) , " " ) ;
MachCallJavaNode * mcj = ( MachCallJavaNode * ) ms ;
if ( mcj - > _method = = NULL ) {
// These runtime calls do not write to Java visible memory
// (other than Raw) and so do not require anti-dependence edges.
continue ;
}
}
// Same for SafePoints: they read/write Raw but only read otherwise.
// This is basically a workaround for SafePoints only defining control
// instead of control + memory.
if ( mstore - > ideal_Opcode ( ) = = Op_SafePoint )
continue ;
} else {
// Some raw memory, such as the load of "top" at an allocation,
// can be control dependent on the previous safepoint. See
// comments in GraphKit::allocate_heap() about control input.
// Inserting an anti-dep between such a safepoint and a use
// creates a cycle, and will cause a subsequent failure in
// local scheduling. (BugId 4919904)
// (%%% How can a control input be a safepoint and not a projection??)
if ( mstore - > ideal_Opcode ( ) = = Op_SafePoint & & load - > in ( 0 ) = = mstore )
continue ;
}
}
// Identify a block that the current load must be above,
// or else observe that 'store' is all the way up in the
// earliest legal block for 'load'. In the latter case,
// immediately insert an anti-dependence edge.
Block * store_block = _bbs [ store - > _idx ] ;
assert ( store_block ! = NULL , " unused killing projections skipped above " ) ;
if ( store - > is_Phi ( ) ) {
// 'load' uses memory which is one (or more) of the Phi's inputs.
// It must be scheduled not before the Phi, but rather before
// each of the relevant Phi inputs.
//
// Instead of finding the LCA of all inputs to a Phi that match 'mem',
// we mark each corresponding predecessor block and do a combined
// hoisting operation later (raise_LCA_above_marks).
//
// Do not assert(store_block != early, "Phi merging memory after access")
// PhiNode may be at start of block 'early' with backedge to 'early'
DEBUG_ONLY ( bool found_match = false ) ;
for ( uint j = PhiNode : : Input , jmax = store - > req ( ) ; j < jmax ; j + + ) {
if ( store - > in ( j ) = = mem ) { // Found matching input?
DEBUG_ONLY ( found_match = true ) ;
Block * pred_block = _bbs [ store_block - > pred ( j ) - > _idx ] ;
if ( pred_block ! = early ) {
// If any predecessor of the Phi matches the load's "early block",
// we do not need a precedence edge between the Phi and 'load'
2009-02-27 13:27:09 -08:00
// since the load will be forced into a block preceding the Phi.
2007-12-01 00:00:00 +00:00
pred_block - > set_raise_LCA_mark ( load_index ) ;
assert ( ! LCA_orig - > dominates ( pred_block ) | |
early - > dominates ( pred_block ) , " early is high enough " ) ;
must_raise_LCA = true ;
2009-05-27 12:35:51 -07:00
} else {
// anti-dependent upon PHI pinned below 'early', no edge needed
LCA = early ; // but can not schedule below 'early'
2007-12-01 00:00:00 +00:00
}
}
}
assert ( found_match , " no worklist bug " ) ;
# ifdef TRACK_PHI_INPUTS
# ifdef ASSERT
// This assert asks about correct handling of PhiNodes, which may not
// have all input edges directly from 'mem'. See BugId 4621264
int num_mem_inputs = phi_inputs . at_grow ( store - > _idx , 0 ) + 1 ;
// Increment by exactly one even if there are multiple copies of 'mem'
// coming into the phi, because we will run this block several times
// if there are several copies of 'mem'. (That's how DU iterators work.)
phi_inputs . at_put ( store - > _idx , num_mem_inputs ) ;
assert ( PhiNode : : Input + num_mem_inputs < store - > req ( ) ,
" Expect at least one phi input will not be from original memory state " ) ;
# endif //ASSERT
# endif //TRACK_PHI_INPUTS
} else if ( store_block ! = early ) {
// 'store' is between the current LCA and earliest possible block.
// Label its block, and decide later on how to raise the LCA
// to include the effect on LCA of this store.
// If this store's block gets chosen as the raised LCA, we
// will find him on the non_early_stores list and stick him
// with a precedence edge.
// (But, don't bother if LCA is already raised all the way.)
if ( LCA ! = early ) {
store_block - > set_raise_LCA_mark ( load_index ) ;
must_raise_LCA = true ;
non_early_stores . push ( store ) ;
}
} else {
// Found a possibly-interfering store in the load's 'early' block.
// This means 'load' cannot sink at all in the dominator tree.
// Add an anti-dep edge, and squeeze 'load' into the highest block.
assert ( store ! = load - > in ( 0 ) , " dependence cycle found " ) ;
if ( verify ) {
assert ( store - > find_edge ( load ) ! = - 1 , " missing precedence edge " ) ;
} else {
store - > add_prec ( load ) ;
}
LCA = early ;
// This turns off the process of gathering non_early_stores.
}
}
// (Worklist is now empty; all nearby stores have been visited.)
// Finished if 'load' must be scheduled in its 'early' block.
// If we found any stores there, they have already been given
// precedence edges.
if ( LCA = = early ) return LCA ;
// We get here only if there are no possibly-interfering stores
// in the load's 'early' block. Move LCA up above all predecessors
// which contain stores we have noted.
//
// The raised LCA block can be a home to such interfering stores,
// but its predecessors must not contain any such stores.
//
// The raised LCA will be a lower bound for placing the load,
// preventing the load from sinking past any block containing
// a store that may invalidate the memory state required by 'load'.
if ( must_raise_LCA )
LCA = raise_LCA_above_marks ( LCA , load - > _idx , early , _bbs ) ;
if ( LCA = = early ) return LCA ;
// Insert anti-dependence edges from 'load' to each store
// in the non-early LCA block.
// Mine the non_early_stores list for such stores.
if ( LCA - > raise_LCA_mark ( ) = = load_index ) {
while ( non_early_stores . size ( ) > 0 ) {
Node * store = non_early_stores . pop ( ) ;
Block * store_block = _bbs [ store - > _idx ] ;
if ( store_block = = LCA ) {
// add anti_dependence from store to load in its own block
assert ( store ! = load - > in ( 0 ) , " dependence cycle found " ) ;
if ( verify ) {
assert ( store - > find_edge ( load ) ! = - 1 , " missing precedence edge " ) ;
} else {
store - > add_prec ( load ) ;
}
} else {
assert ( store_block - > raise_LCA_mark ( ) = = load_index , " block was marked " ) ;
// Any other stores we found must be either inside the new LCA
// or else outside the original LCA. In the latter case, they
// did not interfere with any use of 'load'.
assert ( LCA - > dominates ( store_block )
| | ! LCA_orig - > dominates ( store_block ) , " no stray stores " ) ;
}
}
}
// Return the highest block containing stores; any stores
// within that block have been given anti-dependence edges.
return LCA ;
}
// This class is used to iterate backwards over the nodes in the graph.
class Node_Backward_Iterator {
private :
Node_Backward_Iterator ( ) ;
public :
// Constructor for the iterator
Node_Backward_Iterator ( Node * root , VectorSet & visited , Node_List & stack , Block_Array & bbs ) ;
// Postincrement operator to iterate over the nodes
Node * next ( ) ;
private :
VectorSet & _visited ;
Node_List & _stack ;
Block_Array & _bbs ;
} ;
// Constructor for the Node_Backward_Iterator
Node_Backward_Iterator : : Node_Backward_Iterator ( Node * root , VectorSet & visited , Node_List & stack , Block_Array & bbs )
: _visited ( visited ) , _stack ( stack ) , _bbs ( bbs ) {
// The stack should contain exactly the root
stack . clear ( ) ;
stack . push ( root ) ;
// Clear the visited bits
visited . Clear ( ) ;
}
// Iterator for the Node_Backward_Iterator
Node * Node_Backward_Iterator : : next ( ) {
// If the _stack is empty, then just return NULL: finished.
if ( ! _stack . size ( ) )
return NULL ;
// '_stack' is emulating a real _stack. The 'visit-all-users' loop has been
// made stateless, so I do not need to record the index 'i' on my _stack.
// Instead I visit all users each time, scanning for unvisited users.
// I visit unvisited not-anti-dependence users first, then anti-dependent
// children next.
Node * self = _stack . pop ( ) ;
// I cycle here when I am entering a deeper level of recursion.
// The key variable 'self' was set prior to jumping here.
while ( 1 ) {
_visited . set ( self - > _idx ) ;
// Now schedule all uses as late as possible.
uint src = self - > is_Proj ( ) ? self - > in ( 0 ) - > _idx : self - > _idx ;
uint src_rpo = _bbs [ src ] - > _rpo ;
// Schedule all nodes in a post-order visit
Node * unvisited = NULL ; // Unvisited anti-dependent Node, if any
// Scan for unvisited nodes
for ( DUIterator_Fast imax , i = self - > fast_outs ( imax ) ; i < imax ; i + + ) {
// For all uses, schedule late
Node * n = self - > fast_out ( i ) ; // Use
// Skip already visited children
if ( _visited . test ( n - > _idx ) )
continue ;
// do not traverse backward control edges
Node * use = n - > is_Proj ( ) ? n - > in ( 0 ) : n ;
uint use_rpo = _bbs [ use - > _idx ] - > _rpo ;
if ( use_rpo < src_rpo )
continue ;
// Phi nodes always precede uses in a basic block
if ( use_rpo = = src_rpo & & use - > is_Phi ( ) )
continue ;
unvisited = n ; // Found unvisited
// Check for possible-anti-dependent
if ( ! n - > needs_anti_dependence_check ( ) )
break ; // Not visited, not anti-dep; schedule it NOW
}
// Did I find an unvisited not-anti-dependent Node?
if ( ! unvisited )
break ; // All done with children; post-visit 'self'
// Visit the unvisited Node. Contains the obvious push to
// indicate I'm entering a deeper level of recursion. I push the
// old state onto the _stack and set a new state and loop (recurse).
_stack . push ( self ) ;
self = unvisited ;
} // End recursion loop
return self ;
}
//------------------------------ComputeLatenciesBackwards----------------------
// Compute the latency of all the instructions.
void PhaseCFG : : ComputeLatenciesBackwards ( VectorSet & visited , Node_List & stack ) {
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) )
tty - > print ( " \n #---- ComputeLatenciesBackwards ---- \n " ) ;
# endif
Node_Backward_Iterator iter ( ( Node * ) _root , visited , stack , _bbs ) ;
Node * n ;
// Walk over all the nodes from last to first
while ( n = iter . next ( ) ) {
// Set the latency for the definitions of this instruction
partial_latency_of_defs ( n ) ;
}
} // end ComputeLatenciesBackwards
//------------------------------partial_latency_of_defs------------------------
// Compute the latency impact of this node on all defs. This computes
// a number that increases as we approach the beginning of the routine.
void PhaseCFG : : partial_latency_of_defs ( Node * n ) {
// Set the latency for this instruction
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " # latency_to_inputs: node_latency[%d] = %d for node " ,
2010-08-03 15:55:03 -07:00
n - > _idx , _node_latency - > at_grow ( n - > _idx ) ) ;
2007-12-01 00:00:00 +00:00
dump ( ) ;
}
# endif
if ( n - > is_Proj ( ) )
n = n - > in ( 0 ) ;
if ( n - > is_Root ( ) )
return ;
uint nlen = n - > len ( ) ;
2010-08-03 15:55:03 -07:00
uint use_latency = _node_latency - > at_grow ( n - > _idx ) ;
2007-12-01 00:00:00 +00:00
uint use_pre_order = _bbs [ n - > _idx ] - > _pre_order ;
for ( uint j = 0 ; j < nlen ; j + + ) {
Node * def = n - > in ( j ) ;
if ( ! def | | def = = n )
continue ;
// Walk backwards thru projections
if ( def - > is_Proj ( ) )
def = def - > in ( 0 ) ;
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " # in(%2d): " , j ) ;
def - > dump ( ) ;
}
# endif
// If the defining block is not known, assume it is ok
Block * def_block = _bbs [ def - > _idx ] ;
uint def_pre_order = def_block ? def_block - > _pre_order : 0 ;
if ( ( use_pre_order < def_pre_order ) | |
( use_pre_order = = def_pre_order & & n - > is_Phi ( ) ) )
continue ;
uint delta_latency = n - > latency ( j ) ;
uint current_latency = delta_latency + use_latency ;
2010-08-03 15:55:03 -07:00
if ( _node_latency - > at_grow ( def - > _idx ) < current_latency ) {
_node_latency - > at_put_grow ( def - > _idx , current_latency ) ;
2007-12-01 00:00:00 +00:00
}
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print_cr ( " # %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d " ,
use_latency , j , delta_latency , current_latency , def - > _idx ,
2010-08-03 15:55:03 -07:00
_node_latency - > at_grow ( def - > _idx ) ) ;
2007-12-01 00:00:00 +00:00
}
# endif
}
}
//------------------------------latency_from_use-------------------------------
// Compute the latency of a specific use
int PhaseCFG : : latency_from_use ( Node * n , const Node * def , Node * use ) {
// If self-reference, return no latency
if ( use = = n | | use - > is_Root ( ) )
return 0 ;
uint def_pre_order = _bbs [ def - > _idx ] - > _pre_order ;
uint latency = 0 ;
// If the use is not a projection, then it is simple...
if ( ! use - > is_Proj ( ) ) {
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " # out(): " ) ;
use - > dump ( ) ;
}
# endif
uint use_pre_order = _bbs [ use - > _idx ] - > _pre_order ;
if ( use_pre_order < def_pre_order )
return 0 ;
if ( use_pre_order = = def_pre_order & & use - > is_Phi ( ) )
return 0 ;
uint nlen = use - > len ( ) ;
2010-08-03 15:55:03 -07:00
uint nl = _node_latency - > at_grow ( use - > _idx ) ;
2007-12-01 00:00:00 +00:00
for ( uint j = 0 ; j < nlen ; j + + ) {
if ( use - > in ( j ) = = n ) {
// Change this if we want local latencies
uint ul = use - > latency ( j ) ;
uint l = ul + nl ;
if ( latency < l ) latency = l ;
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print_cr ( " # %d + edge_latency(%d) == %d -> %d, latency = %d " ,
nl , j , ul , l , latency ) ;
}
# endif
}
}
} else {
// This is a projection, just grab the latency of the use(s)
for ( DUIterator_Fast jmax , j = use - > fast_outs ( jmax ) ; j < jmax ; j + + ) {
uint l = latency_from_use ( use , def , use - > fast_out ( j ) ) ;
if ( latency < l ) latency = l ;
}
}
return latency ;
}
//------------------------------latency_from_uses------------------------------
// Compute the latency of this instruction relative to all of it's uses.
// This computes a number that increases as we approach the beginning of the
// routine.
void PhaseCFG : : latency_from_uses ( Node * n ) {
// Set the latency for this instruction
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " # latency_from_outputs: node_latency[%d] = %d for node " ,
2010-08-03 15:55:03 -07:00
n - > _idx , _node_latency - > at_grow ( n - > _idx ) ) ;
2007-12-01 00:00:00 +00:00
dump ( ) ;
}
# endif
uint latency = 0 ;
const Node * def = n - > is_Proj ( ) ? n - > in ( 0 ) : n ;
for ( DUIterator_Fast imax , i = n - > fast_outs ( imax ) ; i < imax ; i + + ) {
uint l = latency_from_use ( n , def , n - > fast_out ( i ) ) ;
if ( latency < l ) latency = l ;
}
2010-08-03 15:55:03 -07:00
_node_latency - > at_put_grow ( n - > _idx , latency ) ;
2007-12-01 00:00:00 +00:00
}
//------------------------------hoist_to_cheaper_block-------------------------
// Pick a block for node self, between early and LCA, that is a cheaper
// alternative to LCA.
Block * PhaseCFG : : hoist_to_cheaper_block ( Block * LCA , Block * early , Node * self ) {
const double delta = 1 + PROB_UNLIKELY_MAG ( 4 ) ;
Block * least = LCA ;
double least_freq = least - > _freq ;
2010-08-03 15:55:03 -07:00
uint target = _node_latency - > at_grow ( self - > _idx ) ;
uint start_latency = _node_latency - > at_grow ( LCA - > _nodes [ 0 ] - > _idx ) ;
uint end_latency = _node_latency - > at_grow ( LCA - > _nodes [ LCA - > end_idx ( ) ] - > _idx ) ;
2007-12-01 00:00:00 +00:00
bool in_latency = ( target < = start_latency ) ;
const Block * root_block = _bbs [ _root - > _idx ] ;
// Turn off latency scheduling if scheduling is just plain off
if ( ! C - > do_scheduling ( ) )
in_latency = true ;
// Do not hoist (to cover latency) instructions which target a
// single register. Hoisting stretches the live range of the
// single register and may force spilling.
MachNode * mach = self - > is_Mach ( ) ? self - > as_Mach ( ) : NULL ;
if ( mach & & mach - > out_RegMask ( ) . is_bound1 ( ) & & mach - > out_RegMask ( ) . is_NotEmpty ( ) )
in_latency = true ;
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " # Find cheaper block for latency %d: " ,
2010-08-03 15:55:03 -07:00
_node_latency - > at_grow ( self - > _idx ) ) ;
2007-12-01 00:00:00 +00:00
self - > dump ( ) ;
tty - > print_cr ( " # B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g " ,
LCA - > _pre_order ,
LCA - > _nodes [ 0 ] - > _idx ,
start_latency ,
LCA - > _nodes [ LCA - > end_idx ( ) ] - > _idx ,
end_latency ,
least_freq ) ;
}
# endif
// Walk up the dominator tree from LCA (Lowest common ancestor) to
// the earliest legal location. Capture the least execution frequency.
while ( LCA ! = early ) {
LCA = LCA - > _idom ; // Follow up the dominator tree
if ( LCA = = NULL ) {
// Bailout without retry
C - > record_method_not_compilable ( " late schedule failed: LCA == NULL " ) ;
return least ;
}
// Don't hoist machine instructions to the root basic block
if ( mach & & LCA = = root_block )
break ;
2010-08-03 15:55:03 -07:00
uint start_lat = _node_latency - > at_grow ( LCA - > _nodes [ 0 ] - > _idx ) ;
2007-12-01 00:00:00 +00:00
uint end_idx = LCA - > end_idx ( ) ;
2010-08-03 15:55:03 -07:00
uint end_lat = _node_latency - > at_grow ( LCA - > _nodes [ end_idx ] - > _idx ) ;
2007-12-01 00:00:00 +00:00
double LCA_freq = LCA - > _freq ;
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print_cr ( " # B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g " ,
LCA - > _pre_order , LCA - > _nodes [ 0 ] - > _idx , start_lat , end_idx , end_lat , LCA_freq ) ;
}
# endif
if ( LCA_freq < least_freq | | // Better Frequency
( ! in_latency & & // No block containing latency
LCA_freq < least_freq * delta & & // No worse frequency
target > = end_lat & & // within latency range
! self - > is_iteratively_computed ( ) ) // But don't hoist IV increments
// because they may end up above other uses of their phi forcing
// their result register to be different from their input.
) {
least = LCA ; // Found cheaper block
least_freq = LCA_freq ;
start_latency = start_lat ;
end_latency = end_lat ;
if ( target < = start_lat )
in_latency = true ;
}
}
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print_cr ( " # Choose block B%d with start latency=%d and freq=%g " ,
least - > _pre_order , start_latency , least_freq ) ;
}
# endif
// See if the latency needs to be updated
if ( target < end_latency ) {
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print_cr ( " # Change latency for [%4d] from %d to %d " , self - > _idx , target , end_latency ) ;
}
# endif
2010-08-03 15:55:03 -07:00
_node_latency - > at_put_grow ( self - > _idx , end_latency ) ;
2007-12-01 00:00:00 +00:00
partial_latency_of_defs ( self ) ;
}
return least ;
}
//------------------------------schedule_late-----------------------------------
// Now schedule all codes as LATE as possible. This is the LCA in the
// dominator tree of all USES of a value. Pick the block with the least
// loop nesting depth that is lowest in the dominator tree.
extern const char must_clone [ ] ;
void PhaseCFG : : schedule_late ( VectorSet & visited , Node_List & stack ) {
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) )
tty - > print ( " \n #---- schedule_late ---- \n " ) ;
# endif
Node_Backward_Iterator iter ( ( Node * ) _root , visited , stack , _bbs ) ;
Node * self ;
// Walk over all the nodes from last to first
while ( self = iter . next ( ) ) {
Block * early = _bbs [ self - > _idx ] ; // Earliest legal placement
if ( self - > is_top ( ) ) {
// Top node goes in bb #2 with other constants.
// It must be special-cased, because it has no out edges.
early - > add_inst ( self ) ;
continue ;
}
// No uses, just terminate
if ( self - > outcnt ( ) = = 0 ) {
assert ( self - > Opcode ( ) = = Op_MachProj , " sanity " ) ;
continue ; // Must be a dead machine projection
}
// If node is pinned in the block, then no scheduling can be done.
if ( self - > pinned ( ) ) // Pinned in block?
continue ;
MachNode * mach = self - > is_Mach ( ) ? self - > as_Mach ( ) : NULL ;
if ( mach ) {
switch ( mach - > ideal_Opcode ( ) ) {
case Op_CreateEx :
// Don't move exception creation
early - > add_inst ( self ) ;
continue ;
break ;
case Op_CheckCastPP :
// Don't move CheckCastPP nodes away from their input, if the input
// is a rawptr (5071820).
Node * def = self - > in ( 1 ) ;
if ( def ! = NULL & & def - > bottom_type ( ) - > base ( ) = = Type : : RawPtr ) {
early - > add_inst ( self ) ;
2009-07-01 20:22:18 -07:00
# ifdef ASSERT
_raw_oops . push ( def ) ;
# endif
2007-12-01 00:00:00 +00:00
continue ;
}
break ;
}
}
// Gather LCA of all uses
Block * LCA = NULL ;
{
for ( DUIterator_Fast imax , i = self - > fast_outs ( imax ) ; i < imax ; i + + ) {
// For all uses, find LCA
Node * use = self - > fast_out ( i ) ;
LCA = raise_LCA_above_use ( LCA , use , self , _bbs ) ;
}
} // (Hide defs of imax, i from rest of block.)
// Place temps in the block of their use. This isn't a
// requirement for correctness but it reduces useless
// interference between temps and other nodes.
if ( mach ! = NULL & & mach - > is_MachTemp ( ) ) {
_bbs . map ( self - > _idx , LCA ) ;
LCA - > add_inst ( self ) ;
continue ;
}
// Check if 'self' could be anti-dependent on memory
if ( self - > needs_anti_dependence_check ( ) ) {
// Hoist LCA above possible-defs and insert anti-dependences to
// defs in new LCA block.
LCA = insert_anti_dependences ( LCA , self ) ;
}
if ( early - > _dom_depth > LCA - > _dom_depth ) {
// Somehow the LCA has moved above the earliest legal point.
// (One way this can happen is via memory_early_block.)
if ( C - > subsume_loads ( ) = = true & & ! C - > failing ( ) ) {
// Retry with subsume_loads == false
// If this is the first failure, the sentinel string will "stick"
// to the Compile object, and the C2Compiler will see it and retry.
C - > record_failure ( C2Compiler : : retry_no_subsuming_loads ( ) ) ;
} else {
// Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
C - > record_method_not_compilable ( " late schedule failed: incorrect graph " ) ;
}
return ;
}
// If there is no opportunity to hoist, then we're done.
bool try_to_hoist = ( LCA ! = early ) ;
// Must clone guys stay next to use; no hoisting allowed.
// Also cannot hoist guys that alter memory or are otherwise not
// allocatable (hoisting can make a value live longer, leading to
// anti and output dependency problems which are normally resolved
// by the register allocator giving everyone a different register).
if ( mach ! = NULL & & must_clone [ mach - > ideal_Opcode ( ) ] )
try_to_hoist = false ;
Block * late = NULL ;
if ( try_to_hoist ) {
// Now find the block with the least execution frequency.
// Start at the latest schedule and work up to the earliest schedule
// in the dominator tree. Thus the Node will dominate all its uses.
late = hoist_to_cheaper_block ( LCA , early , self ) ;
} else {
// Just use the LCA of the uses.
late = LCA ;
}
// Put the node into target block
schedule_node_into_block ( self , late ) ;
# ifdef ASSERT
if ( self - > needs_anti_dependence_check ( ) ) {
// since precedence edges are only inserted when we're sure they
// are needed make sure that after placement in a block we don't
// need any new precedence edges.
verify_anti_dependences ( late , self ) ;
}
# endif
} // Loop until all nodes have been visited
} // end ScheduleLate
//------------------------------GlobalCodeMotion-------------------------------
void PhaseCFG : : GlobalCodeMotion ( Matcher & matcher , uint unique , Node_List & proj_list ) {
ResourceMark rm ;
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " \n ---- Start GlobalCodeMotion ---- \n " ) ;
}
# endif
// Initialize the bbs.map for things on the proj_list
uint i ;
for ( i = 0 ; i < proj_list . size ( ) ; i + + )
_bbs . map ( proj_list [ i ] - > _idx , NULL ) ;
// Set the basic block for Nodes pinned into blocks
Arena * a = Thread : : current ( ) - > resource_area ( ) ;
VectorSet visited ( a ) ;
schedule_pinned_nodes ( visited ) ;
// Find the earliest Block any instruction can be placed in. Some
// instructions are pinned into Blocks. Unpinned instructions can
// appear in last block in which all their inputs occur.
visited . Clear ( ) ;
Node_List stack ( a ) ;
stack . map ( ( unique > > 1 ) + 16 , NULL ) ; // Pre-grow the list
if ( ! schedule_early ( visited , stack ) ) {
// Bailout without retry
C - > record_method_not_compilable ( " early schedule failed " ) ;
return ;
}
// Build Def-Use edges.
proj_list . push ( _root ) ; // Add real root as another root
proj_list . pop ( ) ;
// Compute the latency information (via backwards walk) for all the
// instructions in the graph
2010-08-03 15:55:03 -07:00
_node_latency = new GrowableArray < uint > ( ) ; // resource_area allocation
2007-12-01 00:00:00 +00:00
if ( C - > do_scheduling ( ) )
ComputeLatenciesBackwards ( visited , stack ) ;
// Now schedule all codes as LATE as possible. This is the LCA in the
// dominator tree of all USES of a value. Pick the block with the least
// loop nesting depth that is lowest in the dominator tree.
// ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
schedule_late ( visited , stack ) ;
if ( C - > failing ( ) ) {
// schedule_late fails only when graph is incorrect.
assert ( ! VerifyGraphEdges , " verification should have failed " ) ;
return ;
}
unique = C - > unique ( ) ;
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " \n ---- Detect implicit null checks ---- \n " ) ;
}
# endif
// Detect implicit-null-check opportunities. Basically, find NULL checks
// with suitable memory ops nearby. Use the memory op to do the NULL check.
// I can generate a memory op if there is not one nearby.
if ( C - > is_method_compilation ( ) ) {
// Don't do it for natives, adapters, or runtime stubs
int allowed_reasons = 0 ;
// ...and don't do it when there have been too many traps, globally.
for ( int reason = ( int ) Deoptimization : : Reason_none + 1 ;
reason < Compile : : trapHistLength ; reason + + ) {
assert ( reason < BitsPerInt , " recode bit map " ) ;
if ( ! C - > too_many_traps ( ( Deoptimization : : DeoptReason ) reason ) )
allowed_reasons | = nth_bit ( reason ) ;
}
// By reversing the loop direction we get a very minor gain on mpegaudio.
// Feel free to revert to a forward loop for clarity.
// for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
for ( int i = matcher . _null_check_tests . size ( ) - 2 ; i > = 0 ; i - = 2 ) {
Node * proj = matcher . _null_check_tests [ i ] ;
Node * val = matcher . _null_check_tests [ i + 1 ] ;
_bbs [ proj - > _idx ] - > implicit_null_check ( this , proj , val , allowed_reasons ) ;
// The implicit_null_check will only perform the transformation
// if the null branch is truly uncommon, *and* it leads to an
// uncommon trap. Combined with the too_many_traps guards
// above, this prevents SEGV storms reported in 6366351,
// by recompiling offending methods without this optimization.
}
}
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " \n ---- Start Local Scheduling ---- \n " ) ;
}
# endif
// Schedule locally. Right now a simple topological sort.
// Later, do a real latency aware scheduler.
int * ready_cnt = NEW_RESOURCE_ARRAY ( int , C - > unique ( ) ) ;
memset ( ready_cnt , - 1 , C - > unique ( ) * sizeof ( int ) ) ;
visited . Clear ( ) ;
for ( i = 0 ; i < _num_blocks ; i + + ) {
if ( ! _blocks [ i ] - > schedule_local ( this , matcher , ready_cnt , visited ) ) {
if ( ! C - > failure_reason_is ( C2Compiler : : retry_no_subsuming_loads ( ) ) ) {
C - > record_method_not_compilable ( " local schedule failed " ) ;
}
return ;
}
}
// If we inserted any instructions between a Call and his CatchNode,
// clone the instructions on all paths below the Catch.
for ( i = 0 ; i < _num_blocks ; i + + )
_blocks [ i ] - > call_catch_cleanup ( _bbs ) ;
# ifndef PRODUCT
if ( trace_opto_pipelining ( ) ) {
tty - > print ( " \n ---- After GlobalCodeMotion ---- \n " ) ;
for ( uint i = 0 ; i < _num_blocks ; i + + ) {
_blocks [ i ] - > dump ( ) ;
}
}
# endif
2010-08-03 15:55:03 -07:00
// Dead.
_node_latency = ( GrowableArray < uint > * ) 0xdeadbeef ;
2007-12-01 00:00:00 +00:00
}
//------------------------------Estimate_Block_Frequency-----------------------
// Estimate block frequencies based on IfNode probabilities.
void PhaseCFG : : Estimate_Block_Frequency ( ) {
2008-11-06 14:59:10 -08:00
// Force conditional branches leading to uncommon traps to be unlikely,
// not because we get to the uncommon_trap with less relative frequency,
// but because an uncommon_trap typically causes a deopt, so we only get
// there once.
if ( C - > do_freq_based_layout ( ) ) {
Block_List worklist ;
Block * root_blk = _blocks [ 0 ] ;
for ( uint i = 1 ; i < root_blk - > num_preds ( ) ; i + + ) {
Block * pb = _bbs [ root_blk - > pred ( i ) - > _idx ] ;
if ( pb - > has_uncommon_code ( ) ) {
worklist . push ( pb ) ;
}
}
while ( worklist . size ( ) > 0 ) {
Block * uct = worklist . pop ( ) ;
if ( uct = = _broot ) continue ;
for ( uint i = 1 ; i < uct - > num_preds ( ) ; i + + ) {
Block * pb = _bbs [ uct - > pred ( i ) - > _idx ] ;
if ( pb - > _num_succs = = 1 ) {
worklist . push ( pb ) ;
} else if ( pb - > num_fall_throughs ( ) = = 2 ) {
pb - > update_uncommon_branch ( uct ) ;
}
}
}
}
2007-12-01 00:00:00 +00:00
// Create the loop tree and calculate loop depth.
_root_loop = create_loop_tree ( ) ;
_root_loop - > compute_loop_depth ( 0 ) ;
// Compute block frequency of each block, relative to a single loop entry.
_root_loop - > compute_freq ( ) ;
// Adjust all frequencies to be relative to a single method entry
2008-11-06 14:59:10 -08:00
_root_loop - > _freq = 1.0 ;
2007-12-01 00:00:00 +00:00
_root_loop - > scale_freq ( ) ;
2009-03-26 15:04:55 -07:00
// Save outmost loop frequency for LRG frequency threshold
_outer_loop_freq = _root_loop - > outer_loop_freq ( ) ;
2007-12-01 00:00:00 +00:00
// force paths ending at uncommon traps to be infrequent
2008-11-06 14:59:10 -08:00
if ( ! C - > do_freq_based_layout ( ) ) {
Block_List worklist ;
Block * root_blk = _blocks [ 0 ] ;
for ( uint i = 1 ; i < root_blk - > num_preds ( ) ; i + + ) {
Block * pb = _bbs [ root_blk - > pred ( i ) - > _idx ] ;
if ( pb - > has_uncommon_code ( ) ) {
2007-12-01 00:00:00 +00:00
worklist . push ( pb ) ;
}
}
2008-11-06 14:59:10 -08:00
while ( worklist . size ( ) > 0 ) {
Block * uct = worklist . pop ( ) ;
uct - > _freq = PROB_MIN ;
for ( uint i = 1 ; i < uct - > num_preds ( ) ; i + + ) {
Block * pb = _bbs [ uct - > pred ( i ) - > _idx ] ;
if ( pb - > _num_succs = = 1 & & pb - > _freq > PROB_MIN ) {
worklist . push ( pb ) ;
}
}
}
2007-12-01 00:00:00 +00:00
}
2009-01-13 11:10:00 -08:00
# ifdef ASSERT
for ( uint i = 0 ; i < _num_blocks ; i + + ) {
Block * b = _blocks [ i ] ;
2009-02-27 13:27:09 -08:00
assert ( b - > _freq > = MIN_BLOCK_FREQUENCY , " Register Allocator requires meaningful block frequency " ) ;
2009-01-13 11:10:00 -08:00
}
# endif
2007-12-01 00:00:00 +00:00
# ifndef PRODUCT
if ( PrintCFGBlockFreq ) {
tty - > print_cr ( " CFG Block Frequencies " ) ;
_root_loop - > dump_tree ( ) ;
if ( Verbose ) {
tty - > print_cr ( " PhaseCFG dump " ) ;
dump ( ) ;
tty - > print_cr ( " Node dump " ) ;
_root - > dump ( 99999 ) ;
}
}
# endif
}
//----------------------------create_loop_tree--------------------------------
// Create a loop tree from the CFG
CFGLoop * PhaseCFG : : create_loop_tree ( ) {
# ifdef ASSERT
assert ( _blocks [ 0 ] = = _broot , " " ) ;
for ( uint i = 0 ; i < _num_blocks ; i + + ) {
Block * b = _blocks [ i ] ;
// Check that _loop field are clear...we could clear them if not.
assert ( b - > _loop = = NULL , " clear _loop expected " ) ;
// Sanity check that the RPO numbering is reflected in the _blocks array.
// It doesn't have to be for the loop tree to be built, but if it is not,
// then the blocks have been reordered since dom graph building...which
// may question the RPO numbering
assert ( b - > _rpo = = i , " unexpected reverse post order number " ) ;
}
# endif
int idct = 0 ;
CFGLoop * root_loop = new CFGLoop ( idct + + ) ;
Block_List worklist ;
// Assign blocks to loops
for ( uint i = _num_blocks - 1 ; i > 0 ; i - - ) { // skip Root block
Block * b = _blocks [ i ] ;
if ( b - > head ( ) - > is_Loop ( ) ) {
Block * loop_head = b ;
assert ( loop_head - > num_preds ( ) - 1 = = 2 , " loop must have 2 predecessors " ) ;
Node * tail_n = loop_head - > pred ( LoopNode : : LoopBackControl ) ;
Block * tail = _bbs [ tail_n - > _idx ] ;
// Defensively filter out Loop nodes for non-single-entry loops.
// For all reasonable loops, the head occurs before the tail in RPO.
if ( i < = tail - > _rpo ) {
// The tail and (recursive) predecessors of the tail
// are made members of a new loop.
assert ( worklist . size ( ) = = 0 , " nonempty worklist " ) ;
CFGLoop * nloop = new CFGLoop ( idct + + ) ;
assert ( loop_head - > _loop = = NULL , " just checking " ) ;
loop_head - > _loop = nloop ;
// Add to nloop so push_pred() will skip over inner loops
nloop - > add_member ( loop_head ) ;
nloop - > push_pred ( loop_head , LoopNode : : LoopBackControl , worklist , _bbs ) ;
while ( worklist . size ( ) > 0 ) {
Block * member = worklist . pop ( ) ;
if ( member ! = loop_head ) {
for ( uint j = 1 ; j < member - > num_preds ( ) ; j + + ) {
nloop - > push_pred ( member , j , worklist , _bbs ) ;
}
}
}
}
}
}
// Create a member list for each loop consisting
// of both blocks and (immediate child) loops.
for ( uint i = 0 ; i < _num_blocks ; i + + ) {
Block * b = _blocks [ i ] ;
CFGLoop * lp = b - > _loop ;
if ( lp = = NULL ) {
// Not assigned to a loop. Add it to the method's pseudo loop.
b - > _loop = root_loop ;
lp = root_loop ;
}
if ( lp = = root_loop | | b ! = lp - > head ( ) ) { // loop heads are already members
lp - > add_member ( b ) ;
}
if ( lp ! = root_loop ) {
if ( lp - > parent ( ) = = NULL ) {
// Not a nested loop. Make it a child of the method's pseudo loop.
root_loop - > add_nested_loop ( lp ) ;
}
if ( b = = lp - > head ( ) ) {
// Add nested loop to member list of parent loop.
lp - > parent ( ) - > add_member ( lp ) ;
}
}
}
return root_loop ;
}
//------------------------------push_pred--------------------------------------
void CFGLoop : : push_pred ( Block * blk , int i , Block_List & worklist , Block_Array & node_to_blk ) {
Node * pred_n = blk - > pred ( i ) ;
Block * pred = node_to_blk [ pred_n - > _idx ] ;
CFGLoop * pred_loop = pred - > _loop ;
if ( pred_loop = = NULL ) {
// Filter out blocks for non-single-entry loops.
// For all reasonable loops, the head occurs before the tail in RPO.
if ( pred - > _rpo > head ( ) - > _rpo ) {
pred - > _loop = this ;
worklist . push ( pred ) ;
}
} else if ( pred_loop ! = this ) {
// Nested loop.
while ( pred_loop - > _parent ! = NULL & & pred_loop - > _parent ! = this ) {
pred_loop = pred_loop - > _parent ;
}
// Make pred's loop be a child
if ( pred_loop - > _parent = = NULL ) {
add_nested_loop ( pred_loop ) ;
// Continue with loop entry predecessor.
Block * pred_head = pred_loop - > head ( ) ;
assert ( pred_head - > num_preds ( ) - 1 = = 2 , " loop must have 2 predecessors " ) ;
assert ( pred_head ! = head ( ) , " loop head in only one loop " ) ;
push_pred ( pred_head , LoopNode : : EntryControl , worklist , node_to_blk ) ;
} else {
assert ( pred_loop - > _parent = = this & & _parent = = NULL , " just checking " ) ;
}
}
}
//------------------------------add_nested_loop--------------------------------
// Make cl a child of the current loop in the loop tree.
void CFGLoop : : add_nested_loop ( CFGLoop * cl ) {
assert ( _parent = = NULL , " no parent yet " ) ;
assert ( cl ! = this , " not my own parent " ) ;
cl - > _parent = this ;
CFGLoop * ch = _child ;
if ( ch = = NULL ) {
_child = cl ;
} else {
while ( ch - > _sibling ! = NULL ) { ch = ch - > _sibling ; }
ch - > _sibling = cl ;
}
}
//------------------------------compute_loop_depth-----------------------------
// Store the loop depth in each CFGLoop object.
// Recursively walk the children to do the same for them.
void CFGLoop : : compute_loop_depth ( int depth ) {
_depth = depth ;
CFGLoop * ch = _child ;
while ( ch ! = NULL ) {
ch - > compute_loop_depth ( depth + 1 ) ;
ch = ch - > _sibling ;
}
}
//------------------------------compute_freq-----------------------------------
// Compute the frequency of each block and loop, relative to a single entry
// into the dominating loop head.
void CFGLoop : : compute_freq ( ) {
// Bottom up traversal of loop tree (visit inner loops first.)
// Set loop head frequency to 1.0, then transitively
// compute frequency for all successors in the loop,
// as well as for each exit edge. Inner loops are
// treated as single blocks with loop exit targets
// as the successor blocks.
// Nested loops first
CFGLoop * ch = _child ;
while ( ch ! = NULL ) {
ch - > compute_freq ( ) ;
ch = ch - > _sibling ;
}
assert ( _members . length ( ) > 0 , " no empty loops " ) ;
Block * hd = head ( ) ;
hd - > _freq = 1.0f ;
for ( int i = 0 ; i < _members . length ( ) ; i + + ) {
CFGElement * s = _members . at ( i ) ;
float freq = s - > _freq ;
if ( s - > is_block ( ) ) {
Block * b = s - > as_Block ( ) ;
for ( uint j = 0 ; j < b - > _num_succs ; j + + ) {
Block * sb = b - > _succs [ j ] ;
update_succ_freq ( sb , freq * b - > succ_prob ( j ) ) ;
}
} else {
CFGLoop * lp = s - > as_CFGLoop ( ) ;
assert ( lp - > _parent = = this , " immediate child " ) ;
for ( int k = 0 ; k < lp - > _exits . length ( ) ; k + + ) {
Block * eb = lp - > _exits . at ( k ) . get_target ( ) ;
float prob = lp - > _exits . at ( k ) . get_prob ( ) ;
update_succ_freq ( eb , freq * prob ) ;
}
}
}
// For all loops other than the outer, "method" loop,
// sum and normalize the exit probability. The "method" loop
// should keep the initial exit probability of 1, so that
// inner blocks do not get erroneously scaled.
if ( _depth ! = 0 ) {
// Total the exit probabilities for this loop.
float exits_sum = 0.0f ;
for ( int i = 0 ; i < _exits . length ( ) ; i + + ) {
exits_sum + = _exits . at ( i ) . get_prob ( ) ;
}
// Normalize the exit probabilities. Until now, the
// probabilities estimate the possibility of exit per
// a single loop iteration; afterward, they estimate
// the probability of exit per loop entry.
for ( int i = 0 ; i < _exits . length ( ) ; i + + ) {
Block * et = _exits . at ( i ) . get_target ( ) ;
2008-11-06 14:59:10 -08:00
float new_prob = 0.0f ;
if ( _exits . at ( i ) . get_prob ( ) > 0.0f ) {
new_prob = _exits . at ( i ) . get_prob ( ) / exits_sum ;
}
2007-12-01 00:00:00 +00:00
BlockProbPair bpp ( et , new_prob ) ;
_exits . at_put ( i , bpp ) ;
}
2008-11-06 14:59:10 -08:00
// Save the total, but guard against unreasonable probability,
2007-12-01 00:00:00 +00:00
// as the value is used to estimate the loop trip count.
// An infinite trip count would blur relative block
// frequencies.
if ( exits_sum > 1.0f ) exits_sum = 1.0 ;
if ( exits_sum < PROB_MIN ) exits_sum = PROB_MIN ;
_exit_prob = exits_sum ;
}
}
//------------------------------succ_prob-------------------------------------
// Determine the probability of reaching successor 'i' from the receiver block.
float Block : : succ_prob ( uint i ) {
int eidx = end_idx ( ) ;
Node * n = _nodes [ eidx ] ; // Get ending Node
2008-08-28 10:22:12 -07:00
int op = n - > Opcode ( ) ;
if ( n - > is_Mach ( ) ) {
if ( n - > is_MachNullCheck ( ) ) {
// Can only reach here if called after lcm. The original Op_If is gone,
// so we attempt to infer the probability from one or both of the
// successor blocks.
assert ( _num_succs = = 2 , " expecting 2 successors of a null check " ) ;
// If either successor has only one predecessor, then the
2009-02-27 13:27:09 -08:00
// probability estimate can be derived using the
2008-08-28 10:22:12 -07:00
// relative frequency of the successor and this block.
if ( _succs [ i ] - > num_preds ( ) = = 2 ) {
return _succs [ i ] - > _freq / _freq ;
} else if ( _succs [ 1 - i ] - > num_preds ( ) = = 2 ) {
return 1 - ( _succs [ 1 - i ] - > _freq / _freq ) ;
} else {
// Estimate using both successor frequencies
float freq = _succs [ i ] - > _freq ;
return freq / ( freq + _succs [ 1 - i ] - > _freq ) ;
}
}
op = n - > as_Mach ( ) - > ideal_Opcode ( ) ;
}
2007-12-01 00:00:00 +00:00
// Switch on branch type
switch ( op ) {
case Op_CountedLoopEnd :
case Op_If : {
assert ( i < 2 , " just checking " ) ;
// Conditionals pass on only part of their frequency
float prob = n - > as_MachIf ( ) - > _prob ;
assert ( prob > = 0.0 & & prob < = 1.0 , " out of range probability " ) ;
// If succ[i] is the FALSE branch, invert path info
if ( _nodes [ i + eidx + 1 ] - > Opcode ( ) = = Op_IfFalse ) {
return 1.0f - prob ; // not taken
} else {
return prob ; // taken
}
}
case Op_Jump :
// Divide the frequency between all successors evenly
return 1.0f / _num_succs ;
case Op_Catch : {
const CatchProjNode * ci = _nodes [ i + eidx + 1 ] - > as_CatchProj ( ) ;
if ( ci - > _con = = CatchProjNode : : fall_through_index ) {
// Fall-thru path gets the lion's share.
return 1.0f - PROB_UNLIKELY_MAG ( 5 ) * _num_succs ;
} else {
// Presume exceptional paths are equally unlikely
return PROB_UNLIKELY_MAG ( 5 ) ;
}
}
case Op_Root :
case Op_Goto :
// Pass frequency straight thru to target
return 1.0f ;
case Op_NeverBranch :
return 0.0f ;
case Op_TailCall :
case Op_TailJump :
case Op_Return :
case Op_Halt :
case Op_Rethrow :
// Do not push out freq to root block
return 0.0f ;
default :
ShouldNotReachHere ( ) ;
}
return 0.0f ;
}
2008-11-06 14:59:10 -08:00
//------------------------------num_fall_throughs-----------------------------
// Return the number of fall-through candidates for a block
int Block : : num_fall_throughs ( ) {
int eidx = end_idx ( ) ;
Node * n = _nodes [ eidx ] ; // Get ending Node
int op = n - > Opcode ( ) ;
if ( n - > is_Mach ( ) ) {
if ( n - > is_MachNullCheck ( ) ) {
// In theory, either side can fall-thru, for simplicity sake,
// let's say only the false branch can now.
return 1 ;
}
op = n - > as_Mach ( ) - > ideal_Opcode ( ) ;
}
// Switch on branch type
switch ( op ) {
case Op_CountedLoopEnd :
case Op_If :
return 2 ;
case Op_Root :
case Op_Goto :
return 1 ;
case Op_Catch : {
for ( uint i = 0 ; i < _num_succs ; i + + ) {
const CatchProjNode * ci = _nodes [ i + eidx + 1 ] - > as_CatchProj ( ) ;
if ( ci - > _con = = CatchProjNode : : fall_through_index ) {
return 1 ;
}
}
return 0 ;
}
case Op_Jump :
case Op_NeverBranch :
case Op_TailCall :
case Op_TailJump :
case Op_Return :
case Op_Halt :
case Op_Rethrow :
return 0 ;
default :
ShouldNotReachHere ( ) ;
}
return 0 ;
}
//------------------------------succ_fall_through-----------------------------
// Return true if a specific successor could be fall-through target.
bool Block : : succ_fall_through ( uint i ) {
int eidx = end_idx ( ) ;
Node * n = _nodes [ eidx ] ; // Get ending Node
int op = n - > Opcode ( ) ;
if ( n - > is_Mach ( ) ) {
if ( n - > is_MachNullCheck ( ) ) {
// In theory, either side can fall-thru, for simplicity sake,
// let's say only the false branch can now.
return _nodes [ i + eidx + 1 ] - > Opcode ( ) = = Op_IfFalse ;
}
op = n - > as_Mach ( ) - > ideal_Opcode ( ) ;
}
// Switch on branch type
switch ( op ) {
case Op_CountedLoopEnd :
case Op_If :
case Op_Root :
case Op_Goto :
return true ;
case Op_Catch : {
const CatchProjNode * ci = _nodes [ i + eidx + 1 ] - > as_CatchProj ( ) ;
return ci - > _con = = CatchProjNode : : fall_through_index ;
}
case Op_Jump :
case Op_NeverBranch :
case Op_TailCall :
case Op_TailJump :
case Op_Return :
case Op_Halt :
case Op_Rethrow :
return false ;
default :
ShouldNotReachHere ( ) ;
}
return false ;
}
//------------------------------update_uncommon_branch------------------------
// Update the probability of a two-branch to be uncommon
void Block : : update_uncommon_branch ( Block * ub ) {
int eidx = end_idx ( ) ;
Node * n = _nodes [ eidx ] ; // Get ending Node
int op = n - > as_Mach ( ) - > ideal_Opcode ( ) ;
assert ( op = = Op_CountedLoopEnd | | op = = Op_If , " must be a If " ) ;
assert ( num_fall_throughs ( ) = = 2 , " must be a two way branch block " ) ;
// Which successor is ub?
uint s ;
for ( s = 0 ; s < _num_succs ; s + + ) {
if ( _succs [ s ] = = ub ) break ;
}
assert ( s < 2 , " uncommon successor must be found " ) ;
// If ub is the true path, make the proability small, else
// ub is the false path, and make the probability large
bool invert = ( _nodes [ s + eidx + 1 ] - > Opcode ( ) = = Op_IfFalse ) ;
// Get existing probability
float p = n - > as_MachIf ( ) - > _prob ;
if ( invert ) p = 1.0 - p ;
if ( p > PROB_MIN ) {
p = PROB_MIN ;
}
if ( invert ) p = 1.0 - p ;
n - > as_MachIf ( ) - > _prob = p ;
}
2007-12-01 00:00:00 +00:00
//------------------------------update_succ_freq-------------------------------
2009-02-27 13:27:09 -08:00
// Update the appropriate frequency associated with block 'b', a successor of
2007-12-01 00:00:00 +00:00
// a block in this loop.
void CFGLoop : : update_succ_freq ( Block * b , float freq ) {
if ( b - > _loop = = this ) {
if ( b = = head ( ) ) {
// back branch within the loop
// Do nothing now, the loop carried frequency will be
// adjust later in scale_freq().
} else {
// simple branch within the loop
b - > _freq + = freq ;
}
} else if ( ! in_loop_nest ( b ) ) {
// branch is exit from this loop
BlockProbPair bpp ( b , freq ) ;
_exits . append ( bpp ) ;
} else {
// branch into nested loop
CFGLoop * ch = b - > _loop ;
ch - > _freq + = freq ;
}
}
//------------------------------in_loop_nest-----------------------------------
// Determine if block b is in the receiver's loop nest.
bool CFGLoop : : in_loop_nest ( Block * b ) {
int depth = _depth ;
CFGLoop * b_loop = b - > _loop ;
int b_depth = b_loop - > _depth ;
if ( depth = = b_depth ) {
return true ;
}
while ( b_depth > depth ) {
b_loop = b_loop - > _parent ;
b_depth = b_loop - > _depth ;
}
return b_loop = = this ;
}
//------------------------------scale_freq-------------------------------------
// Scale frequency of loops and blocks by trip counts from outer loops
// Do a top down traversal of loop tree (visit outer loops first.)
void CFGLoop : : scale_freq ( ) {
float loop_freq = _freq * trip_count ( ) ;
2009-03-26 15:04:55 -07:00
_freq = loop_freq ;
2007-12-01 00:00:00 +00:00
for ( int i = 0 ; i < _members . length ( ) ; i + + ) {
CFGElement * s = _members . at ( i ) ;
2009-01-13 11:10:00 -08:00
float block_freq = s - > _freq * loop_freq ;
2009-03-03 18:25:57 -08:00
if ( g_isnan ( block_freq ) | | block_freq < MIN_BLOCK_FREQUENCY )
block_freq = MIN_BLOCK_FREQUENCY ;
2009-01-13 11:10:00 -08:00
s - > _freq = block_freq ;
2007-12-01 00:00:00 +00:00
}
CFGLoop * ch = _child ;
while ( ch ! = NULL ) {
ch - > scale_freq ( ) ;
ch = ch - > _sibling ;
}
}
2009-03-26 15:04:55 -07:00
// Frequency of outer loop
float CFGLoop : : outer_loop_freq ( ) const {
if ( _child ! = NULL ) {
return _child - > _freq ;
}
return _freq ;
}
2007-12-01 00:00:00 +00:00
# ifndef PRODUCT
//------------------------------dump_tree--------------------------------------
void CFGLoop : : dump_tree ( ) const {
dump ( ) ;
if ( _child ! = NULL ) _child - > dump_tree ( ) ;
if ( _sibling ! = NULL ) _sibling - > dump_tree ( ) ;
}
//------------------------------dump-------------------------------------------
void CFGLoop : : dump ( ) const {
for ( int i = 0 ; i < _depth ; i + + ) tty - > print ( " " ) ;
tty - > print ( " %s: %d trip_count: %6.0f freq: %6.0f \n " ,
_depth = = 0 ? " Method " : " Loop " , _id , trip_count ( ) , _freq ) ;
for ( int i = 0 ; i < _depth ; i + + ) tty - > print ( " " ) ;
tty - > print ( " members: " , _id ) ;
int k = 0 ;
for ( int i = 0 ; i < _members . length ( ) ; i + + ) {
if ( k + + > = 6 ) {
tty - > print ( " \n " ) ;
for ( int j = 0 ; j < _depth + 1 ; j + + ) tty - > print ( " " ) ;
k = 0 ;
}
CFGElement * s = _members . at ( i ) ;
if ( s - > is_block ( ) ) {
Block * b = s - > as_Block ( ) ;
tty - > print ( " B%d(%6.3f) " , b - > _pre_order , b - > _freq ) ;
} else {
CFGLoop * lp = s - > as_CFGLoop ( ) ;
tty - > print ( " L%d(%6.3f) " , lp - > _id , lp - > _freq ) ;
}
}
tty - > print ( " \n " ) ;
for ( int i = 0 ; i < _depth ; i + + ) tty - > print ( " " ) ;
tty - > print ( " exits: " ) ;
k = 0 ;
for ( int i = 0 ; i < _exits . length ( ) ; i + + ) {
if ( k + + > = 7 ) {
tty - > print ( " \n " ) ;
for ( int j = 0 ; j < _depth + 1 ; j + + ) tty - > print ( " " ) ;
k = 0 ;
}
Block * blk = _exits . at ( i ) . get_target ( ) ;
float prob = _exits . at ( i ) . get_prob ( ) ;
tty - > print ( " ->%d@%d%% " , blk - > _pre_order , ( int ) ( prob * 100 ) ) ;
}
tty - > print ( " \n " ) ;
}
# endif