jdk-24/src/hotspot/cpu/s390/c1_LIRAssembler_s390.cpp

3107 lines
112 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2019 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArrayKlass.hpp"
#include "ci/ciInstance.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "memory/universe.hpp"
#include "nativeInst_s390.hpp"
#include "oops/objArrayKlass.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/safepointMechanism.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/powerOfTwo.hpp"
#include "vmreg_s390.inline.hpp"
#define __ _masm->
#ifndef PRODUCT
#undef __
#define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)->
#endif
//------------------------------------------------------------
bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
// Not used on ZARCH_64
ShouldNotCallThis();
return false;
}
LIR_Opr LIR_Assembler::receiverOpr() {
return FrameMap::Z_R2_oop_opr;
}
LIR_Opr LIR_Assembler::osrBufferPointer() {
return FrameMap::Z_R2_opr;
}
int LIR_Assembler::initial_frame_size_in_bytes() const {
return in_bytes(frame_map()->framesize_in_bytes());
}
// Inline cache check: done before the frame is built.
// The inline cached class is in Z_inline_cache(Z_R9).
// We fetch the class of the receiver and compare it with the cached class.
// If they do not match we jump to the slow case.
int LIR_Assembler::check_icache() {
Register receiver = receiverOpr()->as_register();
int offset = __ offset();
__ inline_cache_check(receiver, Z_inline_cache);
return offset;
}
void LIR_Assembler::clinit_barrier(ciMethod* method) {
assert(!method->holder()->is_not_initialized(), "initialization should have been started");
Label L_skip_barrier;
Register klass = Z_R1_scratch;
metadata2reg(method->holder()->constant_encoding(), klass);
__ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/);
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub());
__ z_br(klass);
__ bind(L_skip_barrier);
}
void LIR_Assembler::osr_entry() {
// On-stack-replacement entry sequence (interpreter frame layout described in frame_s390.hpp):
//
// 1. Create a new compiled activation.
// 2. Initialize local variables in the compiled activation. The expression stack must be empty
// at the osr_bci; it is not initialized.
// 3. Jump to the continuation address in compiled code to resume execution.
// OSR entry point
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
ValueStack* entry_state = osr_entry->end()->state();
int number_of_locks = entry_state->locks_size();
// Create a frame for the compiled activation.
__ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
// OSR buffer is
//
// locals[nlocals-1..0]
// monitors[number_of_locks-1..0]
//
// Locals is a direct copy of the interpreter frame so in the osr buffer
// the first slot in the local array is the last local from the interpreter
// and the last slot is local[0] (receiver) from the interpreter
//
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
// in the interpreter frame (the method lock if a sync method)
// Initialize monitors in the compiled activation.
// I0: pointer to osr buffer
//
// All other registers are dead at this point and the locals will be
// copied into place by code emitted in the IR.
Register OSR_buf = osrBufferPointer()->as_register();
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
int monitor_offset = BytesPerWord * method()->max_locals() +
(2 * BytesPerWord) * (number_of_locks - 1);
// SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
// the OSR buffer using 2 word entries: first the lock and then
// the oop.
for (int i = 0; i < number_of_locks; i++) {
int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
// Verify the interpreter's monitor has a non-null object.
__ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is NULL", __LINE__);
// Copy the lock field into the compiled activation.
__ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf);
__ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i));
__ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf);
__ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i));
}
}
}
// --------------------------------------------------------------------------------------------
address LIR_Assembler::emit_call_c(address a) {
__ align_call_far_patchable(__ pc());
address call_addr = __ call_c_opt(a);
if (call_addr == NULL) {
bailout("const section overflow");
}
return call_addr;
}
int LIR_Assembler::emit_exception_handler() {
// If the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci. => Add a nop.
// (was bug 5/14/1999 - gri)
__ nop();
// Generate code for exception handler.
address handler_base = __ start_a_stub(exception_handler_size());
if (handler_base == NULL) {
// Not enough space left for the handler.
bailout("exception handler overflow");
return -1;
}
int offset = code_offset();
address a = Runtime1::entry_for (Runtime1::handle_exception_from_callee_id);
address call_addr = emit_call_c(a);
CHECK_BAILOUT_(-1);
__ should_not_reach_here();
guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
// Emit the code to remove the frame from the stack in the exception
// unwind path.
int LIR_Assembler::emit_unwind_handler() {
#ifndef PRODUCT
if (CommentedAssembly) {
_masm->block_comment("Unwind handler");
}
#endif
int offset = code_offset();
Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved.
Register Rtmp1 = Z_R11;
Register Rtmp2 = Z_R12;
// Fetch the exception from TLS and clear out exception related thread state.
Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset());
Address exc_pc_addr = Address(Z_thread, JavaThread::exception_pc_offset());
__ z_lg(Z_EXC_OOP, exc_oop_addr);
__ clear_mem(exc_oop_addr, sizeof(oop));
__ clear_mem(exc_pc_addr, sizeof(intptr_t));
__ bind(_unwind_handler_entry);
__ verify_not_null_oop(Z_EXC_OOP);
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
__ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception.
}
// Preform needed unlocking.
MonitorExitStub* stub = NULL;
if (method()->is_synchronized()) {
// Runtime1::monitorexit_id expects lock address in Z_R1_scratch.
LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch);
monitor_address(0, lock);
stub = new MonitorExitStub(lock, true, 0);
__ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry());
__ bind(*stub->continuation());
}
if (compilation()->env()->dtrace_method_probes()) {
ShouldNotReachHere(); // Not supported.
#if 0
__ mov(rdi, r15_thread);
__ mov_metadata(rsi, method()->constant_encoding());
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
#endif
}
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
__ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved); // Restore the exception.
}
// Remove the activation and dispatch to the unwind handler.
__ pop_frame();
__ z_lg(Z_EXC_PC, _z_abi16(return_pc), Z_SP);
// Z_EXC_OOP: exception oop
// Z_EXC_PC: exception pc
// Dispatch to the unwind logic.
__ load_const_optimized(Z_R5, Runtime1::entry_for (Runtime1::unwind_exception_id));
__ z_br(Z_R5);
// Emit the slow path assembly.
if (stub != NULL) {
stub->emit_code(this);
}
return offset;
}
int LIR_Assembler::emit_deopt_handler() {
// If the last instruction is a call (typically to do a throw which
// is coming at the end after block reordering) the return address
// must still point into the code area in order to avoid assertion
// failures when searching for the corresponding bci. => Add a nop.
// (was bug 5/14/1999 - gri)
__ nop();
// Generate code for exception handler.
address handler_base = __ start_a_stub(deopt_handler_size());
if (handler_base == NULL) {
// Not enough space left for the handler.
bailout("deopt handler overflow");
return -1;
} int offset = code_offset();
// Size must be constant (see HandlerImpl::emit_deopt_handler).
__ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack());
__ call(Z_R1_scratch);
guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
__ end_a_stub();
return offset;
}
void LIR_Assembler::jobject2reg(jobject o, Register reg) {
if (o == NULL) {
__ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove.
} else {
AddressLiteral a = __ allocate_oop_address(o);
bool success = __ load_oop_from_toc(reg, a, reg);
if (!success) {
bailout("const section overflow");
}
}
}
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
// Allocate a new index in table to hold the object once it's been patched.
int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index));
assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
// The NULL will be dynamically patched later so the sequence to
// load the address literal must not be optimized.
__ load_const(reg, addrlit);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::metadata2reg(Metadata* md, Register reg) {
bool success = __ set_metadata_constant(md, reg);
if (!success) {
bailout("const section overflow");
return;
}
}
void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
// Allocate a new index in table to hold the klass once it's been patched.
int index = __ oop_recorder()->allocate_metadata_index(NULL);
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index));
assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
// The NULL will be dynamically patched later so the sequence to
// load the address literal must not be optimized.
__ load_const(reg, addrlit);
patching_epilog(patch, lir_patch_normal, reg, info);
}
void LIR_Assembler::emit_op3(LIR_Op3* op) {
switch (op->code()) {
case lir_idiv:
case lir_irem:
arithmetic_idiv(op->code(),
op->in_opr1(),
op->in_opr2(),
op->in_opr3(),
op->result_opr(),
op->info());
break;
case lir_fmad: {
const FloatRegister opr1 = op->in_opr1()->as_double_reg(),
opr2 = op->in_opr2()->as_double_reg(),
opr3 = op->in_opr3()->as_double_reg(),
res = op->result_opr()->as_double_reg();
__ z_madbr(opr3, opr1, opr2);
if (res != opr3) { __ z_ldr(res, opr3); }
} break;
case lir_fmaf: {
const FloatRegister opr1 = op->in_opr1()->as_float_reg(),
opr2 = op->in_opr2()->as_float_reg(),
opr3 = op->in_opr3()->as_float_reg(),
res = op->result_opr()->as_float_reg();
__ z_maebr(opr3, opr1, opr2);
if (res != opr3) { __ z_ler(res, opr3); }
} break;
default: ShouldNotReachHere(); break;
}
}
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
#ifdef ASSERT
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
if (op->block() != NULL) { _branch_target_blocks.append(op->block()); }
if (op->ublock() != NULL) { _branch_target_blocks.append(op->ublock()); }
#endif
if (op->cond() == lir_cond_always) {
if (op->info() != NULL) { add_debug_info_for_branch(op->info()); }
__ branch_optimized(Assembler::bcondAlways, *(op->label()));
} else {
Assembler::branch_condition acond = Assembler::bcondZero;
if (op->code() == lir_cond_float_branch) {
assert(op->ublock() != NULL, "must have unordered successor");
__ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label()));
}
switch (op->cond()) {
case lir_cond_equal: acond = Assembler::bcondEqual; break;
case lir_cond_notEqual: acond = Assembler::bcondNotEqual; break;
case lir_cond_less: acond = Assembler::bcondLow; break;
case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; break;
case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; break;
case lir_cond_greater: acond = Assembler::bcondHigh; break;
case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; break;
case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; break;
default: ShouldNotReachHere();
}
__ branch_optimized(acond,*(op->label()));
}
}
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
LIR_Opr src = op->in_opr();
LIR_Opr dest = op->result_opr();
switch (op->bytecode()) {
case Bytecodes::_i2l:
__ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT);
break;
case Bytecodes::_l2i:
__ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG);
break;
case Bytecodes::_i2b:
__ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT);
break;
case Bytecodes::_i2c:
__ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT);
break;
case Bytecodes::_i2s:
__ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT);
break;
case Bytecodes::_f2d:
assert(dest->is_double_fpu(), "check");
__ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT);
break;
case Bytecodes::_d2f:
assert(dest->is_single_fpu(), "check");
__ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE);
break;
case Bytecodes::_i2f:
__ z_cefbr(dest->as_float_reg(), src->as_register());
break;
case Bytecodes::_i2d:
__ z_cdfbr(dest->as_double_reg(), src->as_register());
break;
case Bytecodes::_l2f:
__ z_cegbr(dest->as_float_reg(), src->as_register_lo());
break;
case Bytecodes::_l2d:
__ z_cdgbr(dest->as_double_reg(), src->as_register_lo());
break;
case Bytecodes::_f2i:
case Bytecodes::_f2l: {
Label done;
FloatRegister Rsrc = src->as_float_reg();
Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo());
__ clear_reg(Rdst, true, false);
__ z_cebr(Rsrc, Rsrc);
__ z_brno(done); // NaN -> 0
if (op->bytecode() == Bytecodes::_f2i) {
__ z_cfebr(Rdst, Rsrc, Assembler::to_zero);
} else { // op->bytecode() == Bytecodes::_f2l
__ z_cgebr(Rdst, Rsrc, Assembler::to_zero);
}
__ bind(done);
}
break;
case Bytecodes::_d2i:
case Bytecodes::_d2l: {
Label done;
FloatRegister Rsrc = src->as_double_reg();
Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo());
__ clear_reg(Rdst, true, false); // Don't set CC.
__ z_cdbr(Rsrc, Rsrc);
__ z_brno(done); // NaN -> 0
if (op->bytecode() == Bytecodes::_d2i) {
__ z_cfdbr(Rdst, Rsrc, Assembler::to_zero);
} else { // Bytecodes::_d2l
__ z_cgdbr(Rdst, Rsrc, Assembler::to_zero);
}
__ bind(done);
}
break;
default: ShouldNotReachHere();
}
}
void LIR_Assembler::align_call(LIR_Code code) {
// End of call instruction must be 4 byte aligned.
int offset = __ offset();
switch (code) {
case lir_icvirtual_call:
offset += MacroAssembler::load_const_from_toc_size();
// no break
case lir_static_call:
case lir_optvirtual_call:
case lir_dynamic_call:
offset += NativeCall::call_far_pcrelative_displacement_offset;
break;
case lir_virtual_call: // currently, sparc-specific for niagara
default: ShouldNotReachHere();
}
if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) {
__ nop();
}
}
void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0,
"must be aligned (offset=%d)", __ offset());
assert(rtype == relocInfo::none ||
rtype == relocInfo::opt_virtual_call_type ||
rtype == relocInfo::static_call_type, "unexpected rtype");
// Prepend each BRASL with a nop.
__ relocate(rtype);
__ z_nop();
__ z_brasl(Z_R14, op->addr());
add_call_info(code_offset(), op->info());
}
void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
address virtual_call_oop_addr = NULL;
AddressLiteral empty_ic((address) Universe::non_oop_word());
virtual_call_oop_addr = __ pc();
bool success = __ load_const_from_toc(Z_inline_cache, empty_ic);
if (!success) {
bailout("const section overflow");
return;
}
// CALL to fixup routine. Fixup routine uses ScopeDesc info
// to determine who we intended to call.
__ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
call(op, relocInfo::none);
}
// not supported
void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
ShouldNotReachHere();
}
void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
if (from_reg != to_reg) __ z_lgr(to_reg, from_reg);
}
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
assert(src->is_constant(), "should not call otherwise");
assert(dest->is_stack(), "should not call otherwise");
LIR_Const* c = src->as_constant_ptr();
unsigned int lmem = 0;
unsigned int lcon = 0;
int64_t cbits = 0;
Address dest_addr;
switch (c->type()) {
case T_INT: // fall through
case T_FLOAT:
dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
lmem = 4; lcon = 4; cbits = c->as_jint_bits();
break;
case T_ADDRESS:
dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
lmem = 8; lcon = 4; cbits = c->as_jint_bits();
break;
case T_OBJECT:
dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
if (c->as_jobject() == NULL) {
__ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8);
} else {
jobject2reg(c->as_jobject(), Z_R1_scratch);
__ reg2mem_opt(Z_R1_scratch, dest_addr, true);
}
return;
case T_LONG: // fall through
case T_DOUBLE:
dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
break;
default:
ShouldNotReachHere();
}
__ store_const(dest_addr, cbits, lmem, lcon);
}
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
assert(src->is_constant(), "should not call otherwise");
assert(dest->is_address(), "should not call otherwise");
LIR_Const* c = src->as_constant_ptr();
Address addr = as_Address(dest->as_address_ptr());
int store_offset = -1;
if (dest->as_address_ptr()->index()->is_valid()) {
switch (type) {
case T_INT: // fall through
case T_FLOAT:
__ load_const_optimized(Z_R0_scratch, c->as_jint_bits());
store_offset = __ offset();
if (Immediate::is_uimm12(addr.disp())) {
__ z_st(Z_R0_scratch, addr);
} else {
__ z_sty(Z_R0_scratch, addr);
}
break;
case T_ADDRESS:
__ load_const_optimized(Z_R1_scratch, c->as_jint_bits());
store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
break;
case T_OBJECT: // fall through
case T_ARRAY:
if (c->as_jobject() == NULL) {
if (UseCompressedOops && !wide) {
__ clear_reg(Z_R1_scratch, false);
store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
} else {
__ clear_reg(Z_R1_scratch, true);
store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
}
} else {
jobject2reg(c->as_jobject(), Z_R1_scratch);
if (UseCompressedOops && !wide) {
__ encode_heap_oop(Z_R1_scratch);
store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
} else {
store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
}
}
assert(store_offset >= 0, "check");
break;
case T_LONG: // fall through
case T_DOUBLE:
__ load_const_optimized(Z_R1_scratch, (int64_t)(c->as_jlong_bits()));
store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
break;
case T_BOOLEAN: // fall through
case T_BYTE:
__ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint()));
store_offset = __ offset();
if (Immediate::is_uimm12(addr.disp())) {
__ z_stc(Z_R0_scratch, addr);
} else {
__ z_stcy(Z_R0_scratch, addr);
}
break;
case T_CHAR: // fall through
case T_SHORT:
__ load_const_optimized(Z_R0_scratch, (int16_t)(c->as_jint()));
store_offset = __ offset();
if (Immediate::is_uimm12(addr.disp())) {
__ z_sth(Z_R0_scratch, addr);
} else {
__ z_sthy(Z_R0_scratch, addr);
}
break;
default:
ShouldNotReachHere();
}
} else { // no index
unsigned int lmem = 0;
unsigned int lcon = 0;
int64_t cbits = 0;
switch (type) {
case T_INT: // fall through
case T_FLOAT:
lmem = 4; lcon = 4; cbits = c->as_jint_bits();
break;
case T_ADDRESS:
lmem = 8; lcon = 4; cbits = c->as_jint_bits();
break;
case T_OBJECT: // fall through
case T_ARRAY:
if (c->as_jobject() == NULL) {
if (UseCompressedOops && !wide) {
store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4);
} else {
store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8);
}
} else {
jobject2reg(c->as_jobject(), Z_R1_scratch);
if (UseCompressedOops && !wide) {
__ encode_heap_oop(Z_R1_scratch);
store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
} else {
store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
}
}
assert(store_offset >= 0, "check");
break;
case T_LONG: // fall through
case T_DOUBLE:
lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
break;
case T_BOOLEAN: // fall through
case T_BYTE:
lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint());
break;
case T_CHAR: // fall through
case T_SHORT:
lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint());
break;
default:
ShouldNotReachHere();
}
if (store_offset == -1) {
store_offset = __ store_const(addr, cbits, lmem, lcon);
assert(store_offset >= 0, "check");
}
}
if (info != NULL) {
add_debug_info_for_null_check(store_offset, info);
}
}
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
assert(src->is_constant(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
LIR_Const* c = src->as_constant_ptr();
switch (c->type()) {
case T_INT: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ load_const_optimized(dest->as_register(), c->as_jint());
break;
}
case T_ADDRESS: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ load_const_optimized(dest->as_register(), c->as_jint());
break;
}
case T_LONG: {
assert(patch_code == lir_patch_none, "no patching handled here");
__ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong());
break;
}
case T_OBJECT: {
if (patch_code != lir_patch_none) {
jobject2reg_with_patching(dest->as_register(), info);
} else {
jobject2reg(c->as_jobject(), dest->as_register());
}
break;
}
case T_METADATA: {
if (patch_code != lir_patch_none) {
klass2reg_with_patching(dest->as_register(), info);
} else {
metadata2reg(c->as_metadata(), dest->as_register());
}
break;
}
case T_FLOAT: {
Register toc_reg = Z_R1_scratch;
__ load_toc(toc_reg);
address const_addr = __ float_constant(c->as_jfloat());
if (const_addr == NULL) {
bailout("const section overflow");
break;
}
int displ = const_addr - _masm->code()->consts()->start();
if (dest->is_single_fpu()) {
__ z_ley(dest->as_float_reg(), displ, toc_reg);
} else {
assert(dest->is_single_cpu(), "Must be a cpu register.");
__ z_ly(dest->as_register(), displ, toc_reg);
}
}
break;
case T_DOUBLE: {
Register toc_reg = Z_R1_scratch;
__ load_toc(toc_reg);
address const_addr = __ double_constant(c->as_jdouble());
if (const_addr == NULL) {
bailout("const section overflow");
break;
}
int displ = const_addr - _masm->code()->consts()->start();
if (dest->is_double_fpu()) {
__ z_ldy(dest->as_double_reg(), displ, toc_reg);
} else {
assert(dest->is_double_cpu(), "Must be a long register.");
__ z_lg(dest->as_register_lo(), displ, toc_reg);
}
}
break;
default:
ShouldNotReachHere();
}
}
Address LIR_Assembler::as_Address(LIR_Address* addr) {
if (addr->base()->is_illegal()) {
Unimplemented();
}
Register base = addr->base()->as_pointer_register();
if (addr->index()->is_illegal()) {
return Address(base, addr->disp());
} else if (addr->index()->is_cpu_register()) {
Register index = addr->index()->as_pointer_register();
return Address(base, index, addr->disp());
} else if (addr->index()->is_constant()) {
intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp();
return Address(base, addr_offset);
} else {
ShouldNotReachHere();
return Address();
}
}
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
switch (type) {
case T_INT:
case T_FLOAT: {
Register tmp = Z_R1_scratch;
Address from = frame_map()->address_for_slot(src->single_stack_ix());
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
__ mem2reg_opt(tmp, from, false);
__ reg2mem_opt(tmp, to, false);
break;
}
case T_ADDRESS:
case T_OBJECT: {
Register tmp = Z_R1_scratch;
Address from = frame_map()->address_for_slot(src->single_stack_ix());
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
__ mem2reg_opt(tmp, from, true);
__ reg2mem_opt(tmp, to, true);
break;
}
case T_LONG:
case T_DOUBLE: {
Register tmp = Z_R1_scratch;
Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
__ mem2reg_opt(tmp, from, true);
__ reg2mem_opt(tmp, to, true);
break;
}
default:
ShouldNotReachHere();
}
}
// 4-byte accesses only! Don't use it to access 8 bytes!
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
ShouldNotCallThis();
return 0; // unused
}
// 4-byte accesses only! Don't use it to access 8 bytes!
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
ShouldNotCallThis();
return 0; // unused
}
void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code,
CodeEmitInfo* info, bool wide, bool unaligned) {
assert(type != T_METADATA, "load of metadata ptr not supported");
LIR_Address* addr = src_opr->as_address_ptr();
LIR_Opr to_reg = dest;
Register src = addr->base()->as_pointer_register();
Register disp_reg = Z_R0;
int disp_value = addr->disp();
bool needs_patching = (patch_code != lir_patch_none);
if (addr->base()->type() == T_OBJECT) {
__ verify_oop(src, FILE_AND_LINE);
}
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(!to_reg->is_double_cpu() ||
patch_code == lir_patch_none ||
patch_code == lir_patch_normal, "patching doesn't match register");
}
if (addr->index()->is_illegal()) {
if (!Immediate::is_simm20(disp_value)) {
if (needs_patching) {
__ load_const(Z_R1_scratch, (intptr_t)0);
} else {
__ load_const_optimized(Z_R1_scratch, disp_value);
}
disp_reg = Z_R1_scratch;
disp_value = 0;
}
} else {
if (!Immediate::is_simm20(disp_value)) {
__ load_const_optimized(Z_R1_scratch, disp_value);
__ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
disp_reg = Z_R1_scratch;
disp_value = 0;
}
disp_reg = addr->index()->as_pointer_register();
}
// Remember the offset of the load. The patching_epilog must be done
// before the call to add_debug_info, otherwise the PcDescs don't get
// entered in increasing order.
int offset = code_offset();
assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
bool short_disp = Immediate::is_uimm12(disp_value);
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE : __ z_lb(dest->as_register(), disp_value, disp_reg, src); break;
case T_CHAR : __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break;
case T_SHORT :
if (short_disp) {
__ z_lh(dest->as_register(), disp_value, disp_reg, src);
} else {
__ z_lhy(dest->as_register(), disp_value, disp_reg, src);
}
break;
case T_INT :
if (short_disp) {
__ z_l(dest->as_register(), disp_value, disp_reg, src);
} else {
__ z_ly(dest->as_register(), disp_value, disp_reg, src);
}
break;
case T_ADDRESS:
if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
__ z_llgf(dest->as_register(), disp_value, disp_reg, src);
__ decode_klass_not_null(dest->as_register());
} else {
__ z_lg(dest->as_register(), disp_value, disp_reg, src);
}
break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
__ z_llgf(dest->as_register(), disp_value, disp_reg, src);
__ oop_decoder(dest->as_register(), dest->as_register(), true);
} else {
__ z_lg(dest->as_register(), disp_value, disp_reg, src);
}
__ verify_oop(dest->as_register(), FILE_AND_LINE);
break;
}
case T_FLOAT:
if (short_disp) {
__ z_le(dest->as_float_reg(), disp_value, disp_reg, src);
} else {
__ z_ley(dest->as_float_reg(), disp_value, disp_reg, src);
}
break;
case T_DOUBLE:
if (short_disp) {
__ z_ld(dest->as_double_reg(), disp_value, disp_reg, src);
} else {
__ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src);
}
break;
case T_LONG : __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break;
default : ShouldNotReachHere();
}
if (patch != NULL) {
patching_epilog(patch, patch_code, src, info);
}
if (info != NULL) add_debug_info_for_null_check(offset, info);
}
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
assert(src->is_stack(), "should not call otherwise");
assert(dest->is_register(), "should not call otherwise");
if (dest->is_single_cpu()) {
if (is_reference_type(type)) {
__ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
__ verify_oop(dest->as_register(), FILE_AND_LINE);
} else if (type == T_METADATA || type == T_ADDRESS) {
__ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
} else {
__ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false);
}
} else if (dest->is_double_cpu()) {
Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix());
__ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true);
} else if (dest->is_single_fpu()) {
Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
__ mem2freg_opt(dest->as_float_reg(), src_addr, false);
} else if (dest->is_double_fpu()) {
Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
__ mem2freg_opt(dest->as_double_reg(), src_addr, true);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
assert(src->is_register(), "should not call otherwise");
assert(dest->is_stack(), "should not call otherwise");
if (src->is_single_cpu()) {
const Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
if (is_reference_type(type)) {
__ verify_oop(src->as_register(), FILE_AND_LINE);
__ reg2mem_opt(src->as_register(), dst, true);
} else if (type == T_METADATA || type == T_ADDRESS) {
__ reg2mem_opt(src->as_register(), dst, true);
} else {
__ reg2mem_opt(src->as_register(), dst, false);
}
} else if (src->is_double_cpu()) {
Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix());
__ reg2mem_opt(src->as_register_lo(), dstLO, true);
} else if (src->is_single_fpu()) {
Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
__ freg2mem_opt(src->as_float_reg(), dst_addr, false);
} else if (src->is_double_fpu()) {
Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
__ freg2mem_opt(src->as_double_reg(), dst_addr, true);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
if (from_reg->is_double_fpu()) {
// double to double moves
assert(to_reg->is_double_fpu(), "should match");
__ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg());
} else {
// float to float moves
assert(to_reg->is_single_fpu(), "should match");
__ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg());
}
} else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
if (from_reg->is_double_cpu()) {
__ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register());
} else if (to_reg->is_double_cpu()) {
// int to int moves
__ z_lgr(to_reg->as_register_lo(), from_reg->as_register());
} else {
// int to int moves
__ z_lgr(to_reg->as_register(), from_reg->as_register());
}
} else {
ShouldNotReachHere();
}
if (is_reference_type(to_reg->type())) {
__ verify_oop(to_reg->as_register(), FILE_AND_LINE);
}
}
void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type,
LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
bool wide, bool unaligned) {
assert(type != T_METADATA, "store of metadata ptr not supported");
LIR_Address* addr = dest_opr->as_address_ptr();
Register dest = addr->base()->as_pointer_register();
Register disp_reg = Z_R0;
int disp_value = addr->disp();
bool needs_patching = (patch_code != lir_patch_none);
if (addr->base()->is_oop_register()) {
__ verify_oop(dest, FILE_AND_LINE);
}
PatchingStub* patch = NULL;
if (needs_patching) {
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
assert(!from->is_double_cpu() ||
patch_code == lir_patch_none ||
patch_code == lir_patch_normal, "patching doesn't match register");
}
assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption");
if (addr->index()->is_illegal()) {
if (!Immediate::is_simm20(disp_value)) {
if (needs_patching) {
__ load_const(Z_R1_scratch, (intptr_t)0);
} else {
__ load_const_optimized(Z_R1_scratch, disp_value);
}
disp_reg = Z_R1_scratch;
disp_value = 0;
}
} else {
if (!Immediate::is_simm20(disp_value)) {
__ load_const_optimized(Z_R1_scratch, disp_value);
__ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
disp_reg = Z_R1_scratch;
disp_value = 0;
}
disp_reg = addr->index()->as_pointer_register();
}
assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
if (is_reference_type(type)) {
__ verify_oop(from->as_register(), FILE_AND_LINE);
}
bool short_disp = Immediate::is_uimm12(disp_value);
// Remember the offset of the store. The patching_epilog must be done
// before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
// entered in increasing order.
int offset = code_offset();
switch (type) {
case T_BOOLEAN: // fall through
case T_BYTE :
if (short_disp) {
__ z_stc(from->as_register(), disp_value, disp_reg, dest);
} else {
__ z_stcy(from->as_register(), disp_value, disp_reg, dest);
}
break;
case T_CHAR : // fall through
case T_SHORT :
if (short_disp) {
__ z_sth(from->as_register(), disp_value, disp_reg, dest);
} else {
__ z_sthy(from->as_register(), disp_value, disp_reg, dest);
}
break;
case T_INT :
if (short_disp) {
__ z_st(from->as_register(), disp_value, disp_reg, dest);
} else {
__ z_sty(from->as_register(), disp_value, disp_reg, dest);
}
break;
case T_LONG : __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break;
case T_ADDRESS: __ z_stg(from->as_register(), disp_value, disp_reg, dest); break;
break;
case T_ARRAY : // fall through
case T_OBJECT:
{
if (UseCompressedOops && !wide) {
Register compressed_src = Z_R14;
__ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true);
offset = code_offset();
if (short_disp) {
__ z_st(compressed_src, disp_value, disp_reg, dest);
} else {
__ z_sty(compressed_src, disp_value, disp_reg, dest);
}
} else {
__ z_stg(from->as_register(), disp_value, disp_reg, dest);
}
break;
}
case T_FLOAT :
if (short_disp) {
__ z_ste(from->as_float_reg(), disp_value, disp_reg, dest);
} else {
__ z_stey(from->as_float_reg(), disp_value, disp_reg, dest);
}
break;
case T_DOUBLE:
if (short_disp) {
__ z_std(from->as_double_reg(), disp_value, disp_reg, dest);
} else {
__ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest);
}
break;
default: ShouldNotReachHere();
}
if (patch != NULL) {
patching_epilog(patch, patch_code, dest, info);
}
if (info != NULL) add_debug_info_for_null_check(offset, info);
}
void LIR_Assembler::return_op(LIR_Opr result) {
assert(result->is_illegal() ||
(result->is_single_cpu() && result->as_register() == Z_R2) ||
(result->is_double_cpu() && result->as_register_lo() == Z_R2) ||
(result->is_single_fpu() && result->as_float_reg() == Z_F0) ||
(result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention");
__ z_lg(Z_R1_scratch, Address(Z_thread, Thread::polling_page_offset()));
// Pop the frame before the safepoint code.
__ pop_frame_restore_retPC(initial_frame_size_in_bytes());
if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
__ reserved_stack_check(Z_R14);
}
// We need to mark the code position where the load from the safepoint
// polling page was emitted as relocInfo::poll_return_type here.
__ relocate(relocInfo::poll_return_type);
__ load_from_polling_page(Z_R1_scratch);
__ z_br(Z_R14); // Return to caller.
}
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
const Register poll_addr = tmp->as_register_lo();
__ z_lg(poll_addr, Address(Z_thread, Thread::polling_page_offset()));
guarantee(info != NULL, "Shouldn't be NULL");
add_debug_info_for_branch(info);
int offset = __ offset();
__ relocate(relocInfo::poll_type);
__ load_from_polling_page(poll_addr);
return offset;
}
void LIR_Assembler::emit_static_call_stub() {
// Stub is fixed up when the corresponding call is converted from calling
// compiled code to calling interpreted code.
address call_pc = __ pc();
address stub = __ start_a_stub(call_stub_size());
if (stub == NULL) {
bailout("static call stub overflow");
return;
}
int start = __ offset();
__ relocate(static_stub_Relocation::spec(call_pc));
// See also Matcher::interpreter_method_oop_reg().
AddressLiteral meta = __ allocate_metadata_address(NULL);
bool success = __ load_const_from_toc(Z_method, meta);
__ set_inst_mark();
AddressLiteral a((address)-1);
success = success && __ load_const_from_toc(Z_R1, a);
if (!success) {
bailout("const section overflow");
return;
}
__ z_br(Z_R1);
assert(__ offset() - start <= call_stub_size(), "stub too big");
__ end_a_stub(); // Update current stubs pointer and restore insts_end.
}
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual;
if (opr1->is_single_cpu()) {
Register reg1 = opr1->as_register();
if (opr2->is_single_cpu()) {
// cpu register - cpu register
if (is_reference_type(opr1->type())) {
__ z_clgr(reg1, opr2->as_register());
} else {
assert(!is_reference_type(opr2->type()), "cmp int, oop?");
if (unsigned_comp) {
__ z_clr(reg1, opr2->as_register());
} else {
__ z_cr(reg1, opr2->as_register());
}
}
} else if (opr2->is_stack()) {
// cpu register - stack
if (is_reference_type(opr1->type())) {
__ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
} else {
if (unsigned_comp) {
__ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
} else {
__ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
}
}
} else if (opr2->is_constant()) {
// cpu register - constant
LIR_Const* c = opr2->as_constant_ptr();
if (c->type() == T_INT) {
if (unsigned_comp) {
__ z_clfi(reg1, c->as_jint());
} else {
__ z_cfi(reg1, c->as_jint());
}
} else if (c->type() == T_METADATA) {
// We only need, for now, comparison with NULL for metadata.
assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
Metadata* m = c->as_metadata();
if (m == NULL) {
__ z_cghi(reg1, 0);
} else {
ShouldNotReachHere();
}
} else if (is_reference_type(c->type())) {
// In 64bit oops are single register.
jobject o = c->as_jobject();
if (o == NULL) {
__ z_ltgr(reg1, reg1);
} else {
jobject2reg(o, Z_R1_scratch);
__ z_cgr(reg1, Z_R1_scratch);
}
} else {
fatal("unexpected type: %s", basictype_to_str(c->type()));
}
// cpu register - address
} else if (opr2->is_address()) {
if (op->info() != NULL) {
add_debug_info_for_null_check_here(op->info());
}
if (unsigned_comp) {
__ z_cly(reg1, as_Address(opr2->as_address_ptr()));
} else {
__ z_cy(reg1, as_Address(opr2->as_address_ptr()));
}
} else {
ShouldNotReachHere();
}
} else if (opr1->is_double_cpu()) {
assert(!unsigned_comp, "unexpected");
Register xlo = opr1->as_register_lo();
Register xhi = opr1->as_register_hi();
if (opr2->is_double_cpu()) {
__ z_cgr(xlo, opr2->as_register_lo());
} else if (opr2->is_constant()) {
// cpu register - constant 0
assert(opr2->as_jlong() == (jlong)0, "only handles zero");
__ z_ltgr(xlo, xlo);
} else {
ShouldNotReachHere();
}
} else if (opr1->is_single_fpu()) {
if (opr2->is_single_fpu()) {
__ z_cebr(opr1->as_float_reg(), opr2->as_float_reg());
} else {
// stack slot
Address addr = frame_map()->address_for_slot(opr2->single_stack_ix());
if (Immediate::is_uimm12(addr.disp())) {
__ z_ceb(opr1->as_float_reg(), addr);
} else {
__ z_ley(Z_fscratch_1, addr);
__ z_cebr(opr1->as_float_reg(), Z_fscratch_1);
}
}
} else if (opr1->is_double_fpu()) {
if (opr2->is_double_fpu()) {
__ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg());
} else {
// stack slot
Address addr = frame_map()->address_for_slot(opr2->double_stack_ix());
if (Immediate::is_uimm12(addr.disp())) {
__ z_cdb(opr1->as_double_reg(), addr);
} else {
__ z_ldy(Z_fscratch_1, addr);
__ z_cdbr(opr1->as_double_reg(), Z_fscratch_1);
}
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
Label done;
Register dreg = dst->as_register();
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
assert((left->is_single_fpu() && right->is_single_fpu()) ||
(left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types");
bool is_single = left->is_single_fpu();
bool is_unordered_less = (code == lir_ucmp_fd2i);
FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg();
FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg();
if (is_single) {
__ z_cebr(lreg, rreg);
} else {
__ z_cdbr(lreg, rreg);
}
if (VM_Version::has_LoadStoreConditional()) {
Register one = Z_R0_scratch;
Register minus_one = Z_R1_scratch;
__ z_lghi(minus_one, -1);
__ z_lghi(one, 1);
__ z_lghi(dreg, 0);
__ z_locgr(dreg, one, is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered);
__ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow);
} else {
__ clear_reg(dreg, true, false);
__ z_bre(done); // if (left == right) dst = 0
// if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1
__ z_lhi(dreg, 1);
__ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done);
// if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1
__ z_lhi(dreg, -1);
}
} else {
assert(code == lir_cmp_l2i, "check");
if (VM_Version::has_LoadStoreConditional()) {
Register one = Z_R0_scratch;
Register minus_one = Z_R1_scratch;
__ z_cgr(left->as_register_lo(), right->as_register_lo());
__ z_lghi(minus_one, -1);
__ z_lghi(one, 1);
__ z_lghi(dreg, 0);
__ z_locgr(dreg, one, Assembler::bcondHigh);
__ z_locgr(dreg, minus_one, Assembler::bcondLow);
} else {
__ z_cgr(left->as_register_lo(), right->as_register_lo());
__ z_lghi(dreg, 0); // eq value
__ z_bre(done);
__ z_lghi(dreg, 1); // gt value
__ z_brh(done);
__ z_lghi(dreg, -1); // lt value
}
}
__ bind(done);
}
// result = condition ? opr1 : opr2
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual;
switch (condition) {
case lir_cond_equal: acond = Assembler::bcondEqual; ncond = Assembler::bcondNotEqual; break;
case lir_cond_notEqual: acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual; break;
case lir_cond_less: acond = Assembler::bcondLow; ncond = Assembler::bcondNotLow; break;
case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break;
case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break;
case lir_cond_greater: acond = Assembler::bcondHigh; ncond = Assembler::bcondNotHigh; break;
case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break;
case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break;
default: ShouldNotReachHere();
}
if (opr1->is_cpu_register()) {
reg2reg(opr1, result);
} else if (opr1->is_stack()) {
stack2reg(opr1, result, result->type());
} else if (opr1->is_constant()) {
const2reg(opr1, result, lir_patch_none, NULL);
} else {
ShouldNotReachHere();
}
if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) {
// Optimized version that does not require a branch.
if (opr2->is_single_cpu()) {
assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
__ z_locgr(result->as_register(), opr2->as_register(), ncond);
} else if (opr2->is_double_cpu()) {
assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
__ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond);
} else if (opr2->is_single_stack()) {
__ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond);
} else if (opr2->is_double_stack()) {
__ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond);
} else {
ShouldNotReachHere();
}
} else {
Label skip;
__ z_brc(acond, skip);
if (opr2->is_cpu_register()) {
reg2reg(opr2, result);
} else if (opr2->is_stack()) {
stack2reg(opr2, result, result->type());
} else if (opr2->is_constant()) {
const2reg(opr2, result, lir_patch_none, NULL);
} else {
ShouldNotReachHere();
}
__ bind(skip);
}
}
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
CodeEmitInfo* info, bool pop_fpu_stack) {
assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
if (left->is_single_cpu()) {
assert(left == dest, "left and dest must be equal");
Register lreg = left->as_register();
if (right->is_single_cpu()) {
// cpu register - cpu register
Register rreg = right->as_register();
switch (code) {
case lir_add: __ z_ar (lreg, rreg); break;
case lir_sub: __ z_sr (lreg, rreg); break;
case lir_mul: __ z_msr(lreg, rreg); break;
default: ShouldNotReachHere();
}
} else if (right->is_stack()) {
// cpu register - stack
Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
switch (code) {
case lir_add: __ z_ay(lreg, raddr); break;
case lir_sub: __ z_sy(lreg, raddr); break;
default: ShouldNotReachHere();
}
} else if (right->is_constant()) {
// cpu register - constant
jint c = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_add: __ z_agfi(lreg, c); break;
case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint
case lir_mul: __ z_msfi(lreg, c); break;
default: ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
} else if (left->is_double_cpu()) {
assert(left == dest, "left and dest must be equal");
Register lreg_lo = left->as_register_lo();
Register lreg_hi = left->as_register_hi();
if (right->is_double_cpu()) {
// cpu register - cpu register
Register rreg_lo = right->as_register_lo();
Register rreg_hi = right->as_register_hi();
assert_different_registers(lreg_lo, rreg_lo);
switch (code) {
case lir_add:
__ z_agr(lreg_lo, rreg_lo);
break;
case lir_sub:
__ z_sgr(lreg_lo, rreg_lo);
break;
case lir_mul:
__ z_msgr(lreg_lo, rreg_lo);
break;
default:
ShouldNotReachHere();
}
} else if (right->is_constant()) {
// cpu register - constant
jlong c = right->as_constant_ptr()->as_jlong_bits();
switch (code) {
case lir_add: __ z_agfi(lreg_lo, c); break;
case lir_sub:
if (c != min_jint) {
__ z_agfi(lreg_lo, -c);
} else {
// -min_jint cannot be represented as simm32 in z_agfi
// min_jint sign extended: 0xffffffff80000000
// -min_jint as 64 bit integer: 0x0000000080000000
// 0x80000000 can be represented as uimm32 in z_algfi
// lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000
__ z_algfi(lreg_lo, UCONST64(0x80000000));
}
break;
case lir_mul: __ z_msgfi(lreg_lo, c); break;
default:
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
} else if (left->is_single_fpu()) {
assert(left == dest, "left and dest must be equal");
FloatRegister lreg = left->as_float_reg();
FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg;
Address raddr;
if (rreg == fnoreg) {
assert(right->is_single_stack(), "constants should be loaded into register");
raddr = frame_map()->address_for_slot(right->single_stack_ix());
if (!Immediate::is_uimm12(raddr.disp())) {
__ mem2freg_opt(rreg = Z_fscratch_1, raddr, false);
}
}
if (rreg != fnoreg) {
switch (code) {
case lir_add: __ z_aebr(lreg, rreg); break;
case lir_sub: __ z_sebr(lreg, rreg); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ z_meebr(lreg, rreg); break;
case lir_div_strictfp: // fall through
case lir_div: __ z_debr(lreg, rreg); break;
default: ShouldNotReachHere();
}
} else {
switch (code) {
case lir_add: __ z_aeb(lreg, raddr); break;
case lir_sub: __ z_seb(lreg, raddr); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ z_meeb(lreg, raddr); break;
case lir_div_strictfp: // fall through
case lir_div: __ z_deb(lreg, raddr); break;
default: ShouldNotReachHere();
}
}
} else if (left->is_double_fpu()) {
assert(left == dest, "left and dest must be equal");
FloatRegister lreg = left->as_double_reg();
FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg;
Address raddr;
if (rreg == fnoreg) {
assert(right->is_double_stack(), "constants should be loaded into register");
raddr = frame_map()->address_for_slot(right->double_stack_ix());
if (!Immediate::is_uimm12(raddr.disp())) {
__ mem2freg_opt(rreg = Z_fscratch_1, raddr, true);
}
}
if (rreg != fnoreg) {
switch (code) {
case lir_add: __ z_adbr(lreg, rreg); break;
case lir_sub: __ z_sdbr(lreg, rreg); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ z_mdbr(lreg, rreg); break;
case lir_div_strictfp: // fall through
case lir_div: __ z_ddbr(lreg, rreg); break;
default: ShouldNotReachHere();
}
} else {
switch (code) {
case lir_add: __ z_adb(lreg, raddr); break;
case lir_sub: __ z_sdb(lreg, raddr); break;
case lir_mul_strictfp: // fall through
case lir_mul: __ z_mdb(lreg, raddr); break;
case lir_div_strictfp: // fall through
case lir_div: __ z_ddb(lreg, raddr); break;
default: ShouldNotReachHere();
}
}
} else if (left->is_address()) {
assert(left == dest, "left and dest must be equal");
assert(code == lir_add, "unsupported operation");
assert(right->is_constant(), "unsupported operand");
jint c = right->as_constant_ptr()->as_jint();
LIR_Address* lir_addr = left->as_address_ptr();
Address addr = as_Address(lir_addr);
switch (lir_addr->type()) {
case T_INT:
__ add2mem_32(addr, c, Z_R1_scratch);
break;
case T_LONG:
__ add2mem_64(addr, c, Z_R1_scratch);
break;
default:
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
switch (code) {
case lir_sqrt: {
assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
FloatRegister src_reg = value->as_double_reg();
FloatRegister dst_reg = dest->as_double_reg();
__ z_sqdbr(dst_reg, src_reg);
break;
}
case lir_abs: {
assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
FloatRegister src_reg = value->as_double_reg();
FloatRegister dst_reg = dest->as_double_reg();
__ z_lpdbr(dst_reg, src_reg);
break;
}
default: {
ShouldNotReachHere();
break;
}
}
}
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
if (left->is_single_cpu()) {
Register reg = left->as_register();
if (right->is_constant()) {
int val = right->as_constant_ptr()->as_jint();
switch (code) {
case lir_logic_and: __ z_nilf(reg, val); break;
case lir_logic_or: __ z_oilf(reg, val); break;
case lir_logic_xor: __ z_xilf(reg, val); break;
default: ShouldNotReachHere();
}
} else if (right->is_stack()) {
Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
switch (code) {
case lir_logic_and: __ z_ny(reg, raddr); break;
case lir_logic_or: __ z_oy(reg, raddr); break;
case lir_logic_xor: __ z_xy(reg, raddr); break;
default: ShouldNotReachHere();
}
} else {
Register rright = right->as_register();
switch (code) {
case lir_logic_and: __ z_nr(reg, rright); break;
case lir_logic_or : __ z_or(reg, rright); break;
case lir_logic_xor: __ z_xr(reg, rright); break;
default: ShouldNotReachHere();
}
}
move_regs(reg, dst->as_register());
} else {
Register l_lo = left->as_register_lo();
if (right->is_constant()) {
__ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong());
switch (code) {
case lir_logic_and:
__ z_ngr(l_lo, Z_R1_scratch);
break;
case lir_logic_or:
__ z_ogr(l_lo, Z_R1_scratch);
break;
case lir_logic_xor:
__ z_xgr(l_lo, Z_R1_scratch);
break;
default: ShouldNotReachHere();
}
} else {
Register r_lo;
if (is_reference_type(right->type())) {
r_lo = right->as_register();
} else {
r_lo = right->as_register_lo();
}
switch (code) {
case lir_logic_and:
__ z_ngr(l_lo, r_lo);
break;
case lir_logic_or:
__ z_ogr(l_lo, r_lo);
break;
case lir_logic_xor:
__ z_xgr(l_lo, r_lo);
break;
default: ShouldNotReachHere();
}
}
Register dst_lo = dst->as_register_lo();
move_regs(l_lo, dst_lo);
}
}
// See operand selection in LIRGenerator::do_ArithmeticOp_Int().
void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
if (left->is_double_cpu()) {
// 64 bit integer case
assert(left->is_double_cpu(), "left must be register");
assert(right->is_double_cpu() || is_power_of_2(right->as_jlong()),
"right must be register or power of 2 constant");
assert(result->is_double_cpu(), "result must be register");
Register lreg = left->as_register_lo();
Register dreg = result->as_register_lo();
if (right->is_constant()) {
// Convert division by a power of two into some shifts and logical operations.
Register treg1 = Z_R0_scratch;
Register treg2 = Z_R1_scratch;
jlong divisor = right->as_jlong();
jlong log_divisor = log2_long(right->as_jlong());
if (divisor == min_jlong) {
// Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1.
if (dreg == lreg) {
NearLabel done;
__ load_const_optimized(treg2, min_jlong);
__ z_cgr(lreg, treg2);
__ z_lghi(dreg, 0); // Preserves condition code.
__ z_brne(done);
__ z_lghi(dreg, 1); // min_jlong / min_jlong = 1
__ bind(done);
} else {
assert_different_registers(dreg, lreg);
NearLabel done;
__ z_lghi(dreg, 0);
__ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done);
__ z_lghi(dreg, 1);
__ bind(done);
}
return;
}
__ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG);
if (divisor == 2) {
__ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0
} else {
__ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0
__ and_imm(treg2, divisor - 1, treg1, true);
}
if (code == lir_idiv) {
__ z_agr(dreg, treg2);
__ z_srag(dreg, dreg, log_divisor);
} else {
assert(code == lir_irem, "check");
__ z_agr(treg2, dreg);
__ and_imm(treg2, ~(divisor - 1), treg1, true);
__ z_sgr(dreg, treg2);
}
return;
}
// Divisor is not a power of 2 constant.
Register rreg = right->as_register_lo();
Register treg = temp->as_register_lo();
assert(right->is_double_cpu(), "right must be register");
assert(lreg == Z_R11, "see ldivInOpr()");
assert(rreg != lreg, "right register must not be same as left register");
assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) ||
(code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()");
Register R1 = lreg->predecessor();
Register R2 = rreg;
assert(code != lir_idiv || lreg==dreg, "see code below");
if (code == lir_idiv) {
__ z_lcgr(lreg, lreg);
} else {
__ clear_reg(dreg, true, false);
}
NearLabel done;
__ compare64_and_branch(R2, -1, Assembler::bcondEqual, done);
if (code == lir_idiv) {
__ z_lcgr(lreg, lreg); // Revert lcgr above.
}
if (ImplicitDiv0Checks) {
// No debug info because the idiv won't trap.
// Add_debug_info_for_div0 would instantiate another DivByZeroStub,
// which is unnecessary, too.
add_debug_info_for_div0(__ offset(), info);
}
__ z_dsgr(R1, R2);
__ bind(done);
return;
}
// 32 bit integer case
assert(left->is_single_cpu(), "left must be register");
assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant");
assert(result->is_single_cpu(), "result must be register");
Register lreg = left->as_register();
Register dreg = result->as_register();
if (right->is_constant()) {
// Convert division by a power of two into some shifts and logical operations.
Register treg1 = Z_R0_scratch;
Register treg2 = Z_R1_scratch;
jlong divisor = right->as_jint();
jlong log_divisor = log2_long(right->as_jint());
__ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend
if (divisor == 2) {
__ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0
} else {
__ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0
__ and_imm(treg2, divisor - 1, treg1, true);
}
if (code == lir_idiv) {
__ z_agr(dreg, treg2);
__ z_srag(dreg, dreg, log_divisor);
} else {
assert(code == lir_irem, "check");
__ z_agr(treg2, dreg);
__ and_imm(treg2, ~(divisor - 1), treg1, true);
__ z_sgr(dreg, treg2);
}
return;
}
// Divisor is not a power of 2 constant.
Register rreg = right->as_register();
Register treg = temp->as_register();
assert(right->is_single_cpu(), "right must be register");
assert(lreg == Z_R11, "left register must be rax,");
assert(rreg != lreg, "right register must not be same as left register");
assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10)
|| (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()");
Register R1 = lreg->predecessor();
Register R2 = rreg;
__ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend
if (ImplicitDiv0Checks) {
// No debug info because the idiv won't trap.
// Add_debug_info_for_div0 would instantiate another DivByZeroStub,
// which is unnecessary, too.
add_debug_info_for_div0(__ offset(), info);
}
__ z_dsgfr(R1, R2);
}
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
assert(exceptionPC->as_register() == Z_EXC_PC, "should match");
// Exception object is not added to oop map by LinearScan
// (LinearScan assumes that no oops are in fixed registers).
info->add_register_oop(exceptionOop);
// Reuse the debug info from the safepoint poll for the throw op itself.
__ get_PC(Z_EXC_PC);
add_call_info(__ offset(), info); // for exception handler
address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? Runtime1::handle_exception_id
: Runtime1::handle_exception_nofpu_id);
emit_call_c(stub);
}
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
__ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry);
}
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
ciArrayKlass* default_type = op->expected_type();
Register src = op->src()->as_register();
Register dst = op->dst()->as_register();
Register src_pos = op->src_pos()->as_register();
Register dst_pos = op->dst_pos()->as_register();
Register length = op->length()->as_register();
Register tmp = op->tmp()->as_register();
CodeStub* stub = op->stub();
int flags = op->flags();
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
// If we don't know anything, just go through the generic arraycopy.
if (default_type == NULL) {
address copyfunc_addr = StubRoutines::generic_arraycopy();
if (copyfunc_addr == NULL) {
// Take a slow path for generic arraycopy.
__ branch_optimized(Assembler::bcondAlways, *stub->entry());
__ bind(*stub->continuation());
return;
}
// Save outgoing arguments in callee saved registers (C convention) in case
// a call to System.arraycopy is needed.
Register callee_saved_src = Z_R10;
Register callee_saved_src_pos = Z_R11;
Register callee_saved_dst = Z_R12;
Register callee_saved_dst_pos = Z_R13;
Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
__ lgr_if_needed(callee_saved_src, src);
__ lgr_if_needed(callee_saved_src_pos, src_pos);
__ lgr_if_needed(callee_saved_dst, dst);
__ lgr_if_needed(callee_saved_dst_pos, dst_pos);
__ lgr_if_needed(callee_saved_length, length);
// C function requires 64 bit values.
__ z_lgfr(src_pos, src_pos);
__ z_lgfr(dst_pos, dst_pos);
__ z_lgfr(length, length);
// Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint.
// The arguments are in the corresponding registers.
assert(Z_ARG1 == src, "assumption");
assert(Z_ARG2 == src_pos, "assumption");
assert(Z_ARG3 == dst, "assumption");
assert(Z_ARG4 == dst_pos, "assumption");
assert(Z_ARG5 == length, "assumption");
#ifndef PRODUCT
if (PrintC1Statistics) {
__ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt);
__ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
}
#endif
emit_call_c(copyfunc_addr);
CHECK_BAILOUT();
__ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
__ z_lgr(tmp, Z_RET);
__ z_xilf(tmp, -1);
// Restore values from callee saved registers so they are where the stub
// expects them.
__ lgr_if_needed(src, callee_saved_src);
__ lgr_if_needed(src_pos, callee_saved_src_pos);
__ lgr_if_needed(dst, callee_saved_dst);
__ lgr_if_needed(dst_pos, callee_saved_dst_pos);
__ lgr_if_needed(length, callee_saved_length);
__ z_sr(length, tmp);
__ z_ar(src_pos, tmp);
__ z_ar(dst_pos, tmp);
__ branch_optimized(Assembler::bcondAlways, *stub->entry());
__ bind(*stub->continuation());
return;
}
assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
int elem_size = type2aelembytes(basic_type);
int shift_amount;
switch (elem_size) {
case 1 :
shift_amount = 0;
break;
case 2 :
shift_amount = 1;
break;
case 4 :
shift_amount = 2;
break;
case 8 :
shift_amount = 3;
break;
default:
shift_amount = -1;
ShouldNotReachHere();
}
Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
// Length and pos's are all sign extended at this point on 64bit.
// test for NULL
if (flags & LIR_OpArrayCopy::src_null_check) {
__ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_null_check) {
__ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry());
}
// Check if negative.
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
__ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
__ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
}
// If the compiler was not able to prove that exact type of the source or the destination
// of the arraycopy is an array type, check at runtime if the source or the destination is
// an instance type.
if (flags & LIR_OpArrayCopy::type_check) {
assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions");
if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(tmp, dst);
__ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
__ branch_optimized(Assembler::bcondNotLow, *stub->entry());
}
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
__ load_klass(tmp, src);
__ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
__ branch_optimized(Assembler::bcondNotLow, *stub->entry());
}
}
if (flags & LIR_OpArrayCopy::src_range_check) {
__ z_la(tmp, Address(src_pos, length));
__ z_cl(tmp, src_length_addr);
__ branch_optimized(Assembler::bcondHigh, *stub->entry());
}
if (flags & LIR_OpArrayCopy::dst_range_check) {
__ z_la(tmp, Address(dst_pos, length));
__ z_cl(tmp, dst_length_addr);
__ branch_optimized(Assembler::bcondHigh, *stub->entry());
}
if (flags & LIR_OpArrayCopy::length_positive_check) {
__ z_ltr(length, length);
__ branch_optimized(Assembler::bcondNegative, *stub->entry());
}
// Stubs require 64 bit values.
__ z_lgfr(src_pos, src_pos); // int -> long
__ z_lgfr(dst_pos, dst_pos); // int -> long
__ z_lgfr(length, length); // int -> long
if (flags & LIR_OpArrayCopy::type_check) {
// We don't know the array types are compatible.
if (basic_type != T_OBJECT) {
// Simple test for basic type arrays.
if (UseCompressedClassPointers) {
__ z_l(tmp, src_klass_addr);
__ z_c(tmp, dst_klass_addr);
} else {
__ z_lg(tmp, src_klass_addr);
__ z_cg(tmp, dst_klass_addr);
}
__ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
} else {
// For object arrays, if src is a sub class of dst then we can
// safely do the copy.
NearLabel cont, slow;
Register src_klass = Z_R1_scratch;
Register dst_klass = Z_R10;
__ load_klass(src_klass, src);
__ load_klass(dst_klass, dst);
__ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, NULL);
store_parameter(src_klass, 0); // sub
store_parameter(dst_klass, 1); // super
emit_call_c(Runtime1::entry_for (Runtime1::slow_subtype_check_id));
CHECK_BAILOUT2(cont, slow);
// Sets condition code 0 for match (2 otherwise).
__ branch_optimized(Assembler::bcondEqual, cont);
__ bind(slow);
address copyfunc_addr = StubRoutines::checkcast_arraycopy();
if (copyfunc_addr != NULL) { // use stub if available
// Src is not a sub class of dst so we have to do a
// per-element check.
int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
if ((flags & mask) != mask) {
// Check that at least both of them object arrays.
assert(flags & mask, "one of the two should be known to be an object array");
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
__ load_klass(tmp, src);
} else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
__ load_klass(tmp, dst);
}
Address klass_lh_addr(tmp, Klass::layout_helper_offset());
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ load_const_optimized(Z_R1_scratch, objArray_lh);
__ z_c(Z_R1_scratch, klass_lh_addr);
__ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
}
// Save outgoing arguments in callee saved registers (C convention) in case
// a call to System.arraycopy is needed.
Register callee_saved_src = Z_R10;
Register callee_saved_src_pos = Z_R11;
Register callee_saved_dst = Z_R12;
Register callee_saved_dst_pos = Z_R13;
Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
__ lgr_if_needed(callee_saved_src, src);
__ lgr_if_needed(callee_saved_src_pos, src_pos);
__ lgr_if_needed(callee_saved_dst, dst);
__ lgr_if_needed(callee_saved_dst_pos, dst_pos);
__ lgr_if_needed(callee_saved_length, length);
__ z_llgfr(length, length); // Higher 32bits must be null.
__ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset
__ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset
__ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type)));
assert_different_registers(Z_ARG1, dst, dst_pos, length);
__ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type)));
assert_different_registers(Z_ARG2, dst, length);
__ z_lgr(Z_ARG3, length);
assert_different_registers(Z_ARG3, dst);
__ load_klass(Z_ARG5, dst);
__ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset()));
__ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset()));
emit_call_c(copyfunc_addr);
CHECK_BAILOUT2(cont, slow);
#ifndef PRODUCT
if (PrintC1Statistics) {
NearLabel failed;
__ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed);
__ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt);
__ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
__ bind(failed);
}
#endif
__ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
#ifndef PRODUCT
if (PrintC1Statistics) {
__ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt);
__ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
}
#endif
__ z_lgr(tmp, Z_RET);
__ z_xilf(tmp, -1);
// Restore previously spilled arguments
__ lgr_if_needed(src, callee_saved_src);
__ lgr_if_needed(src_pos, callee_saved_src_pos);
__ lgr_if_needed(dst, callee_saved_dst);
__ lgr_if_needed(dst_pos, callee_saved_dst_pos);
__ lgr_if_needed(length, callee_saved_length);
__ z_sr(length, tmp);
__ z_ar(src_pos, tmp);
__ z_ar(dst_pos, tmp);
}
__ branch_optimized(Assembler::bcondAlways, *stub->entry());
__ bind(cont);
}
}
#ifdef ASSERT
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
// Sanity check the known type with the incoming class. For the
// primitive case the types must match exactly with src.klass and
// dst.klass each exactly matching the default type. For the
// object array case, if no type check is needed then either the
// dst type is exactly the expected type and the src type is a
// subtype which we can't check or src is the same array as dst
// but not necessarily exactly of type default_type.
NearLabel known_ok, halt;
metadata2reg(default_type->constant_encoding(), tmp);
if (UseCompressedClassPointers) {
__ encode_klass_not_null(tmp);
}
if (basic_type != T_OBJECT) {
if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); }
else { __ z_cg(tmp, dst_klass_addr); }
__ branch_optimized(Assembler::bcondNotEqual, halt);
if (UseCompressedClassPointers) { __ z_c (tmp, src_klass_addr); }
else { __ z_cg(tmp, src_klass_addr); }
__ branch_optimized(Assembler::bcondEqual, known_ok);
} else {
if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); }
else { __ z_cg(tmp, dst_klass_addr); }
__ branch_optimized(Assembler::bcondEqual, known_ok);
__ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok);
}
__ bind(halt);
__ stop("incorrect type information in arraycopy");
__ bind(known_ok);
}
#endif
#ifndef PRODUCT
if (PrintC1Statistics) {
__ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type));
__ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
}
#endif
__ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset
__ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset
assert_different_registers(Z_ARG1, dst, dst_pos, length);
__ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type)));
assert_different_registers(Z_ARG2, length);
__ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type)));
__ lgr_if_needed(Z_ARG3, length);
bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
const char *name;
address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
__ call_VM_leaf(entry);
__ bind(*stub->continuation());
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
if (dest->is_single_cpu()) {
if (left->type() == T_OBJECT) {
switch (code) {
case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
case lir_shr: __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break;
case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
default: ShouldNotReachHere();
}
} else {
assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
Register masked_count = Z_R1_scratch;
__ z_lr(masked_count, count->as_register());
__ z_nill(masked_count, 31);
switch (code) {
case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break;
case lir_shr: __ z_sra (dest->as_register(), 0, masked_count); break;
case lir_ushr: __ z_srl (dest->as_register(), 0, masked_count); break;
default: ShouldNotReachHere();
}
}
} else {
switch (code) {
case lir_shl: __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
case lir_shr: __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
default: ShouldNotReachHere();
}
}
}
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
if (left->type() == T_OBJECT) {
count = count & 63; // Shouldn't shift by more than sizeof(intptr_t).
Register l = left->as_register();
Register d = dest->as_register_lo();
switch (code) {
case lir_shl: __ z_sllg (d, l, count); break;
case lir_shr: __ z_srag (d, l, count); break;
case lir_ushr: __ z_srlg (d, l, count); break;
default: ShouldNotReachHere();
}
return;
}
if (dest->is_single_cpu()) {
assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
count = count & 0x1F; // Java spec
switch (code) {
case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), count); break;
case lir_shr: __ z_sra (dest->as_register(), count); break;
case lir_ushr: __ z_srl (dest->as_register(), count); break;
default: ShouldNotReachHere();
}
} else if (dest->is_double_cpu()) {
count = count & 63; // Java spec
Register l = left->as_pointer_register();
Register d = dest->as_pointer_register();
switch (code) {
case lir_shl: __ z_sllg (d, l, count); break;
case lir_shr: __ z_srag (d, l, count); break;
case lir_ushr: __ z_srlg (d, l, count); break;
default: ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
if (op->init_check()) {
// Make sure klass is initialized & doesn't have finalizer.
const int state_offset = in_bytes(InstanceKlass::init_state_offset());
Register iklass = op->klass()->as_register();
add_debug_info_for_null_check_here(op->stub()->info());
if (Immediate::is_uimm12(state_offset)) {
__ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
} else {
__ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
}
__ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far.
}
__ allocate_object(op->obj()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
op->header_size(),
op->object_size(),
op->klass()->as_register(),
*op->stub()->entry());
__ bind(*op->stub()->continuation());
__ verify_oop(op->obj()->as_register(), FILE_AND_LINE);
}
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
Register len = op->len()->as_register();
__ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend
if (UseSlowPath ||
(!UseFastNewObjectArray && (is_reference_type(op->type()))) ||
(!UseFastNewTypeArray && (!is_reference_type(op->type())))) {
__ z_brul(*op->stub()->entry());
} else {
__ allocate_array(op->obj()->as_register(),
op->len()->as_register(),
op->tmp1()->as_register(),
op->tmp2()->as_register(),
arrayOopDesc::header_size(op->type()),
type2aelembytes(op->type()),
op->klass()->as_register(),
*op->stub()->entry());
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data,
Register recv, Register tmp1, Label* update_done) {
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
// See if the receiver is receiver[n].
Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
__ z_cg(recv, receiver_addr);
__ z_brne(next_test);
Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
__ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
__ branch_optimized(Assembler::bcondAlways, *update_done);
__ bind(next_test);
}
// Didn't find receiver; find next empty slot and fill it in.
for (i = 0; i < VirtualCallData::row_limit(); i++) {
Label next_test;
Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
__ z_ltg(Z_R0_scratch, recv_addr);
__ z_brne(next_test);
__ z_stg(recv, recv_addr);
__ load_const_optimized(tmp1, DataLayout::counter_increment);
__ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo);
__ branch_optimized(Assembler::bcondAlways, *update_done);
__ bind(next_test);
}
}
void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
Unimplemented();
}
void LIR_Assembler::store_parameter(Register r, int param_num) {
assert(param_num >= 0, "invalid num");
int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
__ z_stg(r, offset_in_bytes, Z_SP);
}
void LIR_Assembler::store_parameter(jint c, int param_num) {
assert(param_num >= 0, "invalid num");
int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
__ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true);
}
void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
// We always need a stub for the failure case.
CodeStub* stub = op->stub();
Register obj = op->object()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register dst = op->result_opr()->as_register();
Register Rtmp1 = Z_R1_scratch;
ciKlass* k = op->klass();
assert(!op->tmp3()->is_valid(), "tmp3's not needed");
// Check if it needs to be profiled.
ciMethodData* md = NULL;
ciProfileData* data = NULL;
if (op->should_profile()) {
ciMethod* method = op->profiled_method();
assert(method != NULL, "Should have method");
int bci = op->profiled_bci();
md = method->method_data_or_null();
assert(md != NULL, "Sanity");
data = md->bci_to_data(bci);
assert(data != NULL, "need data for type check");
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
}
// Temp operands do not overlap with inputs, if this is their last
// use (end of range is exclusive), so a register conflict is possible.
if (obj == k_RInfo) {
k_RInfo = dst;
} else if (obj == klass_RInfo) {
klass_RInfo = dst;
}
assert_different_registers(obj, k_RInfo, klass_RInfo);
if (op->should_profile()) {
NearLabel not_null;
__ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
// Object is null; update MDO and exit.
Register mdo = klass_RInfo;
metadata2reg(md->constant_encoding(), mdo);
Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
__ or2mem_8(data_addr, header_bits);
__ branch_optimized(Assembler::bcondAlways, *obj_is_null);
__ bind(not_null);
} else {
__ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null);
}
NearLabel profile_cast_failure, profile_cast_success;
Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
Label *success_target = op->should_profile() ? &profile_cast_success : success;
// Patching may screw with our temporaries,
// so let's do it before loading the class.
if (k->is_loaded()) {
metadata2reg(k->constant_encoding(), k_RInfo);
} else {
klass2reg_with_patching(k_RInfo, op->info_for_patch());
}
assert(obj != k_RInfo, "must be different");
__ verify_oop(obj, FILE_AND_LINE);
// Get object class.
// Not a safepoint as obj null check happens earlier.
if (op->fast_check()) {
if (UseCompressedClassPointers) {
__ load_klass(klass_RInfo, obj);
__ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target);
} else {
__ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
__ branch_optimized(Assembler::bcondNotEqual, *failure_target);
}
// Successful cast, fall through to profile or jump.
} else {
bool need_slow_path = !k->is_loaded() ||
((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset()));
intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L;
__ load_klass(klass_RInfo, obj);
// Perform the fast part of the checking logic.
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1,
(need_slow_path ? success_target : NULL),
failure_target, NULL,
RegisterOrConstant(super_check_offset));
if (need_slow_path) {
// Call out-of-line instance of __ check_klass_subtype_slow_path(...):
address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
store_parameter(klass_RInfo, 0); // sub
store_parameter(k_RInfo, 1); // super
emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
CHECK_BAILOUT2(profile_cast_failure, profile_cast_success);
__ branch_optimized(Assembler::bcondNotEqual, *failure_target);
// Fall through to success case.
}
}
if (op->should_profile()) {
Register mdo = klass_RInfo, recv = k_RInfo;
assert_different_registers(obj, mdo, recv);
__ bind(profile_cast_success);
metadata2reg(md->constant_encoding(), mdo);
__ load_klass(recv, obj);
type_profile_helper(mdo, md, data, recv, Rtmp1, success);
__ branch_optimized(Assembler::bcondAlways, *success);
__ bind(profile_cast_failure);
metadata2reg(md->constant_encoding(), mdo);
__ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
__ branch_optimized(Assembler::bcondAlways, *failure);
} else {
__ branch_optimized(Assembler::bcondAlways, *success);
}
}
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
LIR_Code code = op->code();
if (code == lir_store_check) {
Register value = op->object()->as_register();
Register array = op->array()->as_register();
Register k_RInfo = op->tmp1()->as_register();
Register klass_RInfo = op->tmp2()->as_register();
Register Rtmp1 = Z_R1_scratch;
CodeStub* stub = op->stub();
// Check if it needs to be profiled.
ciMethodData* md = NULL;
ciProfileData* data = NULL;
assert_different_registers(value, k_RInfo, klass_RInfo);
if (op->should_profile()) {
ciMethod* method = op->profiled_method();
assert(method != NULL, "Should have method");
int bci = op->profiled_bci();
md = method->method_data_or_null();
assert(md != NULL, "Sanity");
data = md->bci_to_data(bci);
assert(data != NULL, "need data for type check");
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
}
NearLabel profile_cast_success, profile_cast_failure, done;
Label *success_target = op->should_profile() ? &profile_cast_success : &done;
Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
if (op->should_profile()) {
NearLabel not_null;
__ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
// Object is null; update MDO and exit.
Register mdo = klass_RInfo;
metadata2reg(md->constant_encoding(), mdo);
Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
__ or2mem_8(data_addr, header_bits);
__ branch_optimized(Assembler::bcondAlways, done);
__ bind(not_null);
} else {
__ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done);
}
add_debug_info_for_null_check_here(op->info_for_exception());
__ load_klass(k_RInfo, array);
__ load_klass(klass_RInfo, value);
// Get instance klass (it's already uncompressed).
__ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
// Perform the fast part of the checking logic.
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
// Call out-of-line instance of __ check_klass_subtype_slow_path(...):
address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
store_parameter(klass_RInfo, 0); // sub
store_parameter(k_RInfo, 1); // super
emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
CHECK_BAILOUT3(profile_cast_success, profile_cast_failure, done);
__ branch_optimized(Assembler::bcondNotEqual, *failure_target);
// Fall through to success case.
if (op->should_profile()) {
Register mdo = klass_RInfo, recv = k_RInfo;
assert_different_registers(value, mdo, recv);
__ bind(profile_cast_success);
metadata2reg(md->constant_encoding(), mdo);
__ load_klass(recv, value);
type_profile_helper(mdo, md, data, recv, Rtmp1, &done);
__ branch_optimized(Assembler::bcondAlways, done);
__ bind(profile_cast_failure);
metadata2reg(md->constant_encoding(), mdo);
__ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
__ branch_optimized(Assembler::bcondAlways, *stub->entry());
}
__ bind(done);
} else {
if (code == lir_checkcast) {
Register obj = op->object()->as_register();
Register dst = op->result_opr()->as_register();
NearLabel success;
emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
__ bind(success);
__ lgr_if_needed(dst, obj);
} else {
if (code == lir_instanceof) {
Register obj = op->object()->as_register();
Register dst = op->result_opr()->as_register();
NearLabel success, failure, done;
emit_typecheck_helper(op, &success, &failure, &failure);
__ bind(failure);
__ clear_reg(dst);
__ branch_optimized(Assembler::bcondAlways, done);
__ bind(success);
__ load_const_optimized(dst, 1);
__ bind(done);
} else {
ShouldNotReachHere();
}
}
}
}
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
Register addr = op->addr()->as_pointer_register();
Register t1_cmp = Z_R1_scratch;
if (op->code() == lir_cas_long) {
assert(VM_Version::supports_cx8(), "wrong machine");
Register cmp_value_lo = op->cmp_value()->as_register_lo();
Register new_value_lo = op->new_value()->as_register_lo();
__ z_lgr(t1_cmp, cmp_value_lo);
// Perform the compare and swap operation.
__ z_csg(t1_cmp, new_value_lo, 0, addr);
} else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
Register cmp_value = op->cmp_value()->as_register();
Register new_value = op->new_value()->as_register();
if (op->code() == lir_cas_obj) {
if (UseCompressedOops) {
t1_cmp = op->tmp1()->as_register();
Register t2_new = op->tmp2()->as_register();
assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new);
__ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/);
__ oop_encoder(t2_new, new_value, true /*maybe null*/);
__ z_cs(t1_cmp, t2_new, 0, addr);
} else {
__ z_lgr(t1_cmp, cmp_value);
__ z_csg(t1_cmp, new_value, 0, addr);
}
} else {
__ z_lr(t1_cmp, cmp_value);
__ z_cs(t1_cmp, new_value, 0, addr);
}
} else {
ShouldNotReachHere(); // new lir_cas_??
}
}
void LIR_Assembler::breakpoint() {
Unimplemented();
// __ breakpoint_trap();
}
void LIR_Assembler::push(LIR_Opr opr) {
ShouldNotCallThis(); // unused
}
void LIR_Assembler::pop(LIR_Opr opr) {
ShouldNotCallThis(); // unused
}
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
Address addr = frame_map()->address_for_monitor_lock(monitor_no);
__ add2reg(dst_opr->as_register(), addr.disp(), addr.base());
}
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
Register obj = op->obj_opr()->as_register(); // May not be an oop.
Register hdr = op->hdr_opr()->as_register();
Register lock = op->lock_opr()->as_register();
if (!UseFastLocking) {
__ branch_optimized(Assembler::bcondAlways, *op->stub()->entry());
} else if (op->code() == lir_lock) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
// Add debug info for NullPointerException only if one is possible.
if (op->info() != NULL) {
add_debug_info_for_null_check_here(op->info());
}
__ lock_object(hdr, obj, lock, *op->stub()->entry());
// done
} else if (op->code() == lir_unlock) {
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
} else {
ShouldNotReachHere();
}
__ bind(*op->stub()->continuation());
}
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method();
int bci = op->profiled_bci();
ciMethod* callee = op->profiled_callee();
// Update counter for all call types.
ciMethodData* md = method->method_data_or_null();
assert(md != NULL, "Sanity");
ciProfileData* data = md->bci_to_data(bci);
assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
Register mdo = op->mdo()->as_register();
assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
Register tmp1 = op->tmp1()->as_register_lo();
metadata2reg(md->constant_encoding(), mdo);
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
// Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes
if (op->should_profile_receiver_type()) {
assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register();
assert_different_registers(mdo, tmp1, recv);
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
ciKlass* known_klass = op->known_holder();
if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
// We know the type that will be seen at this call site; we can
// statically update the MethodData* rather than needing to do
// dynamic tests on the receiver type.
// NOTE: we should probably put a lock around this search to
// avoid collisions by concurrent compilations.
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
uint i;
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (known_klass->equals(receiver)) {
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
__ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
return;
}
}
// Receiver type not found in profile data. Select an empty slot.
// Note that this is less efficient than it should be because it
// always does a write to the receiver part of the
// VirtualCallData rather than just the first time.
for (i = 0; i < VirtualCallData::row_limit(); i++) {
ciKlass* receiver = vc_data->receiver(i);
if (receiver == NULL) {
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
metadata2reg(known_klass->constant_encoding(), tmp1);
__ z_stg(tmp1, recv_addr);
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
__ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
return;
}
}
} else {
__ load_klass(recv, recv);
NearLabel update_done;
type_profile_helper(mdo, md, data, recv, tmp1, &update_done);
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
__ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
__ bind(update_done);
}
} else {
// static call
__ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
}
}
void LIR_Assembler::align_backward_branch_target() {
__ align(OptoLoopAlignment);
}
void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
ShouldNotCallThis(); // There are no delay slots on ZARCH_64.
}
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
// tmp must be unused
assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
assert(left->is_register(), "can only handle registers");
if (left->is_single_cpu()) {
__ z_lcr(dest->as_register(), left->as_register());
} else if (left->is_single_fpu()) {
__ z_lcebr(dest->as_float_reg(), left->as_float_reg());
} else if (left->is_double_fpu()) {
__ z_lcdbr(dest->as_double_reg(), left->as_double_reg());
} else {
assert(left->is_double_cpu(), "Must be a long");
__ z_lcgr(dest->as_register_lo(), left->as_register_lo());
}
}
void LIR_Assembler::rt_call(LIR_Opr result, address dest,
const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
assert(!tmp->is_valid(), "don't need temporary");
emit_call_c(dest);
CHECK_BAILOUT();
if (info != NULL) {
add_call_info_here(info);
}
}
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
ShouldNotCallThis(); // not needed on ZARCH_64
}
void LIR_Assembler::membar() {
__ z_fence();
}
void LIR_Assembler::membar_acquire() {
__ z_acquire();
}
void LIR_Assembler::membar_release() {
__ z_release();
}
void LIR_Assembler::membar_loadload() {
__ z_acquire();
}
void LIR_Assembler::membar_storestore() {
__ z_release();
}
void LIR_Assembler::membar_loadstore() {
__ z_acquire();
}
void LIR_Assembler::membar_storeload() {
__ z_fence();
}
void LIR_Assembler::on_spin_wait() {
Unimplemented();
}
void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
assert(patch_code == lir_patch_none, "Patch code not supported");
LIR_Address* addr = addr_opr->as_address_ptr();
assert(addr->scale() == LIR_Address::times_1, "scaling unsupported");
__ load_address(dest->as_pointer_register(), as_Address(addr));
}
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
ShouldNotCallThis(); // unused
}
#ifdef ASSERT
// Emit run-time assertion.
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
Unimplemented();
}
#endif
void LIR_Assembler::peephole(LIR_List*) {
// Do nothing for now.
}
void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
assert(code == lir_xadd, "lir_xchg not supported");
Address src_addr = as_Address(src->as_address_ptr());
Register base = src_addr.base();
intptr_t disp = src_addr.disp();
if (src_addr.index()->is_valid()) {
// LAA and LAAG do not support index register.
__ load_address(Z_R1_scratch, src_addr);
base = Z_R1_scratch;
disp = 0;
}
if (data->type() == T_INT) {
__ z_laa(dest->as_register(), data->as_register(), disp, base);
} else if (data->type() == T_LONG) {
assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
__ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
Register obj = op->obj()->as_register();
Register tmp1 = op->tmp()->as_pointer_register();
Register tmp2 = Z_R1_scratch;
Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
ciKlass* exact_klass = op->exact_klass();
intptr_t current_klass = op->current_klass();
bool not_null = op->not_null();
bool no_conflict = op->no_conflict();
Label update, next, none, null_seen, init_klass;
bool do_null = !not_null;
bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
assert(do_null || do_update, "why are we here?");
assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
__ verify_oop(obj, FILE_AND_LINE);
if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) {
__ z_ltgr(tmp1, obj);
}
if (do_null) {
__ z_brnz(update);
if (!TypeEntries::was_null_seen(current_klass)) {
__ z_lg(tmp1, mdo_addr);
__ z_oill(tmp1, TypeEntries::null_seen);
__ z_stg(tmp1, mdo_addr);
}
if (do_update) {
__ z_bru(next);
}
} else {
__ asm_assert_ne("unexpect null obj", __LINE__);
}
__ bind(update);
if (do_update) {
#ifdef ASSERT
if (exact_klass != NULL) {
__ load_klass(tmp1, tmp1);
metadata2reg(exact_klass->constant_encoding(), tmp2);
__ z_cgr(tmp1, tmp2);
__ asm_assert_eq("exact klass and actual klass differ", __LINE__);
}
#endif
Label do_update;
__ z_lg(tmp2, mdo_addr);
if (!no_conflict) {
if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
if (exact_klass != NULL) {
metadata2reg(exact_klass->constant_encoding(), tmp1);
} else {
__ load_klass(tmp1, tmp1);
}
// Klass seen before: nothing to do (regardless of unknown bit).
__ z_lgr(Z_R0_scratch, tmp2);
assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
__ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
__ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
// Already unknown: Nothing to do anymore.
__ z_tmll(tmp2, TypeEntries::type_unknown);
__ z_brc(Assembler::bcondAllOne, next);
if (TypeEntries::is_type_none(current_klass)) {
__ z_lgr(Z_R0_scratch, tmp2);
assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
__ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
__ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass);
}
} else {
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
// Already unknown: Nothing to do anymore.
__ z_tmll(tmp2, TypeEntries::type_unknown);
__ z_brc(Assembler::bcondAllOne, next);
}
// Different than before. Cannot keep accurate profile.
__ z_oill(tmp2, TypeEntries::type_unknown);
__ z_bru(do_update);
} else {
// There's a single possible klass at this profile point.
assert(exact_klass != NULL, "should be");
if (TypeEntries::is_type_none(current_klass)) {
metadata2reg(exact_klass->constant_encoding(), tmp1);
__ z_lgr(Z_R0_scratch, tmp2);
assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
__ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
__ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
#ifdef ASSERT
{
Label ok;
__ z_lgr(Z_R0_scratch, tmp2);
assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
__ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
__ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok);
__ stop("unexpected profiling mismatch");
__ bind(ok);
}
#endif
} else {
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
// Already unknown: Nothing to do anymore.
__ z_tmll(tmp2, TypeEntries::type_unknown);
__ z_brc(Assembler::bcondAllOne, next);
__ z_oill(tmp2, TypeEntries::type_unknown);
__ z_bru(do_update);
}
}
__ bind(init_klass);
// Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
__ z_ogr(tmp2, tmp1);
__ bind(do_update);
__ z_stg(tmp2, mdo_addr);
__ bind(next);
}
}
void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
assert(op->crc()->is_single_cpu(), "crc must be register");
assert(op->val()->is_single_cpu(), "byte value must be register");
assert(op->result_opr()->is_single_cpu(), "result must be register");
Register crc = op->crc()->as_register();
Register val = op->val()->as_register();
Register res = op->result_opr()->as_register();
assert_different_registers(val, crc, res);
__ load_const_optimized(res, StubRoutines::crc_table_addr());
__ kernel_crc32_singleByteReg(crc, val, res, true);
__ z_lgfr(res, crc);
}
#undef __